
Natarajan Meghanathan et al. (Eds) : CCSEA, CLOUD, SIPRO, AIFU, SEA, DKMP, NCOM - 2019 

pp. 63-76, 2019. © CS & IT-CSCP 2019                                                          DOI: 10.5121/csit.2019.90906 

 

A SURVEY OF STATE-OF-THE-ART GAN-

BASED APPROACHES TO IMAGE SYNTHESIS  

 

Shirin Nasr Esfahani
1
and Shahram Latifi

2 

 

1
Department of Computer Science, UNLV, Las Vegas, USA 

2
Department of Electrical & Computer Eng., UNLV, Las Vegas, USA 

 

ABSTRACT 

 
In the past few years, Generative Adversarial Networks (GANs) have received immense 

attention by researchers in a variety of application domains. This new field of deep learning has 

been growing rapidly and has provided a way to learn deep representations without extensive 

use of annotated training data. Their achievements may be used in a variety of applications, 

including speech synthesis, image and video generation, semantic image editing, and style 

transfer. Image synthesis is an important component of expert systems and it attracted much 

attention since the introduction of GANs. However, GANs are known to be difficult to train 

especially when they try to generate high resolution images. This paper gives a thorough 

overview of the state-of-the-art GANs-based approaches in four applicable areas of image 

generation including Text-to-Image-Synthesis, Image-to-Image-Translation, Face Aging, and 

3D Image Synthesis. Experimental results show state-of-the-art performance using GANs 

compared to traditional approaches in the fields of image processing and machine vision. 
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1. INTRODUCTION 
 

The task of image synthesis is central in many fields like image processing, graphics, and 

machine learning. This is done by computing the correct color value for each pixel in an image 

with desired resolution. Although various approaches have been proposed, image synthesis 

remains a challenging problem. Generative Adversarial Networks (GANs), one of the most 

interesting ideas in recent years, have made a breakthrough in Machine Learning applications. 

Due to the power of the competitive training manner as well as deep networks, GANs are capable 

of producing realistic images, and have shown great advances in many image generations and 

editing models. 

 

Generative adversarial networks (GANs) were proposed by I. Goodfellow et al. (2014) [1] is a 

novel way to train a generative model. GANs are an advanced method for both semi-supervised 

and unsupervised learning. They consist of two adversarial models: a generative model G that 

captures the data distribution, and a discriminative model D that estimates the probability that a 

sample came from the training data rather than G. The only way G learns is through interaction 

with D (G has no direct access to real images). In contrast, D has access to both the synthetic 

samples and real samples. Unlike FVBNs (Fully Visible Belief Networks) [2] and VAE 

(Variational Autoencoder) [3], they do not explicitly model the probability distribution that 

generates the training data. In fact, G maps a noise vector z in the latent space to an image and D 
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is defined as classifying an input as a real image (close to 1) or as a fake image (close to 0). The 

loss function is defined as: 
 

                  ��� ��� ��∈
 �log �(�)� + ��∈
 �log �1 − ���(�)���                                                          (1)
                            �        �                                                                                                                                                               
 

Images generated by GANs are usually less blurred and more realistic than ones produced with 

other previous generative models. In an unconditioned generative model, there is no control on 

modes of the data being generated. Conditioning the model on additional information will direct 

the data generation process. This makes it possible to engage the learned generative model in 

different “modes” by providing it with different contextual information. Conditional Generative 

Adversarial Networks (cGANs) was introduced by M. Mirza and S. Osindero [4]. In cGANs, both 

G and D are conditioning on some extra information (c) that can be class labels, text or sketches. 

Providing additional controls on the type of data being generated, makes cGANs popular for 

almost all image generating applications. The structure of GANs and cGANs are illustrated as 

Figure 1. 

