
Natarajan Meghanathan et al. (Eds) : CCSEA, CLOUD, SIPRO, AIFU, SEA, DKMP, NCOM - 2019

pp. 91-97, 2019. © CS & IT-CSCP 2019 DOI: 10.5121/csit.2019.90909

MAXIMIZING THE TOTAL NUMBER OF ON

TIME JOBS ON IDENTICAL MACHINES

Hairong Zhao

Department of Mathematics, Computer Science & Statistics

Purdue University, Northwest

ABSTRACT

This paper studies the job-scheduling problem on m ≥ 2 parallel/identical machines.There are n

jobs, denoted by Ji,,1 ≤ i ≤ n. Each job Ji, has a due date di. A job has one or more tasks, each

with a specific processing time. The tasks can’t be preempted, i.e., once scheduled, a task

cannot be interrupted and resumed later. Different tasks of the same job can be scheduled

concurrently on different machines. A job is on time if all of its tasks finish before its due date;

otherwise, it is tardy. A schedule of the jobs specifies which task is scheduled on which machine

at what time. The problem is to find a schedule of these jobs so that the number of on time jobs

is maximized; or equivalently, the number of tardy jobs is minimized. We consider two cases:

the case when each job has only a single task and the case where a job can have one or more

tasks. For the first case, if all jobs have common due date we design a simple algorithm and

show that the algorithm can generate a schedule whose number of on time jobs is at most (m-1)

less than that of the optimal schedule. We also show that the modified algorithm works for the

second case with common due date and has same performance. Finally, we design an algorithm

when jobs have different due dates for the second case. We conduct computation experiment and

show that the algorithm has very good performance.

KEYWORDS

On time job, identical machines, order scheduling

1. INTRODUCTION

This paper studies the job-scheduling problem on m ≥ 2 parallel/identical machines. There are n

jobs, denoted by Ji,,1 ≤ i ≤ n. Each job Ji, has a due date di. A job has one or more tasks, each with

a specific processing time. The tasks can’t be preempted, i.e., once scheduled, a task cannot be

interrupted and resume later. Different tasks of the same job can be scheduled concurrently on

different machines. A job is on time if all of its tasks finish before its due date; otherwise, it is

tardy. A schedule of the jobs specifies which task is processed on which machine at what time.

The problem is to find a schedule of these jobs so that the number of on time jobs is maximized;

or equivalently, the number of tardy jobs is minimized. The number of on time/tardy jobs is a

very important criterion since, in many cases, the cost penalty incurred by a tardy job does not

depend on how late it is, but the fact that it is late. In such cases, an appropriate objective would

be to minimize the number of tardy jobs. For example, a late job may cause a customer to switch

to another supplier, especially in the just-in-time production environment.

92 Computer Science & Information Technology (CS & IT)

This problem has been studied in many literatures. In the classic model each job has a single task.

When there is a single machine, i.e., m=1, Moore ([2]) gave an O(n log n) algorithm (sometimes

known as Hudgson’s Algorithm) that solves the problem optimally. When m ≥ 2, the problem

becomes NP hard even if all jobs have the same due date. When m = 2, Leung & Yu [1] gave a

heuristic, based on Moore’s algorithm, for the multiprocessor case. It is shown that the

performance ratio of the heuristic is 4/3 for two identical processors, where the performance ratio

is defined to be the least upper bound of the ratio of the number of on-time jobs in an optimal

schedule versus that in the schedule generated by the heuristic. Ho and Chang [3] conducted

extensive simulation experiment to test the effectiveness of the heuristic on multiple machines.

The simulation results showed that this heuristic is quite effective in most cases. The paper also

proposed two other heuristics.

