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ABSTRACT 

 

In this paper, a simple yet universal approach to the tracking problem for linear control systems 

via the linear static combined feedback is proposed. The approach is based on the invariant 

ellipsoid concept and LMI technique, where the optimal control design reduced to finding the 

minimal invariant ellipsoid for the closed-loop system. With such an ideology, the control 

design problem directly reduces to a semidefinite programming and one-dimensional 

minimization. Another attractive property of the proposed approach is that it is equally 

applicable to discrete-time control systems. The efficacy of the technique is illustrated via a 

benchmark problem.  
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1. INTRODUCTION 
 

Tracking problem is known as one of the main problem of modern control theory, it is 

investigated in a lot of papers; see, for instance, [1, 2, 3]. In the most common statement, the 

tracking problem (so-called, output tracking) supposes the construction the system input or the 

control law for the dynamical system, such that the system output following the desired function. 

For the linear system we should to mention the classical monograph [4], see also [5]. 
 

There are various tracking problem statements and corresponding approaches. We note classical 

linear optimal control with linear tracking control [1]; non-linear tracking problem [2]; natural 

tracking control [3]; Approximating Sequence Riccati Equations (ASRE), etc. Within the context 

of the 
1l -theory, the problem of finding an accurate estimate of robust system tracking 

performance, given the information on the nominal model and upper bounds on system 

uncertainties and disturbances, is solved. 
 

In this paper we propose an approach to one of the statements of the tracking problem. This 

approach is based on invariant ellipsoids method [6, 7]. It is easily implemented technically, deals 

with constraints on the control magnitude, and has a huge potential for possible extensions. The 
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most close article to the recent paper is [8], which is also devoted to linear tracking problem. 

However in [8], the input signal is supposed to satisfy a certain differential equation which 

includes unknown-but-bounded disturbance. In the present paper we only suppose that the input 

signal and its derivative is bounded; in this way we can consider much more wide class of input 

signals. 
 

As a technical tool we adopt the powerful LMI technique [9, 10] which allows to reduce the 

stated problem to finding the minimal invariant ellipsoid for the system state. From the 

computational point of view, the stated problem is reduced to semi-definite programming and 

one-dimensional optimization. Such problems can be effectively solved computationally using 

software including (but not limited to) freeware Matlab-based packages SDPT3 [11, 12], 

YALMIP [13] and  cvx [14, 15]. 
 

2. STATEMENT OF THE PROBLEM 
 

Let us consider the linear continuous-time control system  
 

                                     0= , (0) = ,x Ax Bu Df x x+ +&                                     (1) 

 

where  are given constant matrices; is the 

system state, is the control input, and is the input signal such that  
 

                                 (2) 
 

It is worth mentioning that there are no other constraints on the input signal ( )f t . The pair 

( , )A D  is supposed to be controllable. 

 

Here and further, ⋅P P is the Euclidean vector norm; 
Τ

 is the transpose operator; tr  is the matrix 

trace; I  is the identity matrix of the appropriate dimension, and all matrix inequalities are 

understood in the sense of matrix sign-definiteness. 
 

Our goal is to design the linear static feedback which a) stabilizes the linear system (1)–(2), i.e. 

makes the system matrix Hurwitz (which guarantees the boundedness of the system trajectories), 

and b) minimizes the error  

                                                                                               (3) 
 

minimization criteria will be discussed later. 
 

Via straightforward differentiation of (3) we obtain the equation  
 

 = ( ) .e Ae Bu A D f f+ + + − &&  
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Introducing the vector  
 

  
 

we arrive at  
 

                                          
0= ,e Ae Bu D w+ +&                                            (4) 

 

where  
 

  
 

and  
 

 ( )0 = .D A D I+ −  

 

Let us assume that the values of ( )e τ  and ( )w τ  are known at any time instant τ , therefore they 

can be used for feedback design. Namely, we will design the combined feedback (see [16])  
 

                                              
1 2= ,u K e K w+                                          (5) 

 

Where  
 

Due to the joint boundedness of ( )f τ  and ( )f τ&  it is natural to treat the input signal w  in (4) as 

an external disturbance. 
 