 

 
 

Figure 1.  Structure of GANs (left) and cGANs (right) 

 

In this survey, we discuss the ideas, contributions and drawbacks of state-of-the art models in four 

fields of image synthesis by using GANs. So, it is not intended to be a comprehensive review of 

all image generation fields of GANs; many excellent papers are not described here, simply 

because they were not relevant to our chosen subjects. This survey is structured as follows: 

Sections2 and 3 provide state-of-the-art GAN-based techniques in text-to-image and image-to-

image translation fields, respectively, then section 4 is related to Face Aging. Finally, Section 5 is 

relevant materials to 3D generative adversarial networks (3GANs). 

 

2. TEXT-TO-IMAGE SYNTHESIS 
 

Synthesizing high-quality images from text descriptions, is one of the exciting and challenging 

problems in Computer Vision which has many applications, including photo editing and 

computer-aided content creation. The task of text to image generation usually means translating 

text in the form of single-sentence descriptions directly into prediction of image pixels. This can 

be done by different approaches. 

 

One of difficult problems is the distribution of images conditioned on a text description is highly 

multimodal. In other words, there are many plausible configurations of pixels that correctly 

illustrate the description. For example, more than one suitable image would be found with “this 

small bird has a short, pointy orange beak and white belly” in a bird dataset. S. Reed et al. [5] 

were the first to propose a CGAN-based model (GAN-CLS), which successfully generated 

realistic images (64 × 64) for birds and flowers that are described by natural language 

descriptions. By conditioning both generator and discriminator on side information (also used 

before by Mirza et al. [4]), they were able to naturally model multimodal issue since the 

discriminator plays as a “smart” adaptive loss function.  Their approach was to train a deep 
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convolutional generative adversarial network (DCGAN) conditioned on text features encoded by 

a hybrid character-level convolutional recurrent neural network. The network architecture follows 

the guidelines of DCGAN [6]. Both the generator G and the discriminator D performed feed-

forward inference conditioned on the text feature. The architecture can be seen in Figure 2. 

 

 
 

Figure 2.  DCGANs architecture: Text encoding �(t) is used by both G and D. It is projected to a lower-

dimension and depth concatenated with image feature maps for further stages of convolutional processing 

[5] 

 

They improved their model to generate 128 × 128 images by utilizing the locations of the content 

to draw (GAWWN) [7]. Their methods are not directly suitable for cross-media retrieval, but their 

ideas and models are valuable because they use ten single-sentence descriptions for each bird 

image. In addition, each image marked the bird location with a bounding box, or key point’s 

coordinates for each bird’s parts as well as an extra bit used in each part to show whether or not 

the part can be visible in the each. Both G and D are conditioned on the bounding box and the text 

vector (represents text description). The model has two branches for G: a global stage that apply 

on full image and local stage which only operates on the inside of bounding box. Several new 

approaches have been developed based on GAN-CLS. In a similar way, S. Zhu et al. [8] presented 

a novel approach for generating new clothing on a wearer based on textual descriptions. S. 

Sharma et al. [9] improved the inception scores of synthesis images with several objects by 

adding a dialogue describing the scene (ChatPainter). However, a large text input is not desirable 

for users. Z. Zhang et al.’s model [10](HDGAN) was a multi-purpose adversarial loss for 

generating more effective images. Furthermore, they defined a new visual-semantic similarity 

measure to evaluate the semantic consistency of output images. M. Cha et al. [11] extended the 

model by improving perceptual quality of generated images. H. Dong at al. [12] defined a new 

condition (the given images) in the image generation process to reduce the searching space of 

synthesized images. H. Zhang et al. [13] followed Reed’s [5] approach to decompose the 

challenging problem of generating realistic high-resolution images into more manageable sub-

problems by proposing StackGAN-v1 and StackGAN-v2. S. Hong [14] designed a model to 

generate complicated images which preserve semantic details and highly relevant to the text 

expression by generating a semantic layout of the objects in the image and then conditioning on 

the map and the caption. Y. Li et al. [15]did similar work to generate video from text. J. Chen et 

al. [16] designed a Language-Based Image Editing (LBIE) system to create an output image 

automatically by editing the input image based on the language instructions that users provide. 

