

Natarajan Meghanathan et al. (Eds) : CCSEA, CLOUD, SIPRO, AIFU, SEA, DKMP, NCOM - 2019
pp. 41-49, 2019. © CS & IT-CSCP 2019 DOI: 10.5121/csit.2019.90904

EFFICIENT TOUGH RANDOM SYMMETRIC

3-SAT GENERATOR

Robert Amador1, Chen-Fu Chiang2, and Chang-Yu Hsieh 3

1,2Department of Computer Science, State University of New York Polytechnic

Institute, Utica, NY~13502, USA.
3This work was done while the author was a post doc at Singapore-MIT Alliance for

Research and Technology, USA

ABSTRACT

We designed and implemented an efficient tough random symmetric 3-SAT generator. We

quantify the hardness in terms of CPU time, numbers of restarts, decisions, propagations,

conflicts and conflicted literals that occur when a solver tries to solve 3-SAT instances. In this

experiment, the clause variable ratio was chosen to be around the conventional critical phase

transition number 4.24. The experiment shows that instances generated by our generator are

significantly harder than instances generated by the Tough K-SAT generator. The difference in

hardness between two SAT instance generators exponentiates as the number of Boolean

variables used increases.

K EYWORDS

3-SAT, Satisfiability, Efficient Tough Random Symmetric 3-SAT Generator, Critical Phase

Transition

1. INTRODUCTION

The 3-satisfiability problem (3-SAT) can be succinctly summarized as follows: find an n-binary-
variable configuration to satisfy a conjunction of clauses with each being a disjunction of three
literals. It is a widely studied problem for several reasons. First, it plays a crucial role in the
historical development of theoretical computer science. For instance, it was the first identified
NP-complete problem, [[1], [2]] and one of the most well-studied examples in the inter-
disciplinary research program involving computer science, combinatorial optimization [[3], [4]]
and statistical physics [[5], [6]]. Besides these interesting developments on the theoretical front,
the 3-SAT problem also plays a critical role in many applications such as model checking,
planning in artificial intelligences and software verifications. Hence, for both theoretical and
practical reasons, there are many strong motivations to devise more efficient algorithms to attack
such a problem.

2. PROBLEM STATEMENT & MOTIVATION

The inter-disciplinary approach (especially invoking statistical physics methods and concepts) has
certainly helped us to build a comprehensive picture of the complex structures of the 3-SAT

42 Computer Science & Information Technology (CS & IT)

problem. For instance, the concept of phase transitions in statistical physics has been adopted to
elucidate the SAT-UNSAT phase transition of 3-SAT problems. In this statistical framework, the
ratio parameter, (� ≡ �/�)) for the phase transition is taken to be the ratio of the number of
clauses (�) to the number of variables (�). The critical value of this order parameter is �� = 4.2
[[7], [8]] which clearly draws a boundary in the space of all 3-SAT instances. We explore 3-
SAT problems with a critical value of 4.2 in comparison to 3-SAT problems generated by a
Tough Random K-SAT Generator to better understand how the critical value effects solvability of
3-SAT Problems. Studying this specific subset of 3-SAT problems will enable further research
into solving SAT problems more efficiently.

3. BACKGROUND

In various SAT solvers/generators, the commonly used parameters are: �: the number of
variables, �: the number of clauses, �: the ratio, which is determined by �/�. For an efficient
tough random symmetric 3-SAT generator, a formula F is of � variables with the ratio number α
that should have � ∗ � clauses. In this work, we choose the ratio number close to the phase
transition number 4.24. Particularly in 3-SAT, since each clause has 3 literals, each variable is
expected to appear approximately 3 ∗ � times in F.

Tough SAT Generator is one of the competitive generators out there for generating tough SAT
instances. We would like to compare the toughness of instances generated by our generator and
TSG in the following categories: (a) frustrations caused by the generator to the SAT solver and
(b) probability of generating instances that are solvable (that is there is at least one solution). The
frustration rate can be quantified by the resources used by the solver, such as CPU time, restarts,
conflicts and decisions. The probability can be quantified by the ratio between instances with
solutions and the total instances generated by the generator.

