
 

Natarajan Meghanathan et al. (Eds) : CCSEA, CLOUD, SIPRO, AIFU, SEA, DKMP, NCOM - 2019 
pp. 41-49, 2019. © CS & IT-CSCP 2019                                                          DOI: 10.5121/csit.2019.90904 

 

EFFICIENT TOUGH RANDOM SYMMETRIC  

3-SAT GENERATOR 

 
Robert Amador1, Chen-Fu Chiang2, and Chang-Yu Hsieh 3 

 
1,2Department of Computer Science, State University of New York Polytechnic 

Institute, Utica, NY~13502, USA. 
3This work was done while the author was a post doc at Singapore-MIT Alliance for 

Research and Technology, USA 

 
ABSTRACT 
 

We designed and implemented an efficient tough random symmetric 3-SAT generator. We 

quantify the hardness in terms of CPU time, numbers of restarts, decisions, propagations, 

conflicts and conflicted literals that occur when a solver tries to solve 3-SAT instances. In this 

experiment, the clause variable ratio was chosen to be around the conventional critical phase 

transition number 4.24. The experiment shows that instances generated by our generator are 

significantly harder than instances generated by the Tough K-SAT generator. The difference in 

hardness between two SAT instance generators exponentiates as the number of Boolean 

variables used increases. 
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1. INTRODUCTION 
 
The 3-satisfiability problem (3-SAT) can be succinctly summarized as follows: find an n-binary-
variable configuration to satisfy a conjunction of clauses with each being a disjunction of three 
literals. It is a widely studied problem for several reasons. First, it plays a crucial role in the 
historical development of theoretical computer science. For instance, it was the first identified 
NP-complete problem, [ [1], [2]] and one of the most well-studied examples in the inter-
disciplinary research program involving computer science, combinatorial optimization [ [3], [4]] 
and statistical physics [ [5], [6]]. Besides these interesting developments on the theoretical front, 
the 3-SAT problem also plays a critical role in many applications such as model checking, 
planning in artificial intelligences and software verifications. Hence, for both theoretical and 
practical reasons, there are many strong motivations to devise more efficient algorithms to attack 
such a problem. 
 

2. PROBLEM STATEMENT & MOTIVATION 
 
The inter-disciplinary approach (especially invoking statistical physics methods and concepts) has 
certainly helped us to build a comprehensive picture of the complex structures of the 3-SAT 
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problem. For instance, the concept of phase transitions in statistical physics has been adopted to 
elucidate the SAT-UNSAT phase transition of 3-SAT problems. In this statistical framework, the 
ratio parameter, (� ≡ �/�)) for the phase transition is taken to be the ratio of the number of 
clauses (�) to the number of variables (�). The critical value of this order parameter is �� = 4.2 
[ [7],  [8]] which clearly draws a boundary in the space of all 3-SAT instances. We explore 3-
SAT problems with a critical value of 4.2 in comparison to 3-SAT problems generated by a 
Tough Random K-SAT Generator to better understand how the critical value effects solvability of 
3-SAT Problems. Studying this specific subset of 3-SAT problems will enable further research 
into solving SAT problems more efficiently. 
 

3. BACKGROUND 
 
In various SAT solvers/generators, the commonly used parameters are: �: the number of 
variables, �: the number of clauses, �: the ratio, which is determined by �/�. For an efficient 
tough random symmetric 3-SAT generator, a formula F is of � variables with the ratio number α 
that should have � ∗ � clauses. In this work, we choose the ratio number close to the phase 
transition number 4.24. Particularly in 3-SAT, since each clause has 3 literals, each variable is 
expected to appear approximately 3 ∗  � times in F.  
 
Tough SAT Generator is one of the competitive generators out there for generating tough SAT 
instances. We would like to compare the toughness of instances generated by our generator and 
TSG in the following categories: (a) frustrations caused by the generator to the SAT solver and 
(b) probability of generating instances that are solvable (that is there is at least one solution). The 
frustration rate can be quantified by the resources used by the solver, such as CPU time, restarts, 
conflicts and decisions. The probability can be quantified by the ratio between instances with 
solutions and the total instances generated by the generator.  
 
