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ABSTRACT  
 

Application of Artificial Neural Network Committee Machine (ANNCM) for the inversion of 

magnetic anomalies caused by a long-2D horizontal circular cylinder is presented. Although, 

the subsurface targets are of arbitrary shape, they are assumed to be regular geometrical 

shape for convenience of mathematical analysis. ANNCM inversion extract the parameters of 

the causative subsurface targets include depth to the centre of the cylinder (Z), the inclination 

of magnetic vector(Ɵ) and the constant term (A) comprising the radius(R) and the intensity of 

the magnetic field (I). The method of inversion is demonstrated over a theoretical model with 

and without random noise in order to study the effect of noise on the technique and then 

extended to real field data. It is noted that the method under discussion ensures fairly accurate 

results even in the presence of noise.  ANNCM analysis of vertical magnetic anomaly near 

Karimnagar, Telangana, India, has shown satisfactory results in comparison with other 

inversion techniques that are in vogue.  
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1. INTRODUCTION 
 

In quantitative interpretation, the gravity and magnetic anomalies over a mineralized zone or 

geological structure can be approximated to simple geometrical shapes. Quantitative 

interpretation of the magnetic and gravity anomalies due to anticlines and synclines is 

accomplished by approximating them to two-dimensional, long horizontal circular cylinder. 

Linear concentrations of the mineral magnetite in a mineralized zone may be approximated some 

times to a horizontal cylinder. There are several methods of analyzing magnetic anomalies due to 

cylindrical structure. Parker Gay (1965) presented a set of master curves for the interpretation of 

the magnetic anomalies due to cylindrical bodies [24]. Rao et al. (1973) have developed direct 

methods for carrying out such interpretations [27]. Murthy and Mishra (1980) have proposed 

spectral approaches [22].  

 

Mohan et al. (1990) used the Mellin transform in interpreting magnetic anomalies due to some 

two dimensional bodies [20]. Sundararajan et al. (1985, 1989) interpreted the magnetic anomalies 

of various components due to thin infinite dyke and spherical source by using Hilbert transform 

([33], [34]). Srinivas (1998) used the modified Hilbert transform to interpret magnetic anomalies 
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caused by 2-D horizontal circular cylindrical structures [31]. During 1999-2013, different 
methods Wavelet transform ([21], [15]), Displacement of the maximum and minimum by upward 

continuation [8], Euler deconvolution [11], Fraser filter [4], Hartley transform [17] and Direct 

analytic signal [5] were used for inversion of magnetic data. 

 

TDX is a normalized version of the horizontal derivative filter and can recognize the edges of the 

shallow and deep bodies simultaneously. This filter is commonly used in the edge detection of 

potential field data. Recently, Alamdar et al. (2015) used combination of this balanced edge 

detection filter and Euler deconvolution to real magnetic data from Soork iron ore mine in Iran to 

estimate source location [1]. In the recent years, soft computing tools like Artificial neural 

network (ANN) , Fuzzy logic, Genetic algorithm gained great importance in geophysical data 

inversion ([16], [32], [29], [13], [9], [25], [2]). 

 

A committee machine consists of a group of intelligent systems named experts (ANN) and a 

combiner which combines the outputs of each expert [7]. Its advantages are more accuracy in 

prediction, speed learning and better generalization. If the combination of experts in committee 

machine were replaced by a single neural network, one would have a network with a 

correspondingly large number of adjustable weight parameters. The training time for such a large 

network is likely to be longer than for the case of a set of experts trained in parallel. Moreover, 

the risk of over fitting the data increases when the number of adjustable weight parameters is 

large compared to size of the set of the training data. 

 
In this paper, the analysis of vertical magnetic anomalies due to a 2-D horizontal circular cylinder 

is carried out using ANN-based committee machine. The method is illustrated with the study of 

theoretical model and validity of procedure is tested with the addition of random noise to the 

source data. Further, the technique is exemplified with magnetic anomaly over a narrow band of 

quartz magnetic near Karimnagar, Telangana, India [31]. Both the theoretical as well as field data 

yield reasonably good results and are compared with other methods that are in vogue. 
 