The contribution of this work is to devise a way to generate harder instances and verify their
hardness. We aim at generating those harder instances more efficiently and reliably. The hardness
is quantified by the measures given in the solver that the instances require the solver to consume
more resources and make more modifications. Our algorithm is more reliable as it generates with
a higher probability of instances that have solutions. Our algorithm is also efficient as the
generation process is almost linear time. With a verified efficient reliable algorithm that generates
harder instances, in a later study we can characterize harder instances in another dimension, in
addition to the conventional critical phase transition number.

3.1. Algorithms

In following paragraph, we describe the TSG algorithm (alg 1) and our efficient tough random
symmetric 3-SAT generator (ETRSG) algorithm (alg 2). They can both generate SAT instances
efficiently in almost linear time.

Computer Science & Information Technology (CS & IT)

The TSG algorithm basically generates
generated by randomly picking 3 variables from the variable list and with 0.5 probability, the
chosen variable is then assigned an negation operation. With the disjunction of the literals, a
clause is formed.

The ETRSG algorithm generates
sequence
� that is of 3�
variables. To avoid adjacent subsequences from forming an invalid clause, that is duplicated
variables or literals, we must call the RndGen
two adjacent sequences are jointly required to produce a partic
checks the adjacent subsequences
once in that particular clause.

Computer Science & Information Technology (CS & IT)

The TSG algorithm basically generates � clauses sequentially. In the 3-SAT case, each clause is
generated by randomly picking 3 variables from the variable list and with 0.5 probability, the
chosen variable is then assigned an negation operation. With the disjunction of the literals, a

The ETRSG algorithm generates � clauses sequentially. But initially it must generate a big
 subsequences. Each subsequence is a random arrangement of

variables. To avoid adjacent subsequences from forming an invalid clause, that is duplicated
variables or literals, we must call the RndGen-Verif subroutine (alg 3) to ensure its validity. If
two adjacent sequences are jointly required to produce a particular clause, the ETRSG algorithm
checks the adjacent subsequences
� and
���to make sure a variable would not appear more than

 43

SAT case, each clause is
generated by randomly picking 3 variables from the variable list and with 0.5 probability, the
chosen variable is then assigned an negation operation. With the disjunction of the literals, a

clauses sequentially. But initially it must generate a big
subsequences. Each subsequence is a random arrangement of �

variables. To avoid adjacent subsequences from forming an invalid clause, that is duplicated
Verif subroutine (alg 3) to ensure its validity. If

ular clause, the ETRSG algorithm
to make sure a variable would not appear more than

44 Computer Science & Information Technology (CS & IT)

Once
� , of length �3���, is generated, each variable appears
generate � clauses sequentially from position 1 until position
also randomly assign the negation operation.

3.2. Choice of Recurrence Number

The recurrence number r in ETRSG determines the number of times each variabl
the formula. In this paper, r is chosen based on selecting the ratio number
known phase transition number. A phase transition [[5], [6]] is a concept utilized in statistical
physics but it can also be used to better exp
problems. In reality, even instances with the critical phase transition number might be easy to
solve for a modern solver. The 4.24 phase transition could be where more tough instances exist.
In comparison to all possible instances with a critical phase transition number 4.24, this subset of
tough instances might be exponentially rare among 3
this experiment is to figure out some of those exponentially rare i
The critical phase transition number is one of the characters for hard instances. In this
experiment, we chose α= 4, 4.24 and 5. The rationale is that SAT instances with a ratio number
greater than the critical phase transit
solution. SAT instances with a ratio number smaller than the critical phase transition number will
likely have many solutions and therefore the SAT solvers can easily find the solution.