The contribution of this work is to devise a way to generate harder instances and verify their 
hardness. We aim at generating those harder instances more efficiently and reliably. The hardness 
is quantified by the measures given in the solver that the instances require the solver to consume 
more resources and make more modifications. Our algorithm is more reliable as it generates with 
a higher probability of instances that have solutions. Our algorithm is also efficient as the 
generation process is almost linear time. With a verified efficient reliable algorithm that generates 
harder instances, in a later study we can characterize harder instances in another dimension, in 
addition to the conventional critical phase transition number. 
 
3.1. Algorithms 
 
In following paragraph, we describe the TSG algorithm (alg 1) and our efficient tough random 
symmetric 3-SAT generator (ETRSG) algorithm (alg 2). They can both generate SAT instances 
efficiently in almost linear time.  
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The TSG algorithm basically generates 
generated by randomly picking 3 variables from the variable list and with 0.5 probability, the 
chosen variable is then assigned an negation operation. With the disjunction of the literals, a 
clause is formed. 
 
The ETRSG algorithm generates 
sequence 
� that is of 3� 
variables. To avoid adjacent subsequences from forming an invalid clause, that is duplicated 
variables or literals, we must call the RndGen
two adjacent sequences are jointly required to produce a partic
checks the adjacent subsequences 
once in that particular clause. 
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The TSG algorithm basically generates � clauses sequentially. In the 3-SAT case, each clause is 
generated by randomly picking 3 variables from the variable list and with 0.5 probability, the 
chosen variable is then assigned an negation operation. With the disjunction of the literals, a 

The ETRSG algorithm generates � clauses sequentially. But initially it must generate a big 
 subsequences. Each subsequence is a random arrangement of 

variables. To avoid adjacent subsequences from forming an invalid clause, that is duplicated 
variables or literals, we must call the RndGen-Verif subroutine (alg 3) to ensure its validity. If 
two adjacent sequences are jointly required to produce a particular clause, the ETRSG algorithm 
checks the adjacent subsequences 
� and 
���to make sure a variable would not appear more than 

 

                               43 

 

SAT case, each clause is 
generated by randomly picking 3 variables from the variable list and with 0.5 probability, the 
chosen variable is then assigned an negation operation. With the disjunction of the literals, a 

clauses sequentially. But initially it must generate a big 
subsequences. Each subsequence is a random arrangement of � 

variables. To avoid adjacent subsequences from forming an invalid clause, that is duplicated 
Verif subroutine (alg 3) to ensure its validity. If 

ular clause, the ETRSG algorithm 
to make sure a variable would not appear more than 

 



44  Computer Science & Information Technology (CS & IT)

Once 
� , of length �3���, is generated, each variable appears 
generate � clauses sequentially from position 1 until position 
also randomly assign the negation operation.
 

 

3.2. Choice of Recurrence Number
 
The recurrence number r in ETRSG determines the number of times each variabl
the formula. In this paper, r is chosen based on selecting the ratio number 
known phase transition number. A phase transition [[5], [6]] is a concept utilized in statistical 
physics but it can also be used to better exp
problems. In reality, even instances with the critical phase transition number might be easy to 
solve for a modern solver. The 4.24 phase transition could be where more tough instances exist. 
In comparison to all possible instances with a critical phase transition number 4.24, this subset of 
tough instances might be exponentially rare among 3
this experiment is to figure out some of those exponentially rare i
The critical phase transition number is one of the characters for hard instances. In this 
experiment, we chose α= 4, 4.24 and 5. The rationale is that SAT instances with a ratio number 
greater than the critical phase transit
solution. SAT instances with a ratio number smaller than the critical phase transition number will 
likely have many solutions and therefore the SAT solvers can easily find the solution.
 

4. TOOLS AND EXPERIMENTS
 

4.1  Tools 
 

4.1.1 Generators 
 

The baseline generator is the Tough Random K
SAT instances, which is built upon latest techniques up to 2017. The other generator is our 
ETRSG algorithm. Both algorithms 
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, is generated, each variable appears �3�� times and then we c
clauses sequentially from position 1 until position 3� of 
� . For each position we 

also randomly assign the negation operation. 

