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ABSTRACT 

 
This paper studies the job-scheduling problem on m ≥ 2 parallel/identical machines.There are n 

jobs, denoted by Ji,,1 ≤ i ≤ n. Each job Ji, has a due date di. A job has one or more tasks, each 

with a specific processing time. The tasks can’t be preempted, i.e., once scheduled, a task 

cannot be interrupted and resumed later. Different tasks of the same job can be scheduled 

concurrently on different machines. A job is on time if all of its tasks finish before its due date; 

otherwise, it is tardy. A schedule of the jobs specifies which task is scheduled on which machine 

at what time. The problem is to find a schedule of these jobs so that the number of on time jobs 

is maximized; or equivalently, the number of tardy jobs is minimized. We consider two cases: 

the case when each job has only a single task and the case where a job can have one or more 

tasks. For the first case, if all jobs have common due date we design a simple algorithm and 

show that the algorithm can generate a schedule whose number of on time jobs is at most (m-1) 

less than that of the optimal schedule.  We also show that the modified algorithm works for the 

second case with common due date and has same performance. Finally, we design an algorithm 

when jobs have different due dates for the second case. We conduct computation experiment and 

show that the algorithm has very good performance. 
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1. INTRODUCTION 

 

This paper studies the job-scheduling problem on m ≥ 2 parallel/identical machines. There are n 

jobs, denoted by Ji,,1 ≤ i ≤ n. Each job Ji, has a due date di. A job has one or more tasks, each with 

a specific processing time. The tasks can’t be preempted, i.e., once scheduled, a task cannot be 

interrupted and resume later. Different tasks of the same job can be scheduled concurrently on 

different machines. A job is on time if all of its tasks finish before its due date; otherwise, it is 

tardy. A schedule of the jobs specifies which task is processed on which machine at what time. 

The problem is to find a schedule of these jobs so that the number of on time jobs is maximized; 

or equivalently, the number of tardy jobs is minimized. The number of on time/tardy jobs is a 

very important criterion since, in many cases, the cost penalty incurred by a tardy job does not 

depend on how late it is, but the fact that it is late. In such cases, an appropriate objective would 

be to minimize the number of tardy jobs. For example, a late job may cause a customer to switch 

to another supplier, especially in the just-in-time production environment. 
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This problem has been studied in many literatures. In the classic model each job has a single task. 

When there is a single machine, i.e., m=1, Moore ([2] ) gave an O(n log n) algorithm (sometimes 

known as Hudgson’s Algorithm) that solves the problem optimally. When m ≥ 2, the problem 

becomes NP hard even if all jobs have the same due date. When m = 2, Leung & Yu [1] gave a 

heuristic, based on Moore’s algorithm, for the multiprocessor case. It is shown that the 

performance ratio of the heuristic is 4/3 for two identical processors, where the performance ratio 

is defined to be the least upper bound of the ratio of the number of on-time jobs in an optimal 

schedule versus that in the schedule generated by the heuristic. Ho and Chang [3] conducted 

extensive simulation experiment to test the effectiveness of the heuristic on multiple machines. 

The simulation results showed that this heuristic is quite effective in most cases. The paper also 

proposed two other heuristics. 

 

The scheduling model where a job can have multiple tasks is called order scheduling in literature 

(see [4] and the references therein). In general order scheduling, a machine may be dedicated and 

can only process one type of tasks; or be flexible and can process multiple types of tasks. In this 

paper, all machines are identical and fully flexible, i.e. every machine is able to process all types 

of tasks and different tasks of an order/job can be processed concurrently. If there is one machine, 

the problem minimizing the number of tardy jobs under this model is reduced to the classics 

model where each job has only a single task. If there are multiple machines, however, the 

classical model is a special case of order scheduling. Some work has been done for this model 

with the objective of total completion time. When the jobs are unweighted, Blocher and Chhajed 

([5]) show that the problem is ordinary NP-hard for any fixed m ≥ 2 and strongly NP-hard when 

m is arbitrary. Then the authors presented six heuristics and performed empirical analysis of the 

heuristics. Two classes of nine heuristics with proven worst-case performance bounds were 

studied by Leung, Li and Pinedo in [6]. To the best of our knowledge, no past work has ever been 

done for the number of on time jobs objective. 

 

In this paper, we are interested in the performance of simple heuristics for both the classical 

model and the order-scheduling model. We first consider the case with common due date, then 

we consider the general case where jobs can have arbitrary due date. For the general case, we 

evaluate the performance of the heuristics by some experimental results. 

 

Note that for the optimal solution, the problem of minimizing the number of tardy jobs is the 

same as maximizing the number of on time jobs. However, all our problems are NP-hard so there 

is no hope to find an optimal schedule in polynomial time. We can only design effective and 

efficient heuristics for large size problems. To evaluate the effectiveness of a heuristic, we could 

use the absolute error, i.e. the difference between the optimal solution and the solution found by 

the heuristic; we may also use relative error, i.e the ratio of the absolute error and the optimal 

solution. In this case, if we use the number of tardy jobs, it is possible that the optimal schedule 

has 0 tardy jobs, and consequently the relative error becomes infinity. It is for this reason; we 

consider the number of on time jobs, instead of tardy jobs in this paper. 
 

