

Natarajan Meghanathan et al. (Eds) : CCSEA, CLOUD, SIPRO, AIFU, SEA, DKMP, NCOM - 2019

pp. 287-296, 2019. © CS & IT-CSCP 2019 DOI: 10.5121/csit.2019.90924

EFFECTIVE SERVICE COMPOSITION

APPROACH BASED ON PRUNING

PERFORMANCE BOTTLENECKS

Navinderjit Kaur Kahlon and Kuljit Kaur Chahal

Department of Computer Science

Guru Nanak Dev University, Amritsar India

ABSTRACT

In recent years, several online services have proliferated to provide similar services with same

functionality by different service providers with varying Quality of Service (QoS) properties.

So, service composition should provide effective adaptation especially in a dynamically

changing composition environment. Meanwhile, a large number of component services pose

scalability issues. As a result, monitoring and resolving performance problems in web services

based systems is challenging task as these systems depend on component web services that are

distributed in nature. In this paper, a distributed approach is used to identify performance

related problems in component web services. The service composition adaptation provides

timely replacement of the performance bottleneck source that can prohibit performance

degradation for the forthcoming requests. Experimentation results demonstrate the efficiency of

the proposed approach, and also the quality of solution of a service composition is maintained.

KEYWORDS

Web service composition; Quality of Service; reconfiguration; self-adaptive; optimal.

1. INTRODUCTION

A web services based software system also referred as a Composite Web Service (CWS) makes

use of third party web services which run on-the-fly. Adaptability is one of the key requirements

of such systems keeping in view the dynamic environment in which they execute [1]. Despite

having to be continuously available, they also need to strive to remain optimal in changing

conditions. Thus, reconfiguration of a CWS is required to adjust or adapt as per the changed

scenario [2].So an important infrastructure level concern is to add self-adaptation ability so that a

web services based solution can adapt seamlessly as the execution environment changes.

A self-adaptive (self-healing or autonomic) system possesses capabilities to reconfigure in

response to changing environment conditions [3]. In a self-adaptive system, monitoring occurs

alongside its execution. The system may need to adapt depending upon the information extracted

during monitoring. However, monitoring and adaptation [4] is not trivial in a web services based

system which is distributed at different physical locations. The distributed ownership of the

component web services add to the complexity of such systems.

Most of the existing approaches that focus on the challenges of building complex web services

based systems; treat critical situations arising in a dynamic execution environment as exceptions

[5] or failures that require repair [6]. However a web service based system executing in a static

environment cannot be a real world application. In a real world web services based system;

288 Computer Science & Information Technology (CS & IT)

change is not an exception but a rule. Changes are a natural phenomenon for such systems as they

operate in a dynamic execution environment. Moreover, a web services based system has not only

to be correct and reliable, but it should also ensure that it remains optimal as the component web

services evolve independently. The need to reconfigure a web service composition in a timely

manner when change events happen during its execution is an important issue and still an open

question [7, 8].

In this paper, a distributed (a hybrid of client and server) monitoring approach that keeps track of

QoS values of different component web services of a web services based system is presented.

Whenever QoS of a component web service degrades, the composite web service is notified

which then replaces the component web service with an alternative. We extend this framework

further to identify component web services which make the composite web service sub-optimal.

Such web services are pruned and replaced with better alternatives. Better alternatives may be

available in distant/premium service repositories. It is assumed that all web services are

substitutable and it is feasible to find direct substitutes either in local or in distant/premium

repositories.

The main contributions of this paper are:

• The service clients are notified just-in-time using publish-subscribe mechanism when QoS

of a component web service degrades. The service client then automatically (without any

human intervention) shifts to a better alternative.

• To localize the source of performance bottlenecks by monitoring the present workflow and

pruning such source by replacing it with a better alternative in the proposed framework.