Another text-to-image generation model (TAC-GAN) was proposed by A. Dash et al. [17]. It is 

designed based on Auxiliary Classifier GAN[18] but uses a text description condition instead of a 

class label condition. Comparisons between different text-to-image GAN-based models are given 

in Table 1. 

 

Although, the application of Conditional GAN is very promising in generating realistic nature 

images, training GAN to synthesize high-resolution images using descriptors is a very difficult 

task. S. Reed et al. [5] succeeded to generate reasonable 64 × 64 images which didn’t have much 
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details. Later, [7] they were able to synthesize higher resolution (128 × 128) only with additional 

annotations of objects. Additionally, the training of their CGANs was unstable and highly related 

to the choices of hyper-parameters [19]. T. Xu et al. [20] proposed an attention-driven model 

(AttnGAN) to improve fine-grained detail. It uses a word-level visual-semantic that 

fundamentally relies on a sentence vector to generate images.  
 

TABLE 1. Different text-to image models. 

 
Model Input Output Characteristics Resolution 

GAN-INT-CLS [5] text image --------- 64 × 64 

GAWWM [7] 
text + 

location 

image  location-controllable 128 × 128 

StackGAN [13] text image high quality 256 × 256 

TAC-GAN [17] text image diversity 128 × 128 

ChatPainter [9] text + 

dialogue 

image high inception score 256 × 256 

HDGAN [10] text image high quality and resolution 512 × 512 

AttnGAN [20] text image high quality and  

the highest inception score 

256 × 256 

Hong et al. [14] text image Second highest inception score 

and complicated images 

128 × 128 

 

T. Salimans et al. [21] defined Inception Scores as a metric for automatically evaluating the 

quality of image generative models. This metric was shown to correlate well with human 

judgment of image quality. In fact, inception score tries to formalize the concept of realism for a 

generated set of images. The inception scores of generated images on the MS COCO data set for 

some different models is provided in Table 2. [9] 
 

TABLE 2. Inception scores of different models. 

 
Model Inception 

Score 

GAN-INT-CLS [5] 7.88 ± 0.07 

StackGAN [13] 8.45 ± 0.03 

Hong et al. [14] 11.46 + 0.09 

ChatPainter (non–current) [9] 9.43 ± 0.04 

ChatPainter (recurrent) [9] 9.74 ± 0.02 

AttnGAN [20] 25.89 ± 0.47 

 

3. IMAGE-TO-IMAGE-TRANSLATION 
 

Many visual techniques including in painting missing image regions (predicting missing parts in a 

damaged image in such a way that the improved region cannot be detected by observer), adding 

color to grayscale images and generate photorealistic images from sketches, involve translating 

one visual representation of an image into another. Application-specific algorithms are usually 

used to solve these problems with the same setting (map pixels to pixels). However, applying 

generative modeling to train the model is essential because some translating processes may have 

more than one correct output for each input image. Many researchers of image processing and 

computer graphic area have tried to design powerful translation models with supervised learning 

when they can have training image pairs (input, output), but producing paired images can be 

difficult and expensive. Moreover, these approaches are suffering from the fact that they usually 

formulated as per-pixel classification or regression which means that each output pixel is 

conditionally independent from all others in the input image.  
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P. Isola et al. [22] designed a general-purpose image-to-image-translation model using 

conditional adversarial networks. The new model (Pix2Pix), not only learned a mapping function, 

but also constructed a loss function to train this mapping. In particular, a high-resolution source 

grid is mapped to a high-resolution target grid. (The input and output differ in surface appearance, 

but both are renderings of the same underlying structure). In Pix2Pix model, Dlearns to classify 

between fake (synthesized by the generator) and real {input map, photo} tuples. G learns to fool 

D. G and D can access to the input map. (Figure. 3) 

 

 

 
 

Figure 3. Training a cGANs to map edges to the photo. (Here, input map is map edges) [22] 

 