Choice of Recurrence Number 

The recurrence number r in ETRSG determines the number of times each variabl
the formula. In this paper, r is chosen based on selecting the ratio number α
known phase transition number. A phase transition [[5], [6]] is a concept utilized in statistical 
physics but it can also be used to better explain satisfiable and unsatisfiable transitions in 3
problems. In reality, even instances with the critical phase transition number might be easy to 
solve for a modern solver. The 4.24 phase transition could be where more tough instances exist. 

rison to all possible instances with a critical phase transition number 4.24, this subset of 
tough instances might be exponentially rare among 3-SAT instances[9]. One of the major goals of 
this experiment is to figure out some of those exponentially rare instances and characterize them. 
The critical phase transition number is one of the characters for hard instances. In this 

α= 4, 4.24 and 5. The rationale is that SAT instances with a ratio number 
greater than the critical phase transition number will almost always be rejected as there is no 
solution. SAT instances with a ratio number smaller than the critical phase transition number will 
likely have many solutions and therefore the SAT solvers can easily find the solution.

XPERIMENTS 

The baseline generator is the Tough Random K-SAT generator [10] that generates random K
SAT instances, which is built upon latest techniques up to 2017. The other generator is our 
ETRSG algorithm. Both algorithms are explained in section 3.1. 

times and then we can 
. For each position we 
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4.1.2. Solver and Platform 
 
MiniSAT is a minimalistic, open-source SAT solver, developed to help researchers and 
developers alike get started on SAT. It is released under the MIT license. MiniSAT deploys the 
Conflict Driven Clause Learning (CDCL) SAT solver with several other features such as clause 
deletion and dynamic variable ordering [[11], [12]]. A small glimpse into the inner workings of 
Minisat is provided as a basic introduction to conflict clause learning and to establish a small 
foothold on the basic idea of SAT solvers. 
 
MiniSAT measures CPU time which, while valuable, is inconsequential as CPU time can change 
accordingly with better or worse hardware. It also provides other important measures. It stores the 
number of times the solver was forced to restart, conflicts, decisions, propagations, inspections 
and conflict literals deleted, which are all machine independent. The mechanism for the MiniSAT 
solver is as follows. When MiniSAT is given a SAT problem, it solves the problem by choosing a 
variable to begin propagation of other variables. When a conflict occurs, as in one literal is 
assigned both a positive and negative value, the solver will store this conflicting clause and begin 
propagation again from an older assignment but will avoid generating the prior conflicting clause. 
If the solver moves back to the original chosen variable, it is then restarted with a different 
variable and propagation begins again. This is redone until a satisfying assignment is found and 
the problem is deemed satisfiable or until it is shown that no satisfiable solution can be made, 
deeming the problem unsatisfiable. These are the results on which we will gauge the relative 
difficulty of the SAT instances. 
 
The ETRSG algorithm was implemented in Python. The testing environment was created in 
cloud9, which is a cloud based ubuntu IDE. The environment has 512MB of available memory, 
2GB of disk space which was more than enough for development and testing. In the case of 
MiniSAT, the CDCL algorithm used is ultimately machine independent because only CPU time 
will get better or worse with better or worse hardware respectively. Although, the times between 
the better and worse hardware can differ the algorithm will function the same way and have 
similar occurrences for restarts, conflicts, conflict literals, propagations, inspects, decisions and 
the rate of generating satisfiable instances. 
 
4.2. Experiments 
 
To compare the toughness of instances generated by TSG and ETRSG, we generate 3-SAT 
instances with test cases where � = 4, 4.24 and 5. With each �, the number of variables � is set 
as 100, 150, 200, 250, 300 and 350. With each (�, �) pair we generate 400 instances for both 
TSG and ETRSG. 
 
All the test problems were solved using the C instance of MiniSat V 1.4.1 and TSG version 1.1 
K-SAT generator was used to generate the control problems. 
 

5. RESULT 
 
The experiment results were summarized in Figure 1 for � = 4 case, Figure 2 for � = 4.24 case 
and Figure 3 for � = 5 case. What is worth noting is that the performance of TSG and ETRSG 
are almost similar when � = 4. This could be explained that those instances are much easier to 
solve since there might exist multiple solutions. ETRSG remains a very stable high probability, 
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almost 1, of generating solvable instances while TSG gradually catches up, from 0.925 to 1, as 
the number of variables increases. When we compare with the 
obvious the hardness measures, such as restart, conflict and decision, increase a coup
magnitude as � increases. 
 