This paper contains five sections. Section 2 presents related work about web service composition

and self-adaptive web service composition at runtime. Section 3 gives an overview of the system

design, and different modules to implement the proposed approach. Section 4 presents the results

of the experiments. Finally, section 5 concludes the paper.

2. RELATED WORK

Existing web service composition approaches [9,10,11] strive to find an optimal solution at

design phase, which is not efficient (as it is a NP-hard problem) and does not scale up for a large

data set size. It also does not reflect a real world situation where a web service composition has to

remain optimal in a dynamic execution environment. As consumers find it difficult to select a

service composition that is near optimal solution satisfying functional and non-functional

requirements, eagle strategy can be used [27].

Liu et al. [12] use prediction based on case based reasoning to solve web service composition

problem efficiently and effectively. Moustafa and Zang [13] predict potential degradation

scenarios, and apply a proactive approach whenever the system deviates from expected QoS.

Such solutions are appropriate for a dynamic execution environment. But their major drawback is

that many a time predictions fail, and the overhead incurred to handle failed prediction may be

high. In case of the Internet based applications, QoS degradation of component web services may

be transient when the system load is high at one point of time. The dynamic optimization of a

service composition can be done by using multi-agent reinforcement learning [26]. A distributed

Q-learning algorithm is used to accelerate the convergence rate.

Angarita et al. [14] propose to build fault tolerant CWS to ensure that either such a CWS

completes successfully or leaves the execution in a safe state when component web services fail

to perform as per expectations. Campos et al. [8] present an approach for building adaptive

service compositions by detecting undesirable behaviors in their execution traces. They propose

Computer Science & Information Technology (CS & IT) 289

to use formal methods to verify web service adaptation at execution time in a dynamic

environment.

After detecting violations in QoS values, the adaptation mechanism gets triggered. Adaptation

involves reconfiguring the execution plan without stopping the composite service execution.

Adaptation may be implemented by following a reactive [8], a proactive approach [15], or a post-

mortem of the previous execution traces to improve the system for future [16].

Zhu et al. [17] argue that effective runtime adaptation of service needs real changes in QoS of

web services for timely and accurate decisions about -When to trigger adaptation action?, Which

web service to replace in execution?, and Which candidate web service to select? Adaptable Web

Services Framework (AWSF) [18] and Self ADaptIve for web service Compositon

(SADICO)[19] are the two frameworks which take into consideration the service user’s context

(e.g. device features such as screen size, bandwidth, or user location) and adapt the web service

behavior so that web service becomes more relevant and useful.

Although, many solutions have been proposed to adapt a web services based software solution to

QoS changes of its component web services [20,21], but runtime monitoring of component web

services, and then communication of the data, collected during monitoring, to the clients still

needs to improve.

3. SYSTEM DESIGN AND IMPLEMENTATION

3.1 Assumptions

This work relies on a few key assumptions. First, it assumes that all component web services are

substitutable and it is feasible to find direct substitutes either in local or in distant/premium

repositories. Second, there exist two distinct periods of performance i.e. execution traces with

distinct levels of performance. Third, the workload (i.e. request arrival rate) is uniform across

different periods of analysis. Performance comparison of different execution traces under

different workloads is not justified. Fourth, all the component web service are supposed to have

same levels of performance. Though it seems unrealistic, but this assumption is motivated by the

quality characteristics of web services. Fifth, the network connection between web services is

error free, even though individual atomic services may be problematic. Lastly, service clients and

providers are trustworthy entities, and there are no security risks when mobile agents execute on

the provider side.

3.2 System Overview

This section presents the basic components of our proposed system by describing their own

functions along with their interaction with other components in the system.

The proposed system is composed of five components as:

A. The Basic Process

A workflow manager receives a client request; gets the corresponding abstract composition;

selects corresponding concrete web services; dispatches mobile agents to service providers to

monitor the QoS behavior of the chosen web services for execution in composition; invokes the

partner web services for preparing the results and responds back to the client.