2. CLASSICAL MODEL WITH COMMON DUE DATE 

 

In this section, we assume that each job has a single task and all jobs have the same common 

due date. Using the three field notation, the problem of minimizing the number of tardy jobs can 

be denoted as Pm|dj=d |ΣUj where Uj=1 if Jj is tardy. 
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Algorithm1: 

 

Input: 

 

• J= { J1, J2 …, Jn}, a set of n jobs, job Ji in has processing time pi and due date d 

• m machines, M1, M2, …, Mm 

 

Output: 

 

 A non-preemptive schedule of a subset of J where all jobs are on time. 

 

Method: Schedule the jobs in SPT order (Shortest Processing Time first) on M1 before d, if no 

more jobs can be scheduled on M1, and then schedule the jobs on M2 before d, and keep 

repeating this procedure until all jobs have been scheduled or no more jobs can be scheduled on 

Mm before d. 

 

Algorithm1 certainly is not optimal. Consider the example of four jobs and two machines such 

that the processing times are, 1, 2, 3, 4 and the common due date 5. Algorithm1 will schedule the 

first two jobs on M1, and the third job on M2, and the last job is tardy. However, the optimal 

schedule will schedule the first job and the last job on M1, and the second and the third job on M2. 

The absolute error is one. It turns out this is not a coincident. We have the following Lemma. 

 

Theorem1. For two machines, the number of on time jobs of the schedule that is generated 

byAlgorithm1 is at most one less than that of the optimal schedule, i.e. the absolute error of is at 

most 1.  

 

Proof. For convenience, suppose the jobs are numbered in the SPT order. Suppose there are k on 

time jobs in the schedule generated by Algorithm1, then it must be the first k shorted jobs. 

Suppose that the schedule is not optimal. Let I1 and I2 be the length of idle interval on M1 and 

M2, respectively. Then we must have that I1 < pk+1 and I2 < pk+1. Thus, the total processing time 

of on time jobs before d in any schedule is at most  
                              p1 + p2 + .. + pk + I1 + I2 < p1 + p2 + .. + pk + 2 pk+1. 

Since we schedule the jobs in SPT order, in any other schedule, at most k+1 jobs can be 

scheduled before d. 

 

0    d 

J1 J2 … Jx I1 

Jx+1 Jx+1 … Jk I2 

 

Using similar argument, we can prove the following theorem. 

 

Theorem2. For m machines, the number of on time jobs of the schedule that is generated by 

Algorithm1 is at most  (m-1) less than that of the optimal schedule, i.e. the absolute error of 

is at most (m-1). 
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3. ORDER SCHEDULING MODEL 

 

In this section, we consider the case that a job may have one or more tasks. For job Ji, we use, Ji,1, 

Ji,2, … to represent its tasks, and we use pi,1, pi,2, … to represent the length of these tasks. We still 

use pi to represent the total length of the job. Different tasks of the same job can be scheduled 

concurrently on different machines. We consider 2 cases, the jobs have common due date and the 

case each job has their own due date. Without loss of generality, we assume that for each job, pj ≤ 

dj. 

 

3.1. Common Due Date 

 

Modified Algorithm1: We still consider the jobs one by one in SPT order, and for each job, 

schedule the tasks in arbitrary order; for a particular task, first check if it can be scheduled on the 

first machine before the due date, if not, then check if it can be scheduled on the second machine, 

and so on. If the task can’t be scheduled to any machine before the due date, then this job and 

remaining jobs will be the tardy jobs. Otherwise, we repeat this procedure until all jobsare 

scheduled before the due date or until no more jobs can be scheduled on time. 

 

Using similar argument as the proof of theorem1, we can prove the following theorem.Theorem3. 

For m machines, the number of on time jobs of the schedule that is generated by Modified 

Algorithm1 is at most (m-1) less than that of the optimal schedule. 

 

3.2. Different Due Date 

 

Algorithm2: Consider the jobs EDD (Earliest Due Date First) order. For each job, schedule the 

tasks one by one in arbitrary order; to schedule a task Ji,x, choose the machine with the latest 

finishing time such that Ji,x can finish before its due date dj. If there is no such machine, it means 

Ji or one of the jobs that have been scheduled on time has to be tardy.  

 

To find out which one is a better choice for the tardy job, we do the following: 

 

• Restore the schedule by deleting those tasks of Ji that have been scheduled. Let S be the 

schedule, and fmax be the maximum finishing time of the jobs that have been scheduled in 

S.  

 

• Find the job Jk with the largest processing time from those jobs that have been scheduled.  

 

• Deleting job Jk from the schedule, try to schedule job Ji.  

 

• If some of the tasks of Ji can’t be scheduled on time, Ji will be chosen as a tardy job. 