2. ARTIFICIAL NEURAL NETWORKS 
 

An artificial neural network consists of massively parallel interconnection of large number of 

neurons. It learns incrementally from environment to capture essential linear and nonlinear trends 

in complex data. On this basis it provides reliable predictions for new situations containing even 

noisy and partial information. ANN has at least two physical components, namely the processing 

elements and the connections between them. The processing elements are called neurons and 

connection between two neurons is called a link. Every link has a weight parameter associated 

with it. A neuron ( j ) computes a single output (
j

a ) from multiple inputs
01 2( , , ... , )

S
x x x  by 

forming linear combination according to its input weights 
01 2( , , ... .. ., , )

j j jS j
w w w b  and then 

possibly putting the output through some activation function ( (.)f ) and is shown in Figure (1) 

([19], [28], [7]), where 0S is the number of inputs. Activation functions such as sigmoid are 

commonly used since they are nonlinear and continuously differentiable ([10], [30]).  

 

Multi-layer perceptron (MLP) is a feed forward artificial neural network with one or more layers 

between input and output layers. Figure (2) shows a two-layer feed forward network. The net 

input to a neuron j  in layer 1k +  is given by [6]: 

 

1 1 1
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 +      
kS

k k k k

j ji i j
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=∑
                                        

… (1) 
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The output of neuron j  will be  

 
1 1 1( )     k k k

j j j
a f n

+ + += where  0,1k = ,                            …(2) 

 

where 
1k

ji
w

+
 represents the weight associated with the ' thi  input to neuron j  in layer 1k + , 

1k

j
b

+
 is a bias to neuron j and 

1k
S + is the number of neurons in the  layer 1k + .One may observe 

that if 
0

0 0 0

1 2  [     ...  ...   ]T

Sx a a a=  is presented to the network and ( )AN x  is the output of 

MLP, then  

 

2

2 2 2

1 2
( ) [     ...  ]T

S
AN x a a a=

                   
… (3) 

 

where 
2

j
a ’s are given by Eq. (2). 

 

 
 

Figure 1 A model of an artificial neuron 

 

 
 

Figure 2 A two-Layer feed forward network (Multilayer perceptron) 

 

MLP learns the problem behavior through a process called training and it would be taught with 

measured/simulated samples from a training set say 1 1 2 2{( , ),( , ),...,( , )}P PT x t x t x t= . The 

performance (Perf) of MLP is calculated using the following error function:   
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                    … (4)

 

where ( )pAN x  is the output of network,  is the weight vector containing all the weights of 

the network, p
t - target, 

p
e - error and P - total number of training samples. The goal of the 

training is to find the weights that will impact the output from MLP to match the targets as 

closely as possible. If the outputs of MLP come as close as possible to match the targets for all 

the samples, then performance function ( )E w
ur

 of network is minimized. Levenberg-Marquardt 

back-propagation algorithm ([14], [18], [6]) is one of the numerical optimization techniques that 

minimizes ( )E w
ur

. It is fast with stable convergence. Levenberg-Marquardt algorithm (LMA) [3] 

is given by: 

                    … (5)
 

where 1 2( ) [ ( )  ( ) ...  ...  ( )]T

Pe w e w e w e w
→ → → →

=  is the error vector comprising the errors for all the 

training samples,  is a Jacobian matrix, n  is an iteration number and µ  is a damping 

parameter. When µ  is large, the method takes a small step in the gradient direction. As the 

method nears a solution, µ  is chosen to be small and the method converges quickly via the Gauss 

Newton method. The flowchart of implementation of the LM algorithm is shown in Figure (3).  

  

 
 

Figure 3 Flow-chart of implementation of the LM algorithm 

 

A method for calculation of  using Eq. (5) requires both forward and backward 

calculations. First, feed forward calculations which are made to determine the error at the output 

layer. The elements of the Jacobian matrix are then obtained by propagating this error back 

through the network which can be computed by a simple modification to the standard back 
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propagation algorithm [6]. The back propagation process has to be repeated for every output 
separately in order to obtain consecutive rows of the Jacobian matrix.  