290 Computer Science & Information Technology (CS & IT)

B. Monitoring the logs for QoS degradation

Once the deployed web services are invoked upon client request in the composition workflow,

continuous monitoring and analysis of component web services is done by examining their

execution logs on the provider side. The execution logs consisting of QoS values of web services

are maintained at the service provider side when each web service gets executed in the execution

workflow. Each web service execution log is maintained for future prediction based analysis.

Monitoring and adaptation of the component web services is based on four QoS parameters as

execution time, throughput, reliability and availability. The values for QoS parameters are

calculated using the formulae in Table 1.

Table1: QoS Parameters formulae

The throughput, reliability, and availability are the attributes with positive dimension i.e. higher

the value, better it is, whereas, execution time is a negative dimension.

C. Log Monitoring to identify the source of performance bottleneck

This section presents an approach to improve QoS of a composite web service when some of its

component web services are acting as a performance bottleneck in the service composition. Inter

Quartile Range (IQR) is computed to measure variability in the data set by analyzing the previous

execution logs. IQR is the difference between first quartile (Q1) and third quartile (Q3). The

upper and lower threshold values in the dataset corresponding to every QoS attributes are

calculated by using Tukey Fences [22] method which is a popular method of identifying extreme

data values in a data set.

Lower threshold = Q1-1.5(IQR) ----(1)

Upper threshold = Q3+1.5(IQR) ----(2)

A component web service executing in the workflow that can act as performance bottleneck can

be detected based on its QoS values. The comparison against the threshold values depend upon

the type of dimension of the QoS attributes. A component web service with QoS attribute as a

negative (positive) dimension will be compared with the upper (lower) threshold value. In case

there are multiple component web services adding to the performance degradation of the

workflow, then pruning of a web service is decided on the basis of the quantum of influence that

a web service has on the workflow. A web service with maximum influence is pruned first and

then the others in that order.

A workflow in a service composition may follow serial, cyclic, parallel, or a combination of the

three execution patterns of partner web services [23]. Aggregate value of a QoS attribute for a

CWS is calculated using different formulae for the different workflow patterns. Table 2 gives the

formulae for a sequential workflow used in the service composition. In a sequential pattern, the

Computer Science & Information Technology (CS & IT) 291

component web services execute in a serial order. The proposed service composition is a simple

sequence of service executions.

Table 2: QoS aggregate formulae for a sequential workflow

D. Just-in-time Notification

In a web service based application, changes in QoS values of component web services take place

on-the-fly. Therefore, the challenge lies in tracking up-to-date information regarding changes in

status of component services and then implementing change reaction decisions as soon as

possible.

Many researchers have proposed models and mechanisms for monitoring component web

services for dynamic reconfiguration of a CWS [21], but to reconfigure a web service

composition in a timely manner when change events happen during its execution is an important

issue and still an open question [7,8].

A novel idea to handle web service failures in service oriented software systems uses a push

mechanism to notify client application about the failure of a service. A multi agent system tracks

a web service on the provider side, and informs the client application as soon as the service fails.

This approach is expected to reduce delay in making the replacement decisions. It is also easy on

resources as the solution is distributed, and therefore monitoring overhead is also divided between

service consumer and provider.

An agent based approach for handling web service availability issues uses the concept of mobile

agents, which run at service provider side and provide latest information regarding the web

service to the service user. Therefore, service user can arrange alternatives of a failed service

even before invoking it. In addition, it also proposes service replacement strategies for optimizing

the process execution.

E. Adaption in case of QoS degradation and performance bottleneck

The proposed framework will trigger adaptation as soon as a web service executing in the service

composition becomes unavailable or its aggregate QoS values degrade at a provider. This will

replace the faulty web service with the next best service (of the same category) available in the

local repository. If the last service of a particular category is used, an alert is raised to retrieve

more services matching the criteria from the external repository. If the web services alternatives

do not exist in the service registry, then the search space is expanded to distant or premium

292 Computer Science & Information Technology (CS & IT)

service repositories. Therefore, a potent

Lastly, if no matching candidate services are found, then the application may be terminated.