4. TOOLS AND EXPERIMENTS

4.1 Tools

4.1.1 Generators

The baseline generator is the Tough Random K
SAT instances, which is built upon latest techniques up to 2017. The other generator is our
ETRSG algorithm. Both algorithms

Computer Science & Information Technology (CS & IT)

, is generated, each variable appears �3�� times and then we c
clauses sequentially from position 1 until position 3� of
� . For each position we

also randomly assign the negation operation.

Choice of Recurrence Number

The recurrence number r in ETRSG determines the number of times each variabl
the formula. In this paper, r is chosen based on selecting the ratio number α
known phase transition number. A phase transition [[5], [6]] is a concept utilized in statistical
physics but it can also be used to better explain satisfiable and unsatisfiable transitions in 3
problems. In reality, even instances with the critical phase transition number might be easy to
solve for a modern solver. The 4.24 phase transition could be where more tough instances exist.

rison to all possible instances with a critical phase transition number 4.24, this subset of
tough instances might be exponentially rare among 3-SAT instances[9]. One of the major goals of
this experiment is to figure out some of those exponentially rare instances and characterize them.
The critical phase transition number is one of the characters for hard instances. In this

α= 4, 4.24 and 5. The rationale is that SAT instances with a ratio number
greater than the critical phase transition number will almost always be rejected as there is no
solution. SAT instances with a ratio number smaller than the critical phase transition number will
likely have many solutions and therefore the SAT solvers can easily find the solution.

XPERIMENTS

The baseline generator is the Tough Random K-SAT generator [10] that generates random K
SAT instances, which is built upon latest techniques up to 2017. The other generator is our
ETRSG algorithm. Both algorithms are explained in section 3.1.

times and then we can
. For each position we

The recurrence number r in ETRSG determines the number of times each variable must appear in
the formula. In this paper, r is chosen based on selecting the ratio number α close to the well-
known phase transition number. A phase transition [[5], [6]] is a concept utilized in statistical

lain satisfiable and unsatisfiable transitions in 3-SAT
problems. In reality, even instances with the critical phase transition number might be easy to
solve for a modern solver. The 4.24 phase transition could be where more tough instances exist.

rison to all possible instances with a critical phase transition number 4.24, this subset of
SAT instances[9]. One of the major goals of

nstances and characterize them.
The critical phase transition number is one of the characters for hard instances. In this

= 4, 4.24 and 5. The rationale is that SAT instances with a ratio number
ion number will almost always be rejected as there is no

solution. SAT instances with a ratio number smaller than the critical phase transition number will
likely have many solutions and therefore the SAT solvers can easily find the solution.

SAT generator [10] that generates random K-
SAT instances, which is built upon latest techniques up to 2017. The other generator is our

Computer Science & Information Technology (CS & IT) 45

4.1.2. Solver and Platform

MiniSAT is a minimalistic, open-source SAT solver, developed to help researchers and
developers alike get started on SAT. It is released under the MIT license. MiniSAT deploys the
Conflict Driven Clause Learning (CDCL) SAT solver with several other features such as clause
deletion and dynamic variable ordering [[11], [12]]. A small glimpse into the inner workings of
Minisat is provided as a basic introduction to conflict clause learning and to establish a small
foothold on the basic idea of SAT solvers.

MiniSAT measures CPU time which, while valuable, is inconsequential as CPU time can change
accordingly with better or worse hardware. It also provides other important measures. It stores the
number of times the solver was forced to restart, conflicts, decisions, propagations, inspections
and conflict literals deleted, which are all machine independent. The mechanism for the MiniSAT
solver is as follows. When MiniSAT is given a SAT problem, it solves the problem by choosing a
variable to begin propagation of other variables. When a conflict occurs, as in one literal is
assigned both a positive and negative value, the solver will store this conflicting clause and begin
propagation again from an older assignment but will avoid generating the prior conflicting clause.
If the solver moves back to the original chosen variable, it is then restarted with a different
variable and propagation begins again. This is redone until a satisfying assignment is found and
the problem is deemed satisfiable or until it is shown that no satisfiable solution can be made,
deeming the problem unsatisfiable. These are the results on which we will gauge the relative
difficulty of the SAT instances.