 

2.2 ARTIFICIAL NEURAL NETWORK COMMITTEE MACHINE (ANNCM) 
 

Committee machines with static structure, the outputs of several predictors (expert) are combined 

by a mechanism that does not involve the input signal with ensemble and boosting methods. 

Figure (4) shows a number of differently trained neural networks (i.e., experts), which share a 

common input and whose individual outputs are combined using rules such as averaging, voting 

etc., to produce an overall output. Such a technique is referred to as an ensemble averaging 

method. This method is most popular [23]. Ensemble averaging creates a group of networks 

(experts); each with low bias and high variance, then combines them to a new network with low 

bias and low variance. Further the idea behind such network is to fuse knowledge acquired by 

experts in order to arrive at an overall decision that is superior to that of any of the individual 

experts ([12], [23], [7]). 

 

 
Figure 4 ANN Committee machine 

 

3. MAGNETIC EFFECT DUE TO A 2-D HORIZONTAL CIRCULAR CYLINDER  
 

The vertical magnetic effect ( )V x  due to a 2-D horizontal circular cylinder extending infinitely 

along the Y-axis with its normal section parallel to the X-Z plane (Figure (5)) at a point  ' 'x  is 

given by [36]: 

 
2 2

2 2 2

( )sin 2 cos
( )

( )

z x xz
V x A

x z

θ θ − −
=  

+                                                       

… (6) 

where,  

z- is the depth to the centre of the cylinder, 

θ - is the inclination of magnetic vector, 

  A-is the constant term comprising the radius ( )R and the intensity of the magnetic field 

 

( )I and is given as 
22A R Iπ= . 
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Figure 5 Geometry of the 2D Horizontal Circular Cylinder 

 

The inversion of magnetic effect due to a 2-D horizontal circular cylinder is achieved by 

ANNCM which consists of phase-I and phase-II and is discussed in the following subsections. In 

phase-I coarse values of parameters are obtained whereas in phase-II fine values of parameters are 

obtained. We call, phase-I and phase-II as coarse and fine application. Flow chart of phase-I and 
phase-II is shown in Figure (6).  

 

 
 

Figure 6 Flow-chart of implementation of the Phase-I and Phase-II 
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3.1  PHASE-I 
 

In phase-I, Hilbert and modified Hilbert transform are used for the analysis of vertical magnetic 

anomaly ( )( )V x X=  generated with the model parameters ( , , )o o oz Aθ . The Hilbert transform 

( )H x  and the modified Hilbert transform ( )MH x  of the vertical magnetic anomaly ( )V x due to 

an inclined sheet are computed by [31]:  

 
2 2

2 2 2

( ) cos 2 sin
( )

( )

z x xz
H x A

x z

θ θ − +
= −  

+                               

… (7) 

2 2

2 2 2

( ) cos 2 sin
( )

( )

z x xz
MH x A

x z

θ θ − −
= −  

+ 
                             … (8) 

 

Sundararajan and Srinivas [35] reported in literature that the Hilbert transform and its modified 

version intersect exactly over the origin (centre of the subsurface target). From the equations of 

vertical magnetic anomaly ( )V x  and the modified Hilbert transform ( )MH x , the depth to the top 

of the sheet , the inclination  and the constant term  are given as: 
 

   
 
                                 … (9)  

                                                                              … (10) 

 

                            
… (11)  

 

where 1x
 
and 2x  are the abscissa of the points of intersection of ( )V x  and

( ).MH x  

 

The appropriate values  of parameters obtained by equations (9) – (11) will be carried 

to phase-II in order to increase their accuracy.  

 

3.2 PHASE-II 

 

Phase-II can be implemented in stepwise as hereunder. 

Step -1:  Create models to train an ANN in the following way.  

, and
 

be three sets of 

parameters that are selected in a small neighborhood of  respectively.  Then the 

number of models of type 
 

is 1 2 3m m m× × , where

.   
 