3.3 System Implementation

The prototype of proposed framework is implemented

conducted on an Intel Core i5 processor with 4 GB RAM running on Windows 7 using Tomcat

server and JADE 7 [24, 25]. The web services used in the experiment are described and selected

with quality parameters. In order to save time, an abstract service com

execution of the workflow starts.

The process execution starts when a user hits the service client module on

shown in Figure 1. The service client prompts the user to enter the type of problem (e.g. accid

case or a sudden heart attack). The

current location of user with help of the location locator service. Then an

finder service finds the appropriate hospitals on the basis of

services required in the case. The map and time services provide best route related information. If

the user had opted for an ambulance service, then a transport management service provider is

invoked. User’s location and best route from the source to destination is passed as input to the

transport service provider.

4. RESULTS AND ANALYSIS

4.1 Performance Evaluation

A performance of a system can be evaluated on the basis of several criteria such as execution

time, throughput, and scalability. The execution time is the time spent in servicing a request

which also includes time the framework spends in handling the chang

change event is detected, and the replacement of a web service is invoked. Throughput is the

number of requests completed in unit time.

Figure 2 shows CWS execution time in three different situations 1) a best case that does not ne

to adapt, 2) a reactive solution to handle change events and, 3) proposed framework. The request

was repeated 50 times, and average response time was calculated. In the first case, request is

services in 0.28 sec as the system operates in a static envir

However, such a case is suitable for comparison only to mark a benchmark case. In the real

world, there cannot be a web services based solution that does not

as the underlying environment is

second case, the execution time turns out to be 0.65 seconds. While in third case the execution

time is around 0.45 seconds. It is remarkably less than the second case that follows a reactive

approach to handle change events. The main reason for the time gap in these two cases is that our

Computer Science & Information Technology (CS & IT)

service repositories. Therefore, a potential set of services are always ready for replacement.

Lastly, if no matching candidate services are found, then the application may be terminated.

System Implementation

prototype of proposed framework is implemented using Java EE. The experiment

conducted on an Intel Core i5 processor with 4 GB RAM running on Windows 7 using Tomcat

server and JADE 7 [24, 25]. The web services used in the experiment are described and selected

with quality parameters. In order to save time, an abstract service composition is available before

execution of the workflow starts.

The process execution starts when a user hits the service client module on a

1. The service client prompts the user to enter the type of problem (e.g. accid

case or a sudden heart attack). The workflow of the service composition starts by finding the

current location of user with help of the location locator service. Then an

service finds the appropriate hospitals on the basis of the user location and the specialized

services required in the case. The map and time services provide best route related information. If

the user had opted for an ambulance service, then a transport management service provider is

and best route from the source to destination is passed as input to the

Figure 1. The service composition

NALYSIS

Performance Evaluation

A performance of a system can be evaluated on the basis of several criteria such as execution

time, throughput, and scalability. The execution time is the time spent in servicing a request

which also includes time the framework spends in handling the change events i.e. when the

change event is detected, and the replacement of a web service is invoked. Throughput is the

number of requests completed in unit time.

2 shows CWS execution time in three different situations 1) a best case that does not ne

to adapt, 2) a reactive solution to handle change events and, 3) proposed framework. The request

was repeated 50 times, and average response time was calculated. In the first case, request is

services in 0.28 sec as the system operates in a static environment, and no change event happens.

However, such a case is suitable for comparison only to mark a benchmark case. In the real

world, there cannot be a web services based solution that does not need to handle change events

as the underlying environment is based on the Internet, and is continuously changing. In the

second case, the execution time turns out to be 0.65 seconds. While in third case the execution

seconds. It is remarkably less than the second case that follows a reactive

roach to handle change events. The main reason for the time gap in these two cases is that our

ial set of services are always ready for replacement.