The ETRSG algorithm was implemented in Python. The testing environment was created in
cloud9, which is a cloud based ubuntu IDE. The environment has 512MB of available memory,
2GB of disk space which was more than enough for development and testing. In the case of
MiniSAT, the CDCL algorithm used is ultimately machine independent because only CPU time
will get better or worse with better or worse hardware respectively. Although, the times between
the better and worse hardware can differ the algorithm will function the same way and have
similar occurrences for restarts, conflicts, conflict literals, propagations, inspects, decisions and
the rate of generating satisfiable instances.

4.2. Experiments

To compare the toughness of instances generated by TSG and ETRSG, we generate 3-SAT
instances with test cases where � = 4, 4.24 and 5. With each �, the number of variables � is set
as 100, 150, 200, 250, 300 and 350. With each (�, �) pair we generate 400 instances for both
TSG and ETRSG.

All the test problems were solved using the C instance of MiniSat V 1.4.1 and TSG version 1.1
K-SAT generator was used to generate the control problems.

5. RESULT

The experiment results were summarized in Figure 1 for � = 4 case, Figure 2 for � = 4.24 case
and Figure 3 for � = 5 case. What is worth noting is that the performance of TSG and ETRSG
are almost similar when � = 4. This could be explained that those instances are much easier to
solve since there might exist multiple solutions. ETRSG remains a very stable high probability,

46 Computer Science & Information Technology (CS & IT)

almost 1, of generating solvable instances while TSG gradually catches up, from 0.925 to 1, as
the number of variables increases. When we compare with the
obvious the hardness measures, such as restart, conflict and decision, increase a coup
magnitude as � increases.

The experiment also yielded similar results for the
looking at each � case, we can conclude that
instances. The order of magnitude increases as

The more interesting phenomena we observed was that ETRSG problems retained their difficulty
and overall solvability over their randomly generated counterparts. This implies there could exist
a different phase transition number for ETRSG problems which can
of difficult symmetric 3-SAT problems. However, this result leads us to the conclusion that our
ETRSG is more efficient in generating more

6. DISCUSSION

6.1. Critical Zone Exploration

With the speculation that the critical phase transition zone might be different for ETRSG
problems, it might be worth discussing the exploration of this new hot and cold zone of
satisfiability. Since when � =
speculate the critical phase transition zone might lie beyond this point. Furthermore, with
evidence from Figure 2, we speculate the crucial phase transition zone for ETRSG could be
beyond � = 4.24 as the ETRSG problems
occur before 5 as nearly all symmetric and TSG problems were unsatisfiable. In short, this new
number must occur after 4.24 but before 5 and the problem of searching for this number can be
approached in a multitude of ways. This could be investigated in another study.

Figure 1: � = 4, 400 instances, Red: ETRSG, Blue: TSG. ETRSG problems and the TSG problems began
to relate more directly to each other, and the advantageous difficulty of the ETRSG

Computer Science & Information Technology (CS & IT)

ng solvable instances while TSG gradually catches up, from 0.925 to 1, as
the number of variables increases. When we compare with the � = 4.24 case and
obvious the hardness measures, such as restart, conflict and decision, increase a coup

The experiment also yielded similar results for the � = 4.24 and � = 5 cases overall. Simply
case, we can conclude that ETRSG instances are more difficult than the

instances. The order of magnitude increases as � increases.

The more interesting phenomena we observed was that ETRSG problems retained their difficulty
and overall solvability over their randomly generated counterparts. This implies there could exist
a different phase transition number for ETRSG problems which can lead to further development

SAT problems. However, this result leads us to the conclusion that our
ETRSG is more efficient in generating more difficult problems while maintaining solvability.