The Pix2Pix model has some important advantages: (1) it is a general-purpose model which 

means it is a common framework for all automatic problems defining as the approach of 

translating one possible instance of an image into another(predicting pixels from pixels) by giving 

sufficient training data; and (2) instead of hand designing the loss function, the networks learn a 

loss function sensitive to data and task, to train the mapping. Finally (3), by using the fact that 

there is a lot of information sharing between input and output, Pix2Pix model takes advantages  

of them more directly by skipping connections between corresponding layers in the encoder 

following the general shape of a “U-Net” to create much higher quality results. The main 

drawback of Pix2Pix model is that it requires significant number of labeled image pairs, which is 

generally not available in domain adaptation problems. Later, they improved their method and 

designed a new model (CycleGAN) to overcome to this issue by translating an image from a 

source domain to a target domain in the absence of paired examples using combination of 

adversarial and cycle-consistent losses. [23]. A comparison against other baselines (CoGAN) 

[24], BiGAN [25]/ALI [26], SimGAN [9] and CycleGAN for mapping aerial photos can be seen 

in Figure 4. To measure the performance of photo↔  abels, the standard metrics of the Cityscapes 

benchmark is used that includes per-pixel accuracy, per-class accuracy, and mean class 

Intersection-Over-Union (Class IOU) [27]. Comparison results are provided in Table 3 [10]. 

  

 
  

Figure 4.  Different methods for mapping labels ↔ photo on Cityscapes images. From left to right: input, 

BiGAN/ALI, CoGAN, SimGAN, CycleGAN, Pix2Pix trained on paired data, and ground truth. [23] 
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TABLE 3. Classification performance for different models on images of the Cityscapes dataset. 

 
Model Per-pixel 

Accuracy 

Per-class Accuracy Class IOU 

CoGAN [24] 0.45 image 0.08 

BiGAN/ALI [25, 26] 0.41 image  0.07 

SimGAN [9] 0.47 image 0.07 

CycleGAN [23] 0.58 image 0.16 

Pix2Pix [22] 0.85 image 0.32 

 

Later, Q. Chen and V. Koltun [28] suggest that because of the training instability and 

optimization issues of CGANs, it is hard and prone to failure to generate images with high 

resolution. Instead, they used a direct regression objective based on a perceptual loss and 

produced the first model that can generate 2048 × 1024 images. However, their results often don’t 

have fine details and realistic textures [29]. Following the Pixt2Pix model’s architecture, Lample 

et al. [30] designed Fader Networks, with G and D competing in the latent space to generates 

realistic images of high resolution without needing to apply a GAN to the decoder output.  Their 

model provided a new direction towards robust adversarial feature learning. D. Michelsanti and 

Z.-H Tan [31] used Pix2Pix to create a new framework for speech enhancement. Their model 

learned a mapping between noisy and clean speech spectrograms as well as to learn a loss 

function for training the mapping. 

 

4. FACE AGING 
 
Face aging, age synthesis or age progression (refers to future looks) and regression (refers to 

previous looks), are different names for a simple concept that is rendering of facial images with 

different ages with the same facial recognition features. It has many applications such as finding 

lost children and wanted person or entertainment. There have been two main traditional face 

aging methods: prototyping and modeling [32]. Prototyping methods transform an input face 

image into target age group by computing the average faces within age groups and using them as 

the aging patterns. They are simple and fast, but mostly unable to create realistic face images. On 

the other hand, molding techniques simulate the age effects on muscles and skin by employing 

parametric models. Both need to have variant images of a same person in different ages that is a 

very difficult and nearly impossible task. The first GAN–based architecture for automatic face 

aging (Age-cGAN) was introduced by G. Antipov et al. [32] Since the introduction of GAN 

networks, many GAN- based methods have been proposed to do modifications on human faces 