For simplicity, rename each 
 

as ( ), ,
p p p

z Aθ
 

for 1, 2,.....,p P= , where 

1 2 3P m m m= × × . Let ( )p

j
V x  be vertical magnetic effect due to a 2-D horizontal circular 
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cylinder generated by Eq. (6) at a point 
j

x  with the model parameters ( , , )
p p p

z Aθ  where 

1 ,p P≤ ≤ 01 j S≤ ≤ .  Let 
01( ( ),..., ( ),..., ( ))p p p p

j S
V V x V x V x= , ( , , )p p p pt z Aθ=  and  

1 2

1 2{( , ), ( , ),..., ( , )}P

P
T V t V t V t=

            
                                   … (12)  

Realization of an inversion estimation of parameters of the anomaly ( )X  is achieved by training 

an ANNCM with the models ( ,  ),p

p
V t  where ( ,  ) ,p

p
V t T∈ ( 1, 2,....., )p P= . 

 

Step-2: In this step, first design an artificial neural network committee machine with suitable 

number of experts (MLPs) and in turn each will be trained in batch mode with the models

( ,  )p

p
V t , ( 1, 2,....., )p P=  using LM algorithm.  

 

4. THEORETICAL MODELS 
 

The vertical magnetic anomaly ( )V x  due to a 2D horizontal circular cylinder of theoretical 

model-I is generated using Eq. (6) with input parameters ( 12,z = 40 and 800)Aθ = =

consisting of 51 samples with 2 units as sampling. The appropriate values of parameters obtained 

in phase-I are:  The range of parameters and 

number of steps that were used in phase-II to generate ANN models ( ,  )p

p
V t

 
are given in Table 

(1). The ANNCM with five MLPs (Figure (4)) of same topology (i.e., number layers, number of 
neurons in each layer are same) with different initial weights is used to invert the model-I by 

assigning 51 samples 
1 51( )  ...  ...  ...  ( )

T
p p pV V x V x =   to the input layer. Ten neurons with 

hyperbolic tangent transfer functions are used for hidden layer. Three neurons with linear transfer 

functions are used for output layer to extract the required parameters ( ), , .z Aθ  While training the 

networks the set 
1 2

1 2{( , ), ( , ),..., ( , )}
P

P
T V t V t V t=  is randomly divided into three subsets 

namely training, validation and testing sets, each are containing 70%, 15% and 15% models 

respectively. The performance of each MLP is calculated using Eq. (4) and weights are adjusted 

according to Eq. (5). Output of ANNCM is computed by ensemble averaging method and given 

in Table (2). The vertical magnetic anomaly ( )V x  and the ANNCM inversion response are 

shown in Figure (7). The Hilbert transform ( )H x  and the modified Hilbert transform ( )MH x  of 

the vertical magnetic anomaly ( )V x are computed and shown in Figure (8). The well trained 

network can invert any data that falls within the training range in almost no time. 
 

Theoretical Examples MODEL-I 
 

 
 

Figure 7 Vertical magnetic anomaly V(x) and ANNCM inversion response of model-I 
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Figure 8 Vertical magnetic anomaly   the Hilbert transform  and modified  

Hilbert transform  of model-I 

 

4.1  EFFECT OF RANDOM NOISE 
 

Ten percent of Gaussian random noise is added to the vertical magnetic anomaly ( )V x  of model-

I [Figure (7)] and is shown in Figure (9).  As in the case of noise free analysis, of magnetic 

anomalies, the values of parameters obtained during phase-I are  

and . The range of parameters, number of steps and the number of ANN models 

that are generated in phase-II
 
are given in Table (1). The ANNCM inversion response is shown in 

Figure (9). The Hilbert transform ( )H x  and the modified Hilbert transform ( )MH x of the noisy 

vertical magnetic anomaly ( )V x are computed and shown in Figure (10). The result of the 

ANNCM inversion parameters is given in Table (2). 
 

Theoretical Example with noise MODEL-II 
 

 
 

Figure 9 Noisy vertical magnetic anomaly and ANNCM inversion response of model-II 
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Figure 10 Vertical magnetic anomaly V(x) the Hilbert transform H(x) and  

modified Hilbert transform MH(x) of model-II. 