Lastly, if no matching candidate services are found, then the application may be terminated.

Java EE. The experiment is

conducted on an Intel Core i5 processor with 4 GB RAM running on Windows 7 using Tomcat

server and JADE 7 [24, 25]. The web services used in the experiment are described and selected

position is available before

a (mobile) device as

1. The service client prompts the user to enter the type of problem (e.g. accident

starts by finding the

emergency hospital

the user location and the specialized

services required in the case. The map and time services provide best route related information. If

the user had opted for an ambulance service, then a transport management service provider is

and best route from the source to destination is passed as input to the

A performance of a system can be evaluated on the basis of several criteria such as execution

time, throughput, and scalability. The execution time is the time spent in servicing a request

e events i.e. when the

change event is detected, and the replacement of a web service is invoked. Throughput is the

2 shows CWS execution time in three different situations 1) a best case that does not need

to adapt, 2) a reactive solution to handle change events and, 3) proposed framework. The request

was repeated 50 times, and average response time was calculated. In the first case, request is

onment, and no change event happens.

However, such a case is suitable for comparison only to mark a benchmark case. In the real

to handle change events

based on the Internet, and is continuously changing. In the

second case, the execution time turns out to be 0.65 seconds. While in third case the execution

seconds. It is remarkably less than the second case that follows a reactive

roach to handle change events. The main reason for the time gap in these two cases is that our

Computer Science & Information

proposed approach uses a pre

component web service degrades or becomes a performance bottleneck.

Figure 2. CWS Execution Time (seconds) (1) Best case, (2) Reactive Framework, (3) With Framework

4.2 Analyzing the Quality

The QoS attributes such as execution time, throughput, availability, and reliability of component

web services play a vital role to determine the aggregate QoS of CWS. Figures 3 to 6 show the

performance of QoS attributes of CWS

demonstrate that the execution time of the CWS remains stable even if there is a QoS degradation

of component web services or if any web service acts as a performance bottleneck.

execution time of CWS is nearly 0.45 seconds; though there is a rise in execution time in first ten

requests which is warmup time taken by the system to start the wo

throughput of the service composition improves over period of time

system increases as the number of requests

throughput of proposed system beco

performance bottleneck for the service composition. Figure 5 and 6 depicts the r

availability of the service composition respectively. The results demonstrate that values of

reliability and availability are

and 6 are depicted because of the time taken to substitute the component web service which is

acting a performance bottleneck for the

Therefore, the proposed framework

service composition execution

variations in QoS values in a dynamic

of component web services which should be

quality of solution of a workflow.

Computer Science & Information Technology (CS & IT)

sed approach uses a preselected set of candidate services for replacement in case a

component web service degrades or becomes a performance bottleneck.

Figure 2. CWS Execution Time (seconds) (1) Best case, (2) Reactive Framework, (3) With Framework

Quality of Solution

The QoS attributes such as execution time, throughput, availability, and reliability of component

role to determine the aggregate QoS of CWS. Figures 3 to 6 show the

QoS attributes of CWS performed for simultaneous 100 requests.

he execution time of the CWS remains stable even if there is a QoS degradation

component web services or if any web service acts as a performance bottleneck.

execution time of CWS is nearly 0.45 seconds; though there is a rise in execution time in first ten

requests which is warmup time taken by the system to start the workflow. Figure 4 shows that

throughput of the service composition improves over period of time. The throughput of proposed

as the number of requests is increased over time. After certain time interval the

throughput of proposed system becomes stable even if the component web services are creating

performance bottleneck for the service composition. Figure 5 and 6 depicts the r

of the service composition respectively. The results demonstrate that values of

ty and availability are consistently good on an average. The small variations

and 6 are depicted because of the time taken to substitute the component web service which is

acting a performance bottleneck for the service composition execution.