(changing the hair’s colour, adding sunglasses, designing younger or older faces). These methods’ 

results are more plausible and realistic than previous ones, but most of their generating results 

suffer from the fact that original person’s identity is lost in the modified image. The Age-cGAN 

had the ability to preserve the identity information. Moreover, the model was able to generate 

high quality and incredibly realistic results. Age-cGAN is consisted of cGANs networks 

combined with an encoder. After training cGAN networks, mapping an input face image to a 

latent vector is done by the encoder, then generator maps the latent vector conditioned on age 

number to produce new face image. (An optimal latent vector is approximated by using an input 

image and a specific age). Finally, a reconstructed face image is generated. In the next step, the 

resulting face image is generated by providing the age at the input of generator (Figure 5).  
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Figure 5.  (a): Approximation of the latent vector to reconstruct the input image, 

(b): Switching the age condition at the input of the generator to perform face aging [32] 

 

Even with promising results that Age-cGAN provides, there are still some problems. In term of 

time efficiency because it must apply L-BFGS-B optimization algorithm [33] for each image, the 

performance is not reasonable [34]. Besides, the model cannot preserve the original identities in 

age’s faces perfectly that makes it unsuitable for cross-age verification. Later, to improve the 

model, they proposed a Local Manifold Adaptation approach [35]. Combined with Age-cGAN 

model to design a new model Age-cGAN+LMA to boost the accuracy of cross-age face 

verification via age normalization. A comparison between two models is shown in Figure 6 and 

based on Face Verification (FV) score on the LFW dataset [36] measured with an open-source 

face verification software [37] in Table 4. 

 

 
 

Figure 6. Face reconstruction with and without Local Manifold Adaptation (LMA)  
For LMA-enhanced reconstructions, the impact of the learning rate μ is illustrated. [35] 

 
TABLE 4. FV scores calculation on the LFW dataset by using open-face software [32]. 

 
Tested Pairs FV Scores on LFW dataset 

Original 89.4% 

Age-cGAN [32] 82.0% 

Age-cGAn + LMA [35] 88.7% 

 

Another important age modeling approach was introduced by Z. Zhang et al. [38] by using a 

conditional adversarial auto-encoder (CAAE) .At first, the encoder mapped a face image to a 

vector z (personal features), then the output vector (the new latent vector) and a label l (new age) 

were concatenated to be used as an input of the generator to synthesis new face image. The 

success of their model is related to the availability of a large database with different ages, so for a 

small amount of training data, the model’s performance is not reasonable.  Age-cGAn and CAAE 

independently model the distribution of each age group, so they are unable to capture the 

transition patterns (the gradual shape and texture changes between adjacent age groups). S. Liu et 

al. proposed a novel Contextual Generative Adversarial Nets (C-GANs) to specifically take it into 
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consideration [39]. The C-GAN model is consisted of a conditional transformation network and 

two discriminative networks (an age discriminative network and a transition pattern 

discriminative network) which are collaboratively contributing to generates promising results. 

Another main problem of both Age-cGAN and CAAE is that they first map the face image into a 

latent vector and then project to the face manifold model conditioned on age, while the effect of 

conditioned on the generated face image is not always guaranteed. In other words, in the training 

step, the face images are constructed with the same age condition as the input, however in the 

testing step, face images are generated by combining an input face image with different age 

conditions that in the worst case, if the age doesn’t have any effect on the synthesized face 

images, so it is impossible to generate face aging changing the age condition of the trained 

network. To solve this problem, J. Song et al. [40] designed, a dual conditional GANs (Dual 

cGANs) which had the ability that face aging and rejuvenation were trained from multiple sets of 

unlabelled face images with different ages. In this model, the cGAN transforms a face image to 

other ages based on the age condition, while the dual conditional GAN learns to invert the task.  