The experiment also yielded similar results for the 
looking at each � case, we can conclude that 
instances. The order of magnitude increases as 
 
The more interesting phenomena we observed was that ETRSG problems retained their difficulty 
and overall solvability over their randomly generated counterparts. This implies there could exist 
a different phase transition number for ETRSG problems which can
of difficult symmetric 3-SAT problems. However, this result leads us to the conclusion that our 
ETRSG is more efficient in generating more 
 

6. DISCUSSION 
 

6.1. Critical Zone Exploration
 
With the speculation that the critical phase transition zone might be different for ETRSG 
problems, it might be worth discussing the exploration of this new hot and cold zone of 
satisfiability. Since when � =
speculate the critical phase transition zone might lie beyond this point. Furthermore, with 
evidence from Figure 2, we speculate the crucial phase transition zone for ETRSG could be
beyond � = 4.24 as the ETRSG problems 
occur before 5 as nearly all symmetric and TSG problems were unsatisfiable. In short, this new 
number must occur after 4.24 but before 5 and the problem of searching for this number can be 
approached in a multitude of ways. This could be investigated in another study.

 
Figure 1: � = 4, 400 instances, Red: ETRSG, Blue: TSG. ETRSG problems and the TSG problems began 
to relate more directly to each other, and the advantageous difficulty of the ETRSG 

 

Computer Science & Information Technology (CS & IT) 

ng solvable instances while TSG gradually catches up, from 0.925 to 1, as 
the number of variables increases. When we compare with the � = 4.24 case and 
obvious the hardness measures, such as restart, conflict and decision, increase a coup

The experiment also yielded similar results for the � = 4.24 and � = 5 cases overall. Simply 
case, we can conclude that ETRSG instances are more difficult than the 

instances. The order of magnitude increases as � increases. 

The more interesting phenomena we observed was that ETRSG problems retained their difficulty 
and overall solvability over their randomly generated counterparts. This implies there could exist 
a different phase transition number for ETRSG problems which can lead to further development 

SAT problems. However, this result leads us to the conclusion that our 
ETRSG is more efficient in generating more difficult problems while maintaining solvability.

Critical Zone Exploration for ETRSG 

With the speculation that the critical phase transition zone might be different for ETRSG 
problems, it might be worth discussing the exploration of this new hot and cold zone of 

= 4, it yielded highly satisfiable problems as seen in Figure
speculate the critical phase transition zone might lie beyond this point. Furthermore, with 
evidence from Figure 2, we speculate the crucial phase transition zone for ETRSG could be

4.24 as the ETRSG problems were all still highly satisfiable. The critical zone must 
occur before 5 as nearly all symmetric and TSG problems were unsatisfiable. In short, this new 
number must occur after 4.24 but before 5 and the problem of searching for this number can be 

hed in a multitude of ways. This could be investigated in another study.

4, 400 instances, Red: ETRSG, Blue: TSG. ETRSG problems and the TSG problems began 
to relate more directly to each other, and the advantageous difficulty of the ETRSG problem was deemed 

inconsequential. 

ng solvable instances while TSG gradually catches up, from 0.925 to 1, as 
4.24 case and � = 5 case, it is 

obvious the hardness measures, such as restart, conflict and decision, increase a couple orders of 

5 cases overall. Simply 
instances are more difficult than the TSG 

The more interesting phenomena we observed was that ETRSG problems retained their difficulty 
and overall solvability over their randomly generated counterparts. This implies there could exist 

lead to further development 
SAT problems. However, this result leads us to the conclusion that our 

problems while maintaining solvability. 

With the speculation that the critical phase transition zone might be different for ETRSG 
problems, it might be worth discussing the exploration of this new hot and cold zone of 

oblems as seen in Figure 1, we 
speculate the critical phase transition zone might lie beyond this point. Furthermore, with 
evidence from Figure 2, we speculate the crucial phase transition zone for ETRSG could be even 

were all still highly satisfiable. The critical zone must 
occur before 5 as nearly all symmetric and TSG problems were unsatisfiable. In short, this new 
number must occur after 4.24 but before 5 and the problem of searching for this number can be  

hed in a multitude of ways. This could be investigated in another study. 