Critical Zone Exploration for ETRSG

With the speculation that the critical phase transition zone might be different for ETRSG
problems, it might be worth discussing the exploration of this new hot and cold zone of

= 4, it yielded highly satisfiable problems as seen in Figure
speculate the critical phase transition zone might lie beyond this point. Furthermore, with
evidence from Figure 2, we speculate the crucial phase transition zone for ETRSG could be

4.24 as the ETRSG problems were all still highly satisfiable. The critical zone must
occur before 5 as nearly all symmetric and TSG problems were unsatisfiable. In short, this new
number must occur after 4.24 but before 5 and the problem of searching for this number can be

hed in a multitude of ways. This could be investigated in another study.

4, 400 instances, Red: ETRSG, Blue: TSG. ETRSG problems and the TSG problems began
to relate more directly to each other, and the advantageous difficulty of the ETRSG problem was deemed

inconsequential.

ng solvable instances while TSG gradually catches up, from 0.925 to 1, as
4.24 case and � = 5 case, it is

obvious the hardness measures, such as restart, conflict and decision, increase a couple orders of

5 cases overall. Simply
instances are more difficult than the TSG

The more interesting phenomena we observed was that ETRSG problems retained their difficulty
and overall solvability over their randomly generated counterparts. This implies there could exist

lead to further development
SAT problems. However, this result leads us to the conclusion that our

problems while maintaining solvability.

With the speculation that the critical phase transition zone might be different for ETRSG
problems, it might be worth discussing the exploration of this new hot and cold zone of

oblems as seen in Figure 1, we
speculate the critical phase transition zone might lie beyond this point. Furthermore, with
evidence from Figure 2, we speculate the crucial phase transition zone for ETRSG could be even

were all still highly satisfiable. The critical zone must
occur before 5 as nearly all symmetric and TSG problems were unsatisfiable. In short, this new
number must occur after 4.24 but before 5 and the problem of searching for this number can be

hed in a multitude of ways. This could be investigated in another study.

4, 400 instances, Red: ETRSG, Blue: TSG. ETRSG problems and the TSG problems began
problem was deemed

Computer Science & Information Technology (CS & IT)

6.2. Toughness

As pointed out earlier, problems that occur with the typical critical phase transition number 4.24
might turn out to be easy to solve
As shown in this experiment, it is clear that an equal recurrence number for all variables could be
one character that can be used to describe this set of harder problems. As described previously
when � = 4.24 ETRSG still generates with an increasingly high probability (0.75 to 1) solvable
hard instances while TSG has a decreasing probability (0.63 to 1). The success rate drops almost
to 0 when � = 5. As for other measures, such as CPU time, restart, conflict and decisio
on), are of a higher order of magnitude. A follow up study would focus on scaling
and 5 for ETRSG while keeping solvable probability high and the magnitude of difficulty
increasing. Another investigation is needed to determine the
only 100 and 150 variables when
fluctuation or some hidden factors to be discovered.

Figure 2: � = 4.24, 400 instances,
instances significantly outperform TSG instances in all aspects, except with slight

restart. ETRSG has a higher probability of generating solvable instances.

7. CONCLUSION AND F

As it shows in the experiment ETRSG 3
This leads us to believe that the landscape of this type of problem might have many local
minimums and only one unique global minimum. With such a landscape, a regular solver using
Heuristics might be deceived to believe the local minimum is the global or it would take much
more resources (time, space) for the solver to attack. To avoid bias, that is difficulty that has some
solver dependency, we should translate the numerically
problems.