3. TECHNICAL RESULTS 
 

We use some known results concerned with the linear matrix inequalities [9, 10] and invariant 

ellipsoid technique [6]. The invariant sets are widely used in various guaranteed estimations, 

filtering and minimax control problems in presence of disturbances. We note the following 

essential works in the mentioned fields: F. Schweppe [17], D. Bertsekas and I. Rhodes [18], and 

F. Chernousko [19]. 
 

Consider the linear dynamic system  
 

                                                = ,x Ax Dw+&                                           (6) 

where  are fixed known matrices,  is the system state, 

 is the external disturbance bounded at any time instance:  
 

                                                                    (7) 

Any other constraints are not imposed on the disturbance ( )w t ; for instance, it is not supposed to 
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be random or harmonic. It is worth mentioning that a more general constraint  
 

  
 

can be reduced to the considered cased by corresponding scaling of the matrix D . 
 

Let us suppose that system (6) is stable ( A  is the Hurwitz matrix), the pair ( , )A D  is 

controllable. 
 

Definition 1. Ellipsoid centred at the origin  
 

  
 

is called invariant for the system (6)–(7), if from  follows  for any 0t ≥  

and all admissible disturbances ( )w t .  

 

In other words, any trajectory of the system that comes from the point lying in the ellipsoid  

belongs to this ellipsoid at any time instant. The matrix P  is called the ellipsoid matrix. 
 

Theorem 1 ([9]). Ellipsoid  is invariant for the dynamical system (6)–(7) if and only if the 

ellipsoid matrix 0P f  satisfies the linear matrix inequality  
 

  
 

for a certain > 0α .  
 

Invariant ellipsoid can be treated as effective tool for the estimation of state of the dynamical 

system subjected to bounded disturbances.  
 

Disturbance influence can be characterised by minimal invariant ellipsoid. Among the various 

minimality criteria we will use the trace criterion trP  which corresponds to the sum of squared 

semi-axes of the ellipsoid matrix P . 
 

4. MAIN RESULT 
 

Let us turn back to the minimization of the error  
 

 =e x f−  
 

for system (1). We will seek the minimal invariant ellipsoid for system (4) embraced with 

feedback (5). In this way the system takes the following closed-loop form  
 

                                             = ,c ce A e D w+&                                              (8) 

where  
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 1 0 2= , = .c cA A BK D D BK+ +  

 

The next theorem presents the main result of the paper. 
 

Theorem 2.  Let P , Y , 2K  be the solution of the minimization problem  

 

                                              min trP                                                        (9) 
 

subject to the constraints  
 

                                           (10) 
 

with respect to the matrix variables, , and the 

scalar parameter α . 
 

Then the combined controller (5) with matrix  
 

 ( )1

2YP K−
 

 

stabilizes system (4), and P  is an invariant ellipsoid matrix for the closed-loop system with zero 

initial condition.  
 

Applying Theorem 1 for the system (8) and minimizing invariant ellipsoid with matrix P , we 

arrive at the following minimization problem  
 

 min trP  
 

subject to the constraints  
 

 
 

and 

0.P f  
 

Using Schur lemma [20], the first constraint can be reformulated as  
 

  
 

Let us introduce the auxiliary variable  
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1= ,Y K P  

 

to eliminate 
1K .  

 

Due to 0P f , the matrix 1K  can be restored in the unique way:  

 
1

1 = .K YP
−

 

 

The proof is complete.  
 

We make several comments. 
 

1. There are both strict and nonstrict inequalities in optimization problem in the theorem above. 

Such specific is common for used technique and it described in details in [10]. 
 

2. It is natural to require that the control is bounded, for instance, by imposing a straightforward 

constraint like  

 

, 
 

see [21]. In the present paper we introduce the constraint applied to the first control component 

(5):  
 

                                                                                (11)                                        
 

As the parameter 2K  is the variable of the optimization problem (9)–(10), we can impose the 

constraint directly (if needed). 
 