4, 400 instances, Red: ETRSG, Blue: TSG. ETRSG problems and the TSG problems began 
problem was deemed 
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6.2. Toughness 
 
As pointed out earlier, problems that occur with the typical critical phase transition number 4.24 
might turn out to be easy to solve 
As shown in this experiment, it is clear that an equal recurrence number for all variables could be 
one character that can be used to describe this set of harder problems. As described previously 
when � = 4.24 ETRSG still generates with an increasingly high probability (0.75 to 1) solvable 
hard instances while TSG has a decreasing probability (0.63 to 1). The success rate drops almost 
to 0 when � = 5. As for other measures, such as CPU time, restart, conflict and decisio
on), are of a higher order of magnitude. A follow up study would focus on scaling 
and 5 for ETRSG while keeping solvable probability high and the magnitude of difficulty 
increasing. Another investigation is needed to determine the
only 100 and 150 variables when 
fluctuation or some hidden factors to be discovered.
  

Figure 2: � = 4.24, 400 instances,
instances significantly outperform TSG instances in all aspects, except with slight

restart. ETRSG has a higher probability of generating solvable instances.
 

7. CONCLUSION AND F
 
As it shows in the experiment ETRSG 3
This leads us to believe that the landscape of this type of problem might have many local 
minimums and only one unique global minimum. With such a landscape, a regular solver using 
Heuristics might be deceived to believe the local minimum is the global or it would take much 
more resources (time, space) for the solver to attack. To avoid bias, that is difficulty that has some 
solver dependency, we should translate the numerically
problems. 
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As pointed out earlier, problems that occur with the typical critical phase transition number 4.24 
might turn out to be easy to solve [9]. We might need a finer characterization for harder instances. 
As shown in this experiment, it is clear that an equal recurrence number for all variables could be 
one character that can be used to describe this set of harder problems. As described previously 

ll generates with an increasingly high probability (0.75 to 1) solvable 
hard instances while TSG has a decreasing probability (0.63 to 1). The success rate drops almost 

5. As for other measures, such as CPU time, restart, conflict and decisio
on), are of a higher order of magnitude. A follow up study would focus on scaling 
and 5 for ETRSG while keeping solvable probability high and the magnitude of difficulty 
increasing. Another investigation is needed to determine the cause of success probability dip for 
only 100 and 150 variables when � = 4 transitions to � =  4.24. It could be due to numerical 
fluctuation or some hidden factors to be discovered. 

 
4.24, 400 instances, Red: ETRSG, Blue: TSG. When more than 250 variables,

instances significantly outperform TSG instances in all aspects, except with slight outperformance in 
restart. ETRSG has a higher probability of generating solvable instances.

FUTURE WORK 

experiment ETRSG 3-SAT problems tend to have a higher level of difficulty. 
This leads us to believe that the landscape of this type of problem might have many local 
minimums and only one unique global minimum. With such a landscape, a regular solver using 
Heuristics might be deceived to believe the local minimum is the global or it would take much 
more resources (time, space) for the solver to attack. To avoid bias, that is difficulty that has some 
solver dependency, we should translate the numerically-verified difficult problems into landscape 
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As pointed out earlier, problems that occur with the typical critical phase transition number 4.24 
aracterization for harder instances. 

As shown in this experiment, it is clear that an equal recurrence number for all variables could be 
one character that can be used to describe this set of harder problems. As described previously 

ll generates with an increasingly high probability (0.75 to 1) solvable 
hard instances while TSG has a decreasing probability (0.63 to 1). The success rate drops almost 

5. As for other measures, such as CPU time, restart, conflict and decision (and so 
on), are of a higher order of magnitude. A follow up study would focus on scaling � between 4.24 
and 5 for ETRSG while keeping solvable probability high and the magnitude of difficulty 

cause of success probability dip for 
4.24. It could be due to numerical 

than 250 variables, ETRSG 
outperformance in 

restart. ETRSG has a higher probability of generating solvable instances. 

SAT problems tend to have a higher level of difficulty. 
This leads us to believe that the landscape of this type of problem might have many local 
minimums and only one unique global minimum. With such a landscape, a regular solver using 
Heuristics might be deceived to believe the local minimum is the global or it would take much 
more resources (time, space) for the solver to attack. To avoid bias, that is difficulty that has some 

fied difficult problems into landscape 
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Studying the landscape problem will allow us to better understand the difficulty of symmetric sat 
problems when compared to the relative ease of TSG 3
section 5 a new phase transition number might exist for symmetric 3
ratio only applies to general 3
shed light on difficulty and satisfiability bounds. Finally, a new partition
developing (for another study) can be used to tackle symmetric problems as it would be blind to 
the constraints of the problem as they would be broken down into smaller and more manageable 
problems. 
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