 
Table 1 Range of input parameters and number of ANN generated models (Phase-II) 

 

Examples z  θ  A  Number 

of ANN 

models 

Model-I 6 – 12 

(5) 

31
o 

– 41
o 

(6) 

405 – 565 

(9) 

270 

Model-II 

(with noise) 
6.6 – 12.6 

(5) 
31.4

o 
– 41.4

o 

(6) 
374 – 474 

(10) 

300 

 
 

                                                   Parameters                            z*                    θ                 A*   

 

 

Theoretical 

Model-I 

 

Assumed values                    12.00               40
o
00′          800.00 

ANNCM  processed 

parameters                            12.05                40
o
02′          799.60 

Error in 

percentage                             0.41                 0.08               0.05 

 

 

Theoretical 

Model with 

Noise 

 

Assumed Values                   12.00               40
o
00′           800.00 

ANNCM  processed 

parameters                             10.85              41
o
17′            872.93 

Error in 

percentage                              9.58                3.20                9.11 

 

Table 2 Theoretical examples (* in arbitrary units) 
 

5. FIELD EXAMPLE 
 

The applicability of the proposed technique is demonstrated on an observed vertical magnetic 
data near Karimnagar district, Telangana, India (Srinivas 1998) and is shown in Figure (11). The 
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total length of the profile (182.60 meters) was digitized into 60 equal parts at an interval of 
3.0433m. The quality of the data is determined by the signal to noise ratio (SNR) and is given as: 

m
SNR

s
= , 

where m  is the mean and s  is the standard deviation of the data. If the ratio is less than 3, the 

data is assumed to be very poor quality. If the ratio is greater than 3, then the level of noise is 

negligible and the data shall be considered clean. Signal to noise ratio of the field data
 
is 

calculated and is given by: 

5017.1
7.7567

646.8136
SNR = =

 

The appropriate values of parameters obtained in phase-I are 

 Three hundred training models were created by assigning different values 

to ( , , )z Aθ  in a close range of  which were used in phase-II are as follows: 
 

− the depth z (19m – 29m), with five points in this range 

−  the inclination θ (70
o 
– 80

o
), with six points in this range 

− the constant A (46562000 – 46622000), with ten points in this range;  
 

ANNCM inversion response compared with the field data are shown in Figure (11). The Hilbert 

transform ( )H x and the modified Hilbert transform ( )MH x of the vertical magnetic anomaly

( )V x  are computed and shown in Figure (12). The estimated parameters are given in Table (3). 

Results shown are better and agree well with other inversion methods (Table 3).  

   

 

Methods 

 

z  (in meters) 

 

 

θ  

 

A  

 

Gradient method [26] 

 

 

23.23 

 

56
o
00′ 

 

…. 

Modified Hilbert 

transform Technique 

[31] 

 

21.4 

 

46
o
00′ 

 

…. 

Present Artificial Neural 

Network Committee 

Machine 

 

22.66 

 

78
o
18′ 

 

47493187.04 

 

Table 3 Field Example (Vertical magnetic anomaly, near Karimnagar, Telangana, India) 

 

6. RESULTS AND DISCUSSION 
 

During training network, 670 training models were used for both theoretical and field 

data for which Levenberg-Marquart algorithm is very much suitable. From Table (2), it is 

observed that the results in general agree with the assumed values. However, the addition of 

random noise level to the magnetic anomaly and subsequent analysis show a marginal variation 

implying that the effect of such noise is almost negligible in the present method. The method with 

LM algorithm shows the best performance in extraction of parameters of a model. Hence, 
determination of the depth and inclination of various structures from magnetic data can be solved 

effectively. 
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Figure 11 Field Example Vertical magnetic anomaly over a narrow  

band of quartz magnetite, near Karimnagar District, Telangana, India. 

 

 
 

Figure 12 Vertical magnetic anomaly   the Hilbert transform  and  

modified Hilbert transform of field data. 

 

7. CONCLUSIONS 
 

The accuracy of ANNCM inversion results is fairly good. The ANN committee machine analysis 

of magnetic inversion is simple and elegant and the method is effective even in the presence of 

noise. In addition, it is independent of analytical nature of the data. 
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