Therefore, the proposed framework maintains a stable performance of various

service composition execution even if the values of QoS attributes degrade over time. The

in a dynamic service execution environment is due to QoS degradation

of component web services which should be replaced with better alternatives to improve the

workflow.

Figure 3. Execution time of the CWS

 293

selected set of candidate services for replacement in case a

Figure 2. CWS Execution Time (seconds) (1) Best case, (2) Reactive Framework, (3) With Framework

The QoS attributes such as execution time, throughput, availability, and reliability of component

role to determine the aggregate QoS of CWS. Figures 3 to 6 show the

100 requests. Figure 3

he execution time of the CWS remains stable even if there is a QoS degradation

component web services or if any web service acts as a performance bottleneck. The average

execution time of CWS is nearly 0.45 seconds; though there is a rise in execution time in first ten

rkflow. Figure 4 shows that

. The throughput of proposed

After certain time interval the

mes stable even if the component web services are creating

performance bottleneck for the service composition. Figure 5 and 6 depicts the reliability and

of the service composition respectively. The results demonstrate that values of

small variations in Figure 5

and 6 are depicted because of the time taken to substitute the component web service which is

various QoS attributes in a

even if the values of QoS attributes degrade over time. The

s due to QoS degradation

replaced with better alternatives to improve the

294 Computer Science & Information Technology (CS & IT)

Figure 4. Throughput of the CWS

Figure 5. Reliability of the CWS

Figure 6. Availability of the CWS

5. CONCLUSIONS

The monitoring and adaptation of web service composition according to the changing scenario at

runtime has drawn a lot of attention in the web services based solutions. This paper proposes a

distributed monitoring and adaptation framework to keep track of the performance bottleneck of

component web services. This paper follows a preventive approach in invocation of component

web service with degraded QoS. Additionally, the applicability of the self-adaptive system on

the various quality dimensions, such as reliability, availability and throughput is discussed. The

Computer Science & Information Technology (CS & IT) 295

adaptation process is flexible enough as it takes into consideration different QoS requirements of

different clients.

The experimental results demonstrate that the proposed approach performs better even if

component web services are creating performance bottlenecks. The quality of solution is efficient

for QoS parameters such as execution time, throughput, reliability and availability. In future, we

plan to extend the framework for global optimization of web service composition using self-

learning techniques.

REFERENCES

[1] Di Nitto, E., Ghezzi, C., Metzger, A., Papazoglou, M., & Pohl, K. (2008). A journey to highly

dynamic, self-adaptive service-based applications. Automated Software Engineering, 15(3), 313-341.

[2] Liang, Q., Lee, B., & Hung, P. (2014). A rule-based approach for availability of service by automated

service substitution. Softw.,Pract. Exper. 44(1) , 47-76.

[3] Psaier, H., Juszczyk, L., Skopik, F., Schall, D., & Dustdar, S. (2010, September). Runtime behavior

monitoring and self-adaptation in service-oriented systems. In 2010 Fourth IEEE International

Conference on Self-Adaptive and Self-Organizing Systems (pp. 164-173). Ieee.

[4] Guinea, S., Kecskemeti, G., Marconi, A., &Wetzstein, B. (2011, December). Multi-layered

monitoring and adaptation. In International Conference on Service-Oriented Computing (pp. 359-

373). Springer, Berlin, Heidelberg.

[5] Zeng, L., Lei, H., Jeng, J. J., Chung, J. Y., & Benatallah, B. (2005, July). Policy-driven exception-

management for composite web services. In Seventh IEEE International Conference on E-Commerce

Technology (CEC'05) (pp. 355-363). IEEE.

[6] Friedrich, G., Fugini, M. G., Mussi, E., Pernici, B., &Tagni, G. (2010). Exception handling for repair

in service-based processes. IEEE Transactions on Software Engineering, 36(2), 198-215

[7] He, Q., Xie, X., Wang, Y., Ye, D., Chen, F., Jin, H., & Yang, Y. (2017). Localizing Runtime

Anomalies in Service-Oriented Systems. IEEE Transactions on Services Computing, 10(1), 94-106.