Otherwise, let S’ be schedule obtained, and let  f’max be the maximum finishing time of 

the   tasks of Ji in S’. If fmax ≤ f’max, Ji will also be chosen as the tardy job, else Jk will be 

chosen as the tardy job. 

 

After we choose Jk or Ji as the tardy job, continue to schedule the remaining jobs to S’ if Jk   is 

tardy or S if Ji is on time. We terminate the process until all jobs have been scheduled on time 

or chosen as a tardy job. 
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Following is an example of applying Algoirhtm2. Suppose there are 2 machines, 6 jobs. 

 

J1 has 2 tasks of length 1, 1, and due date 4. J2 and J3 have both single task of length 3, and due 

date 4. J4 has 2 tasks of length 4, 4, and due date 10. J5 and J6 have both single task of length 10, 

and due date 18.  

 

Algorithm 2 schedules J1 J2, J4 and J5 before their due dates, and two other jobs are tardy, as in the 

following figure.    

 

0       1      2 6                10        13

J1,1 J1,2 J4,1 J4,2  

J2 J5 … 

 

In the optimal schedule, however, all 6 jobs are on time. 

 

0     

1 6               

 10

       18

J1,1 J2 J4,1 J5 

J1,2 J3 J4,2 J6 

 

One can generalize the above example to more jobs, so that the optimal schedule has all jobs on 

time, but the schedule generated by Algorithm 2 has 2/3 of the jobs on time. Thus the absolution 

error can be quite large. 

 

4. COMPUTATIONAL RESULTS 

 

In this section, we want to design experiments to find the performance of Algorithm2 for 

randomly generated large instances. 

 

We choose the number of jobs n = 500, and the number of machines m = 20. Problem instances 

of varying hardness are generated according to different characteristics of the due dates. First of 

all, for each job, the number of tasks is randomly generated from the uniform distribution 

[1,10m]. Then, the length of each task is generated from the uniform distribution [1,100]. Finally, 

after all jobs are generated, for each job, its due date is generated from the following uniform 

distribution: P/m[(1- δ2 - δ1/2), (1- δ2 + δ1/2)] where P is the total processing time of all the 

tasks, δ1 and δ2 determines the range in which the due dates lie and adjusts the tightness of the 

due dates, respectively. We set δ1 = 0.2, 0.4, 0.6, 0.8, 1.0 and δ2 = 0.6, 0.8, 1.0. For each 

combination of δ1 and δ2, 100 instances are generated. Thus, there are 2500 instances in total. 

The algorithms are implemented in Java. 

 

To evaluate the algorithm, for each generated instance Ii (i = 1, 2, . . . , 100), we construct the 

corresponding single-machine instance I’i as described follows: 
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For each job j, construct a job j for I’i with processing time p′j = pj/m and due date d′ = d. 

The instance I’i can be solved optimally by Moore’s algorithm, and one can show that the number 

of on time jobs of I’i, denoted by UB(I’i), is an upper bound of the number of on time jobs of the 

original instance Ii. We compare the number of on time jobs of the schedule found by Algorithm2 

with its corresponding upper bound. 

 

Our result shows that the absolute error in most cases is less than one, i.e. Algorithm 2 finds 

optimal schedule in most cases. We also calculated the average relative error with respect to the 

upper bound, and the result is summarized as follows. 

 

(δ1, δ2) (0.2,0.2) (0.2,0.4) (0.2,0.6) (0.2,0.8) (0.2,1.0) 

relative error  0.10% 0.10% 0.20% 0.20% 0.10% 

(δ1, δ2) (0.4,0.2) (0.4,0.4) (0.4,0.6) (0.4,0.8) (0.4,1.0) 

relative error  0.10% 0.10% 0.10% 0.20% 0.10% 

(δ1, δ2) (0.6,0.2) (0.6,0.4) (0.6,0.6) (0.6,0.8) (0.6,1.0) 

relative error  0% 0.10% 0.10% 0.10% 0.10% 

(δ1, δ2) (0.8,0.2) (0.8,0.4) (0.8,0.6) (0.8,0.8) (0.8,1.0) 

relative error  0.00% 0.10% 0.10% 0.10% 0.10% 

(δ1, δ2) (1.0,0.2) (1.0,0.4) (1.0,0.6) (1.0,0.8) (1.0,1.0) 

relative error  0% 0% 0.10% 0.30% 0.60% 

 

5. CONCLUSIONS 

 

This paper studies the problem of scheduling n jobs to m identical machines with the objective of 

maximizing the number of on time jobs. Each job Ji, has a due date di. A job has one or more 

tasks and the tasks can’t be preempted, but different tasks of the same job can be scheduled 

concurrently on different machines. We considered two cases: the case when each job has only a 

single task and the case where a job can have one or more tasks. We designed a simple and 

effective algorithm when all jobs have common due date. We also designed an algorithm when 

jobs have different due dates for the second case. We conducted computation experiment and 

showed that the algorithm has very good performance. 
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