Computer Science & Information Technology (CS & IT)

As pointed out earlier, problems that occur with the typical critical phase transition number 4.24
might turn out to be easy to solve [9]. We might need a finer characterization for harder instances.
As shown in this experiment, it is clear that an equal recurrence number for all variables could be
one character that can be used to describe this set of harder problems. As described previously

ll generates with an increasingly high probability (0.75 to 1) solvable
hard instances while TSG has a decreasing probability (0.63 to 1). The success rate drops almost

5. As for other measures, such as CPU time, restart, conflict and decisio
on), are of a higher order of magnitude. A follow up study would focus on scaling
and 5 for ETRSG while keeping solvable probability high and the magnitude of difficulty
increasing. Another investigation is needed to determine the cause of success probability dip for
only 100 and 150 variables when � = 4 transitions to � = 4.24. It could be due to numerical
fluctuation or some hidden factors to be discovered.

4.24, 400 instances, Red: ETRSG, Blue: TSG. When more than 250 variables,

instances significantly outperform TSG instances in all aspects, except with slight outperformance in
restart. ETRSG has a higher probability of generating solvable instances.

FUTURE WORK

experiment ETRSG 3-SAT problems tend to have a higher level of difficulty.
This leads us to believe that the landscape of this type of problem might have many local
minimums and only one unique global minimum. With such a landscape, a regular solver using
Heuristics might be deceived to believe the local minimum is the global or it would take much
more resources (time, space) for the solver to attack. To avoid bias, that is difficulty that has some
solver dependency, we should translate the numerically-verified difficult problems into landscape

 47

As pointed out earlier, problems that occur with the typical critical phase transition number 4.24
aracterization for harder instances.

As shown in this experiment, it is clear that an equal recurrence number for all variables could be
one character that can be used to describe this set of harder problems. As described previously

ll generates with an increasingly high probability (0.75 to 1) solvable
hard instances while TSG has a decreasing probability (0.63 to 1). The success rate drops almost

5. As for other measures, such as CPU time, restart, conflict and decision (and so
on), are of a higher order of magnitude. A follow up study would focus on scaling � between 4.24
and 5 for ETRSG while keeping solvable probability high and the magnitude of difficulty

cause of success probability dip for
4.24. It could be due to numerical

than 250 variables, ETRSG
outperformance in

restart. ETRSG has a higher probability of generating solvable instances.

SAT problems tend to have a higher level of difficulty.
This leads us to believe that the landscape of this type of problem might have many local
minimums and only one unique global minimum. With such a landscape, a regular solver using
Heuristics might be deceived to believe the local minimum is the global or it would take much
more resources (time, space) for the solver to attack. To avoid bias, that is difficulty that has some

fied difficult problems into landscape

48 Computer Science & Information Technology (CS & IT)

Studying the landscape problem will allow us to better understand the difficulty of symmetric sat
problems when compared to the relative ease of TSG 3
section 5 a new phase transition number might exist for symmetric 3
ratio only applies to general 3
shed light on difficulty and satisfiability bounds. Finally, a new partition
developing (for another study) can be used to tackle symmetric problems as it would be blind to
the constraints of the problem as they would be broken down into smaller and more manageable
problems.

ACKNOWLEDGEMENTS

R. A. and C. C. gratefully acknowledge the support from the State University of New York
Polytechnic Institute.

Figure 3: � = 5, 400 instances, Red: ETRSG, Blue: TSG. Similar to
restart. The probability of generating solvable in

REFERENCES

[1] S. A. Cook, “The complexity of theorem
symposium on Theory of computing, 1971.

[2] R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of computer computations,

Springer, 1972, pp. 85-103.

[3] C. H. Papadimitriou and M. Yannakakis, “Optimization, approximation, and complexity classes,”

Journal of computer and system sciences, vol. 43, pp. 425

[4] R. Marino, G. Parisi and F. Ricci

solving random K-SAT problems,” Nature communications, vol. 7, p. 12996, 2016.