The scheduling model where a job can have multiple tasks is called order scheduling in literature

(see [4] and the references therein). In general order scheduling, a machine may be dedicated and

can only process one type of tasks; or be flexible and can process multiple types of tasks. In this

paper, all machines are identical and fully flexible, i.e. every machine is able to process all types

of tasks and different tasks of an order/job can be processed concurrently. If there is one machine,

the problem minimizing the number of tardy jobs under this model is reduced to the classics

model where each job has only a single task. If there are multiple machines, however, the

classical model is a special case of order scheduling. Some work has been done for this model

with the objective of total completion time. When the jobs are unweighted, Blocher and Chhajed

([5]) show that the problem is ordinary NP-hard for any fixed m ≥ 2 and strongly NP-hard when

m is arbitrary. Then the authors presented six heuristics and performed empirical analysis of the

heuristics. Two classes of nine heuristics with proven worst-case performance bounds were

studied by Leung, Li and Pinedo in [6]. To the best of our knowledge, no past work has ever been

done for the number of on time jobs objective.

In this paper, we are interested in the performance of simple heuristics for both the classical

model and the order-scheduling model. We first consider the case with common due date, then

we consider the general case where jobs can have arbitrary due date. For the general case, we

evaluate the performance of the heuristics by some experimental results.

Note that for the optimal solution, the problem of minimizing the number of tardy jobs is the

same as maximizing the number of on time jobs. However, all our problems are NP-hard so there

is no hope to find an optimal schedule in polynomial time. We can only design effective and

efficient heuristics for large size problems. To evaluate the effectiveness of a heuristic, we could

use the absolute error, i.e. the difference between the optimal solution and the solution found by

the heuristic; we may also use relative error, i.e the ratio of the absolute error and the optimal

solution. In this case, if we use the number of tardy jobs, it is possible that the optimal schedule

has 0 tardy jobs, and consequently the relative error becomes infinity. It is for this reason; we

consider the number of on time jobs, instead of tardy jobs in this paper.

2. CLASSICAL MODEL WITH COMMON DUE DATE

In this section, we assume that each job has a single task and all jobs have the same common

due date. Using the three field notation, the problem of minimizing the number of tardy jobs can

be denoted as Pm|dj=d |ΣUj where Uj=1 if Jj is tardy.

Computer Science & Information Technology (CS & IT) 93

Algorithm1:

Input:

• J= { J1, J2 …, Jn}, a set of n jobs, job Ji in has processing time pi and due date d

• m machines, M1, M2, …, Mm

Output:

 A non-preemptive schedule of a subset of J where all jobs are on time.

Method: Schedule the jobs in SPT order (Shortest Processing Time first) on M1 before d, if no

more jobs can be scheduled on M1, and then schedule the jobs on M2 before d, and keep

repeating this procedure until all jobs have been scheduled or no more jobs can be scheduled on

Mm before d.

Algorithm1 certainly is not optimal. Consider the example of four jobs and two machines such

that the processing times are, 1, 2, 3, 4 and the common due date 5. Algorithm1 will schedule the

first two jobs on M1, and the third job on M2, and the last job is tardy. However, the optimal

schedule will schedule the first job and the last job on M1, and the second and the third job on M2.

The absolute error is one. It turns out this is not a coincident. We have the following Lemma.

Theorem1. For two machines, the number of on time jobs of the schedule that is generated

byAlgorithm1 is at most one less than that of the optimal schedule, i.e. the absolute error of is at

most 1.

Proof. For convenience, suppose the jobs are numbered in the SPT order. Suppose there are k on

time jobs in the schedule generated by Algorithm1, then it must be the first k shorted jobs.

Suppose that the schedule is not optimal. Let I1 and I2 be the length of idle interval on M1 and

M2, respectively. Then we must have that I1 < pk+1 and I2 < pk+1. Thus, the total processing time

of on time jobs before d in any schedule is at most
 p1 + p2 + .. + pk + I1 + I2 < p1 + p2 + .. + pk + 2 pk+1.

Since we schedule the jobs in SPT order, in any other schedule, at most k+1 jobs can be

scheduled before d.

0 d

J1 J2 … Jx I1

Jx+1 Jx+1 … Jk I2

Using similar argument, we can prove the following theorem.

Theorem2. For m machines, the number of on time jobs of the schedule that is generated by

Algorithm1 is at most (m-1) less than that of the optimal schedule, i.e. the absolute error of

is at most (m-1).