Preserving the personal identity is done with definition of loss function that is the reconstruction 

error of images. On the other hand, the discriminators can learn the transition patterns (the shape 

and texture changes between different age groups) from generated images, so the final outputs are 

age-specific photo-realistic faces. Another GAN- based model with pyramid architecture is 

designed by H. Yang et al. [39]. Their model is benefited from most of the image generation 

ability of GAN, by using a multi-pathway discriminator to refine detailed aging process. This 

model has stronger ability to handling the identity performance and aging accuracy, comparing 

with previous models. Although aging is usually reflected in local facial parts (wrinkles and the 

eye corner), face aging models usually ignore them. To address this issues, P. Li et al. [42] 

proposed a Global and Local Consistent Age Generative Adversarial Network (GLCA-GAN) for 

age progression and regression. The generator is consisted of one global network and three local 

networks to learn the whole facial structure and imitate subtle changes of crucial facial subregions 

simultaneously.  Instead of the learning the whole face, the generator uses the residual face to 

preserve most of the details and increases the speed of learning. Later, they extended their model 

to a Wavelet domain Global and Local Consistent Age Generative Adversarial Network 

(WaveletGLCA-GAN) [43] that one global specific network and three local specific networks are 

integrated together to capture both global topology information and local texture details of human 

faces. New model can generate higher-resolution age synthesis with more accuracy. 

WaveletGLCA-GAN’s performance comparison with three of previous models is shown in Table 

5. (Faces under 30 years old called AG0are chosen as the input test images to synthesize faces in 

31-40 years old (AG1), 41-50 years old (AG2) and 51-77 years old (AG3), then the average age are 

calculated). 

 
TABLE 5. The Age estimation results of different methods on  

CACD2000 (Cross- Age Celebrity Dataset) and Morph datasets [32]. 

 
 

Methods 

CACD2000 Morph 

AG1 AG2 AG3 AG1 AG2 AG3 

CAAE [38] 31.32 34.94 36.91 28.13 32.50 36.83 

Yang et.al [39] 44.29 48.34 52.02 42.84 50.78 59.91 

GLCA-GAN [42] 37.09 44.92 48.03 43.00 49.03 54.60 

WaveletGLCA-GAN [43] 37.56 48.13 54.17 38.36 46.90 59.14 

Real Data 39.15 47.14 53.87 38.59 48.24 58.28 

 

5. 3D IMAGE SYNTHESIS 
 

3D object reconstruction of 2D images has always been a challenging task that try to define any 

object’s 3D profile, as well as the 3D coordinate of every pixel. It is generally a scientific 
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problem which has a wide variety of applications such as Computer Aided Geometric Design 

(CAGD), Computer Graphics, Computer Animation, Computer Vision, medical imaging etc. 

Researchers have done impressive works on 3D object synthesis, mostly based on meshes or 

skeletons. Using parts from objects in existing CAD model libraries, they have succeeded to 

generate new objects. Although the output objects look realistic, but they are not conceptually 

novel. J. Wu et al. [44] were the first that introduced 3D generative adversarial networks (3D 

GANs). Their state-of-the-art framework was proposed to model volumetric objects from a 

probabilistic domain (usually Gaussian or uniform distribution) by using recent progresses in 

volumetric convolutional networks and generative adversarial networks. They generated novel 

objects such as chairs, table and cars. Besides, they proposed a model which mapped 2D images 

to images having 3D versions of objects. 3DGAN is an all-convolutional neural network, showing 

in Figure 7.  

 

 
 

Figure 7.  3DGAN generator. The Discriminator mostly mirrors the generator 

 

The G has five volumetric fully convolutional layers with kernel sizes of 4 × 4 × 4 and strides 2. 

Between the layers, batch normalization and ReLU layers have been added with a Sigmoid layer 

at the end. Instead of ReLU layers, The D uses Leaky ReLU while it is basically like the G. 