Computer Science & Information Technology (CS & IT)

Studying the landscape problem will allow us to better understand the difficulty of symmetric sat
problems when compared to the relative ease of TSG 3-SAT problems. Also, as stated prior in

phase transition number might exist for symmetric 3-SAT problems as the 4.24
ratio only applies to general 3-SAT problems. This new phase transition number will also help to
shed light on difficulty and satisfiability bounds. Finally, a new partition-based
developing (for another study) can be used to tackle symmetric problems as it would be blind to
the constraints of the problem as they would be broken down into smaller and more manageable

gratefully acknowledge the support from the State University of New York

5, 400 instances, Red: ETRSG, Blue: TSG. Similar to � = 4.24, but more significant in

restart. The probability of generating solvable instances drops quickly to 0 for both since 5 is greater than
the critical phase transition number.

S. A. Cook, “The complexity of theorem-proving procedures,” in Proceedings of the third annual ACM
symposium on Theory of computing, 1971.

R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of computer computations,

C. H. Papadimitriou and M. Yannakakis, “Optimization, approximation, and complexity classes,”
Journal of computer and system sciences, vol. 43, pp. 425-440, 1991.

R. Marino, G. Parisi and F. Ricci-Tersenghi, “The backtracking survey propagation algor
SAT problems,” Nature communications, vol. 7, p. 12996, 2016.

Studying the landscape problem will allow us to better understand the difficulty of symmetric sat
SAT problems. Also, as stated prior in

SAT problems as the 4.24
SAT problems. This new phase transition number will also help to

based solver that we are
developing (for another study) can be used to tackle symmetric problems as it would be blind to
the constraints of the problem as they would be broken down into smaller and more manageable

gratefully acknowledge the support from the State University of New York

4.24, but more significant in
stances drops quickly to 0 for both since 5 is greater than

proving procedures,” in Proceedings of the third annual ACM

R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of computer computations,

C. H. Papadimitriou and M. Yannakakis, “Optimization, approximation, and complexity classes,”

Tersenghi, “The backtracking survey propagation algorithm for
SAT problems,” Nature communications, vol. 7, p. 12996, 2016.

Computer Science & Information Technology (CS & IT) 49

[5] S. Cocco and R. Monasson, “Statistical physics analysis of the computational complexity of solving
random satisfiability problems using backtrack algorithms,” The European Physical Journal B-
Condensed Matter and Complex Systems, vol. 22, pp. 505-531, 2001.

[6] A. Percus, G. Istrate and C. Moore, Computational complexity and statistical physics, OUP USA,

2006.

[7] B. A. Huberman and T. Hogg, “Phase transitions in artificial intelligence systems,” Artificial

Intelligence, vol. 33, pp. 155-171, 1987.

[8] M. Mézard, G. Parisi and R. Zecchina, “Analytic and algorithmic solution of random satisfiability

problems,” Science, vol. 297, pp. 812-815, 2002.

[9] M. Žnidarič, “Scaling of the running time of the quantum adiabatic algorithm for propositional

satisfiability,” Physical Review A, vol. 71, p. 062305, 2005.

[10] https://toughsat.appspot.com/, “Tough SAT generation,” 2017.

[11] N. Een, “MiniSat: A SAT solver with conflict-clause minimization,” in Proc. SAT-05: 8th

International Conference on Theory and Applications of Satisfiability Testing, 2005.

[12] N. Eén and A. Biere, “Effective preprocessing in SAT through variable and clause elimination,” in

International conference on theory and applications of satisfiability testing, 2005.

AUTHORS

Robert Amador studies computer and information science and received his master’s from SUNY
Polytechnic institute. His research interests include artificial intelligence and machine learning.

Dr. Chen-Fu Chiang studies computer science and received his master’s from the University of
Pennsylvania and his PhD from the university of Central Florida. He is currently an assistant professor in
the Computer Science department at the University of New York Polytechnic Institute. His research focus
is on quantum computation, theoretical computation and artificial intelligence.

Dr. Chang-Yu Hsieh studies physics. He received his PhD from the University of Ottawa Canada. Upon
his graduation, Dr. Hsieh had been conducting research in quantum system as postdocs in University of
Toronto and MIT. His research focus is on complexity, near term quantum systems and quantum
algorithms.