94 Computer Science & Information Technology (CS & IT)

3. ORDER SCHEDULING MODEL

In this section, we consider the case that a job may have one or more tasks. For job Ji, we use, Ji,1,

Ji,2, … to represent its tasks, and we use pi,1, pi,2, … to represent the length of these tasks. We still

use pi to represent the total length of the job. Different tasks of the same job can be scheduled

concurrently on different machines. We consider 2 cases, the jobs have common due date and the

case each job has their own due date. Without loss of generality, we assume that for each job, pj ≤

dj.

3.1. Common Due Date

Modified Algorithm1: We still consider the jobs one by one in SPT order, and for each job,

schedule the tasks in arbitrary order; for a particular task, first check if it can be scheduled on the

first machine before the due date, if not, then check if it can be scheduled on the second machine,

and so on. If the task can’t be scheduled to any machine before the due date, then this job and

remaining jobs will be the tardy jobs. Otherwise, we repeat this procedure until all jobsare

scheduled before the due date or until no more jobs can be scheduled on time.

Using similar argument as the proof of theorem1, we can prove the following theorem.Theorem3.

For m machines, the number of on time jobs of the schedule that is generated by Modified

Algorithm1 is at most (m-1) less than that of the optimal schedule.

3.2. Different Due Date

Algorithm2: Consider the jobs EDD (Earliest Due Date First) order. For each job, schedule the

tasks one by one in arbitrary order; to schedule a task Ji,x, choose the machine with the latest

finishing time such that Ji,x can finish before its due date dj. If there is no such machine, it means

Ji or one of the jobs that have been scheduled on time has to be tardy.

To find out which one is a better choice for the tardy job, we do the following:

• Restore the schedule by deleting those tasks of Ji that have been scheduled. Let S be the

schedule, and fmax be the maximum finishing time of the jobs that have been scheduled in

S.

• Find the job Jk with the largest processing time from those jobs that have been scheduled.

• Deleting job Jk from the schedule, try to schedule job Ji.

• If some of the tasks of Ji can’t be scheduled on time, Ji will be chosen as a tardy job.

Otherwise, let S’ be schedule obtained, and let f’max be the maximum finishing time of

the tasks of Ji in S’. If fmax ≤ f’max, Ji will also be chosen as the tardy job, else Jk will be

chosen as the tardy job.

After we choose Jk or Ji as the tardy job, continue to schedule the remaining jobs to S’ if Jk is

tardy or S if Ji is on time. We terminate the process until all jobs have been scheduled on time

or chosen as a tardy job.

Computer Science & Information Technology (CS & IT) 95

Following is an example of applying Algoirhtm2. Suppose there are 2 machines, 6 jobs.

J1 has 2 tasks of length 1, 1, and due date 4. J2 and J3 have both single task of length 3, and due

date 4. J4 has 2 tasks of length 4, 4, and due date 10. J5 and J6 have both single task of length 10,

and due date 18.

Algorithm 2 schedules J1 J2, J4 and J5 before their due dates, and two other jobs are tardy, as in the

following figure.

0 1 2 6 10 13

J1,1 J1,2 J4,1 J4,2

J2 J5 …

In the optimal schedule, however, all 6 jobs are on time.

0

1 6

 10

 18

J1,1 J2 J4,1 J5

J1,2 J3 J4,2 J6

One can generalize the above example to more jobs, so that the optimal schedule has all jobs on

time, but the schedule generated by Algorithm 2 has 2/3 of the jobs on time. Thus the absolution

error can be quite large.

4. COMPUTATIONAL RESULTS

In this section, we want to design experiments to find the performance of Algorithm2 for

randomly generated large instances.

We choose the number of jobs n = 500, and the number of machines m = 20. Problem instances

of varying hardness are generated according to different characteristics of the due dates. First of

all, for each job, the number of tasks is randomly generated from the uniform distribution

[1,10m]. Then, the length of each task is generated from the uniform distribution [1,100]. Finally,

after all jobs are generated, for each job, its due date is generated from the following uniform

distribution: P/m[(1- δ2 - δ1/2), (1- δ2 + δ1/2)] where P is the total processing time of all the

tasks, δ1 and δ2 determines the range in which the due dates lie and adjusts the tightness of the

due dates, respectively. We set δ1 = 0.2, 0.4, 0.6, 0.8, 1.0 and δ2 = 0.6, 0.8, 1.0. For each

combination of δ1 and δ2, 100 instances are generated. Thus, there are 2500 instances in total.