Neither pooling nor linear layers are used in the network. The 3DGAN model has some important 

achieving results comparing with previous 3D models: (1) It samples objects without using a 

reference image or CAD model; (2) It has provided a powerful 3D shape descriptor that can be 

learned without supervision that makes it widely applicable in many 3D object recognition 

algorithms; (3) Having comparable performance against recent surprised methods, and  

outperforms other unsupervised methods by a large margin; (4) They have the capability to apply 

for different purposes including 3D object classification and 3D object recognition. However, 

there are significant limitations in using 3DGANs: (1) Their using memory and the computational 

costs grow cubically as the voxel resolution increases which make them un usable in generating 

high resolution 3D image as well as in interactive 3D modelling (2) They are largely restricted to 

partial (single) view reconstruction and rendered images. There is a noticeable drop in 

performance when applied to natural (non-rendered) images. Later, they proposed a new 3D 

model called MarrNet by improving the previous model (3DGANs) [45]. They enhanced the 

model’s performance by using 2.5D sketches for single image 3D shape reconstruction. Besides, 

in order to have consistency between 3D shape and 2.5D sketches, they defined differentiable loss 

functions, so MarrNet is an end-to-end fine-tuned on real images without annotations. At first, it 

returns objects from an RGB image to their normal, depth, and silhouette image, then from the 

2.5D sketches, regresses the 3D shape. It also applies an encoding-decoding nets as well as 

reprojection consistency loss function to ensure the estimated 3D shape aligns with the 2.5D 

sketches precisely. The whole architecture can be trained end-to-end. (Figure 8) 
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Figure 8.  Components of MarrNet: (a) 2.5D sketch estimation, (b) 3D shape estimation, 

and (c) Loss function for reprojection consistency [45] 

 

There are other 3D models that have been designed based on the 3DGAN architecture. 

Combining a 3D Encoder-Decoder GAN(3D-ED-GAN) with a Long term Recurrent 

Convolutional Network (LRCN), W. Wang et al. [46] proposed a hybrid framework. The model’s 

purpose is in painting corrupted 3D objects and completing high-resolution 3D volumetric data.  

It gets significant advantage of completing complex 3D scene with higher resolution such as 

indoor area, since it is easily fit into GPU memory. E. J. Smith and D. Meger [47] improved 

3DGAN and introduced a new model called 3D-IWGAN (Improved Wasserstein Generative 

Adversarial Network) to reconstruct 3D shape from 2D images and perform shape completion 

from occluded 2.5D range scans. Leaving the object of interest still and rotating the camera 

around it, they were able to extract partial 2.5D views, instead of enforcing it to be similar to a 

known distribution. P. Achlioptas et al. [48] explored AAE variant by using a specially-designed 

encoder network for learning a compressed representation of point clouds before training GAN on 

the latent space. However, their decoder is restricted to be MLP that generates m pre-defined and 

fixed number of points. On the other hand, the output of decoder is 3m (fixed)for 3D point clouds, 

while the output of the proposed Gx is only 3 dimensional and it can generate arbitrarily many 

points by sampling different random noise z as input. The new model (MarrNet) has the ability to 

jointly estimates intrinsic images and full 3D shape from a color image and generates reasonable 

results on standard datasets [49]. It has the ability to recover more details compared to 3D GAN 

(Figure 9). A comparison between different 3D models can be shown in Table 6. 

 

 
 

Figure 9.  3D construction of chairs on IKEA dataset.  From left to right: input, ground truth, 

3D estimation by 3DGAN and two view of MarrNet. [45] 
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Table 6. Classification results on ModelNet dataset [46]. 

 
Model ModelNet40 ModelNet10 

3DGAN [44] 83.3% 91.0% 

3D-ED-GAN [46] 87.3% 92.6% 

VoxNet [50] 92.0% 83.0% 

DeepPano [51] 88.66% 82.54% 

VRN [52] 91.0% 93.6% 

 

6. CONCLUSION 
 

In this study, we presented an overview of state-of-art approaches in four common fields of 

GANs-based image generation including text-to-image synthesis, image-to-image translation, 

face aging and 3D image generation. We have reviewed pioneering models in each mentioned 

field with all advantages and disadvantages. Moreover, we have discussed some improved models 

which are designed based on predecessor model’s architecture with their applications. Among 

mentioned fields, 3D image synthesis approaches face several limitations even despite the 

advancements. Face aging filed has been the most attractive area due to their promising results. 

While as text-to-image synthesis and image-to-image translation have been the fields with most 

different proposed models and still have potential for improvement and expansion improved. 
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