[8] Campos, G. M., Souto Rosa, N., & Ferreira Pires, L. (2017, January). Adaptive service composition

based on runtime verification of formal properties. In Proceedings of the 50th Hawaii International

Conference on System Sciences.

[9] Cheng, S. P., Lu, X. M., & Zhou, X. Z. (2014). Globally optimal selection of web composite services

based on univariate marginal distribution algorithm. Neural Computing and Applications, 24(1), 27-

36. https://doi.org/10.1007/s00521-013-1440-9

[10] Chen, Y., Huang, J., Lin, C., & Hu, J. (2015). A partial selection methodology for efficient qos-aware

service composition. IEEE Transactions on Services Computing, 8(3), 384-397.

[11] Cremene, M., Suciu, M., Pallez, D., & Dumitrescu, D. (2016). Comparative analysis of multi-

objective evolutionary algorithms for QoS-aware web service composition. Applied Soft

Computing, 39, 124-139.

[12] Liu, X., Shi, W., Kale, A., Ding, C., & Yu, Q. (2017). Statistical Learning of Domain-Specific

Quality-of-Service Features from User Reviews. ACM Transactions on Internet Technology (TOIT),

17(2), 22.

[13] Moustafa and ZangMoustafa, A., & Zhang, M. (2012, June). Towards Proactive Web Service

Adaptation. In CAiSE(pp. 473-485).

[14] Angarita, R., Cardinale, Y., &Rukoz, M. (2014). Reliable composite web services execution: towards

a dynamic recovery decision. Electronic Notes in Theoretical Computer Science, 302, 5-28.

[15] Xiong X., Wang P., Zhang Q., Pu C. L. (2014). Revisiting proactive service-oriented architecture:

from design and implementation to validation and performance improvement, International Journal of

Services ComputingVol. 2, No. 1, pp. 1-12.

[16] Chahal, K. K., Kahlon, N. K., &Narang, S. B. (2017). Improving the QoS of a Composite Web

Service by Pruning its Weak Partners. In Requirements Engineering for Service and Cloud

Computing (pp. 271-290). Springer International Publishing.

[17] Zhu, J., He, P., Zheng, Z., & Lyu, M. R. (2017). Online QoS prediction for runtime service adaptation

via adaptive matrix factorization. IEEE Transactions on Parallel and Distributed Systems, 28(10),

2911-2924.

[18] El Hog, C., Djemaa, R. B., & Amous, I. (2014). A User-Aware Approach to Provide Adaptive Web

Services. J. UCS, 20(7), 944-963.

296 Computer Science & Information Technology (CS & IT)

[19] Nabli, H., Cherif, S., Djmeaa, R. B., & Amor, I. A. B. (2018, May). SADICO: Self

Approach to the Web Service COmposition. In

Multimedia Systems and Services

[20] Angarita, R. (2015, July). Responsible objects: Towards self

In 2015 IEEE International Conference on Autonomic C

[21] Angarita, R., Rukoz, M., &Cardinale, Y. (2016). Modeling dynamic recovery strategy for composite

web services execution. World Wide Web, 19(1), 89

[22] Yu, C. H. (1977). Exploratory data analysis.

[23] Fakhfakh, N., Verjus, H., Pourraz, F., &Moreaux, P. (2013). QoS aggregation for service

orchestrations based on workflow pattern rules and MCDM method: evaluation at design time and

runtime. Service Oriented Computing and Applications

[24] Bellifemine, F., Caire, G., Poggi, A., &Rimassa, G. (2008). JADE: A software framework for

developing multi-agent applications. Lessons learned.

10-21.

[25] JADE mobile agent platform, http://jade.tilab.com

[26] Wang, H., Wang, X., Hu, X., Zhang, X., & Gu, M. (2016). A multi

approach to dynamic service composition.