The algorithms are implemented in Java.

To evaluate the algorithm, for each generated instance Ii (i = 1, 2, . . . , 100), we construct the

corresponding single-machine instance I’i as described follows:

96 Computer Science & Information Technology (CS & IT)

For each job j, construct a job j for I’i with processing time p′j = pj/m and due date d′ = d.

The instance I’i can be solved optimally by Moore’s algorithm, and one can show that the number

of on time jobs of I’i, denoted by UB(I’i), is an upper bound of the number of on time jobs of the

original instance Ii. We compare the number of on time jobs of the schedule found by Algorithm2

with its corresponding upper bound.

Our result shows that the absolute error in most cases is less than one, i.e. Algorithm 2 finds

optimal schedule in most cases. We also calculated the average relative error with respect to the

upper bound, and the result is summarized as follows.

(δ1, δ2) (0.2,0.2) (0.2,0.4) (0.2,0.6) (0.2,0.8) (0.2,1.0)

relative error 0.10% 0.10% 0.20% 0.20% 0.10%

(δ1, δ2) (0.4,0.2) (0.4,0.4) (0.4,0.6) (0.4,0.8) (0.4,1.0)

relative error 0.10% 0.10% 0.10% 0.20% 0.10%

(δ1, δ2) (0.6,0.2) (0.6,0.4) (0.6,0.6) (0.6,0.8) (0.6,1.0)

relative error 0% 0.10% 0.10% 0.10% 0.10%

(δ1, δ2) (0.8,0.2) (0.8,0.4) (0.8,0.6) (0.8,0.8) (0.8,1.0)

relative error 0.00% 0.10% 0.10% 0.10% 0.10%

(δ1, δ2) (1.0,0.2) (1.0,0.4) (1.0,0.6) (1.0,0.8) (1.0,1.0)

relative error 0% 0% 0.10% 0.30% 0.60%

5. CONCLUSIONS

This paper studies the problem of scheduling n jobs to m identical machines with the objective of

maximizing the number of on time jobs. Each job Ji, has a due date di. A job has one or more

tasks and the tasks can’t be preempted, but different tasks of the same job can be scheduled

concurrently on different machines. We considered two cases: the case when each job has only a

single task and the case where a job can have one or more tasks. We designed a simple and

effective algorithm when all jobs have common due date. We also designed an algorithm when

jobs have different due dates for the second case. We conducted computation experiment and

showed that the algorithm has very good performance.

Computer Science & Information Technology (CS & IT) 97

REFERENCES

[1] J Y-T, Leung and V. K.M. Yu, Heuristic for minimizing the number of late jobs on two processors,

International Journal of Foundations of Computer Science, Vol 5, Nos 3 & 4 (1994), pp. 261-279.

[2] J. M. Moore, An n job, one machine sequencing algorithm for minimizing the number of late jobs,

Management Science, 15 (1968), 102–109.  

[3] J. C. Ho and Y. L. Chang, Minimizing the number of tardy jobs for m parallel machines, European

Journal of Operational Research, 8(2), 1995, 343-355.

[4] J.-T. Leung, H. Li, M. Pinedo, Order scheduling models: an overview, in: G. Kendall, E. K. Burke, S.

Petrovic, M. Gendreau (Eds.), Multidisciplinary Scheduling: Theory and Applications, Springer,

2005, pp. 37–53.

[5] J. Blocher, D. Chhajed, The customer order lead-time problem on parallel machines, Naval Research

Logistics 43 (1996) 629-654.

[6] J.-T. Leung, H. Li, M. Pinedo, Approximation algorithms for minimizing total weighted completion

time of orders on identical machines in parallel, Naval Research Logistics 53~(4) (2006) 243--260.