As shown in [9], the condition (11) is guaranteed by the fulfillment of the LMI  
 

 
 

This constraint is to be added to the constraints of the theorem. 
 

3. For any fixed value of the parameter α , the minimization problem (9)–(10) is a semi-definite 

programm. It is possible to identify the range for α .  
 

Namely, let us consider the following optimization problem  
 

min λ  
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subject to the constraints  
 

 
 
 

with respect to the matrix variables  the scalar 

variable λ  and the scalar parameter > 0α . 
 

This problem is a semi-definite programm and it is feasible for any positive α , thus [10],  
 

 min min( ) = ( ).µ α λ α  

 

   
Figure 1. Plot of 

min ( )µ α .   

 

Fig. 1 depicts the plot of the function min ( )µ α  for a sample system. 

 

The projection of the cross-section of the epigraph the function min ( )µ α  at level µ  on the 

horizontal axis gives us the corresponding range [ , ]α α  for the parameter α . 

 

4. The conditions stated in the theorem are sufficient only, therefore the obtained solution is 

suboptimal. 

 

 

 



194 Computer Science & Information Technology (CS & IT)      

5. EXAMPLE 
 

We demonstrate the efficacy of the proposed approach via a benchmark problem. The numerical 

values were taken from AC11 task of the COMPleib library [22]:  

 

1.341 0.9933 0 0.1689 0.2518

43.223 0.8693 0 17.251 1.5766

= ,1.341 0.0067 0 0.1689 0.2518

0 0 0 20 0

0 0 0 0 20

A

− − − 
 

− − − 
 
 

− 
 − 

 

 

0 0

0 0

= ,0 0

20 0

0 20

B

 
 
 
 
 
 
 
 

 

 

0 0 1 0 0

47.76 0.268 0 4.56 4.45

= .0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

D

 
 

− − 
 
 
 
 
 

 

 

The solution of the optimization problem from Theorem 2 for = 1γ  and = 5µ  is obtained with  

 

  
 

we arrive at the matrix  

 

1.8083 2.1786 0.8381 5.0692 3.5415

49.171 0.6509 40.1701 2.3267

= 0.6105 0.8683 4.2103

120.707 35.5206

47.381

P

− − 
 

∗ − − 
 ∗ ∗ − −
 

∗ ∗ ∗ − 
 ∗ ∗ ∗ ∗ 

 

 

of the invariant ellipsoid, and the gain matrices  
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1

1245.1 1685.9

147 198.6

= 1935 2636.1

79.3 106.9

27.1 37.5

K Τ

− 
 

− 
 −
 

− 
 − 

 

and 

2

7.7995 3.261

0.5486 0.3446

0.6452 0.362

0.1652 1.0632

0.2047 0.6886

= .0.6452 0.362

0.0851 0.0212

0.685 1.357

0.05 0

0 0.05

K Τ

− 
 

− 
 −
 

− − 
 
 

− 
 −
 

− 
 
 
 
 
 

 

 

 
 

Figure 2. Invariant ellipsoid and projections of the phase trajectory. 

 

Fig. 2 depicts the projection of the invariant ellipsoid for the closed-loop system (8) on the plane 

1 5( , )e e  and the corresponding trajectory projection. 

 

Fig. 3 depicts the dynamics of the control components for the input signal  
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The plot of the component 1( )u t  is shown in blue, and 2 ( )u t  in red. 

Fig. 4 depicts the dynamics of the norm . 
 

We used  MATLAB-based packages SDPT3 and YALMIP for numerical simulations. 
 

 
Figure 3. Dynamics of control components. 

 

 

Figure 4. Plot of . 
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6. CONCLUSIONS 
 

A simple but universal approach for one statement of the linear tracking problem is supposed. 

The approach is based on the invariant ellipsoid technique and linear matrix inequalities 

apparatus. The control design of linear static combined feedback was reduced to semi-definite 

programming and one-dimensional optimization. The approach efficacy is demonstrated via 

numerical simulation. 
 

The future plans are to adopt the approach to discrete-time systems, to robust statements (with 

structured uncertainties in system matrices), and to systems subjected to bounded exogenous 

disturbances. 
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