[27] Gavvala, S. K., Jatoth, C., Gangadharan, G. R., &

composition using eagle strategy.

AUTHORS

Navinderjit Kaur Kahlon received

Science and Engineering from Guru Nanak D

working as an Assistant Professor in the Department of Computer Science, Guru

Nanak Dev University, India. The r

Computing, Distributed Systems, Mobile Agents and Web Technol

Kuljit Kaur Chahal received the Ph.D. in Computer Science in 2011. She is working

as an Associate Professor in the Department of Computer Science, Guru Nanak Dev

University, India. Her research interests are Distributed Computing, Web Services

Security, and Open Source Softwares.

Computer Science & Information Technology (CS & IT)

Nabli, H., Cherif, S., Djmeaa, R. B., & Amor, I. A. B. (2018, May). SADICO: Self

Approach to the Web Service COmposition. In International Conference on Intelligent Interactive

Multimedia Systems and Services (pp. 254-267). Springer, Cham.

Angarita, R. (2015, July). Responsible objects: Towards self-healing internet of things applications.

2015 IEEE International Conference on Autonomic Computing (pp. 307-312). IEEE.

Angarita, R., Rukoz, M., &Cardinale, Y. (2016). Modeling dynamic recovery strategy for composite

web services execution. World Wide Web, 19(1), 89-109.

Yu, C. H. (1977). Exploratory data analysis. Methods, 2, 131-160.

h, N., Verjus, H., Pourraz, F., &Moreaux, P. (2013). QoS aggregation for service

orchestrations based on workflow pattern rules and MCDM method: evaluation at design time and

Service Oriented Computing and Applications, 7(1), 15-31.

F., Caire, G., Poggi, A., &Rimassa, G. (2008). JADE: A software framework for

agent applications. Lessons learned. Information and Software Technology

JADE mobile agent platform, http://jade.tilab.com

ang, X., Hu, X., Zhang, X., & Gu, M. (2016). A multi-agent reinforcement learning

approach to dynamic service composition. Information Sciences, 363, 96-119.

Gavvala, S. K., Jatoth, C., Gangadharan, G. R., & Buyya, R. (2019). QoS-

composition using eagle strategy. Future Generation Computer Systems, 90, 273

received Ph.D. degree and Master’s degree in Computer

Science and Engineering from Guru Nanak Dev University, India. She is currently

working as an Assistant Professor in the Department of Computer Science, Guru

Nanak Dev University, India. The research interests include Service Oriented

Computing, Distributed Systems, Mobile Agents and Web Technologies.

received the Ph.D. in Computer Science in 2011. She is working

as an Associate Professor in the Department of Computer Science, Guru Nanak Dev

, India. Her research interests are Distributed Computing, Web Services

Security, and Open Source Softwares.

Nabli, H., Cherif, S., Djmeaa, R. B., & Amor, I. A. B. (2018, May). SADICO: Self-ADaptIve

Conference on Intelligent Interactive

healing internet of things applications.

312). IEEE.

Angarita, R., Rukoz, M., &Cardinale, Y. (2016). Modeling dynamic recovery strategy for composite

h, N., Verjus, H., Pourraz, F., &Moreaux, P. (2013). QoS aggregation for service

orchestrations based on workflow pattern rules and MCDM method: evaluation at design time and

F., Caire, G., Poggi, A., &Rimassa, G. (2008). JADE: A software framework for

Information and Software Technology, 50(1),

agent reinforcement learning

-aware cloud service

, 273-290.

in Computer

, India. She is currently

working as an Assistant Professor in the Department of Computer Science, Guru

Service Oriented

received the Ph.D. in Computer Science in 2011. She is working

as an Associate Professor in the Department of Computer Science, Guru Nanak Dev

, India. Her research interests are Distributed Computing, Web Services

