
Dhinaharan Nagamalai et al. (Eds) : COMIT, AISCA - 2019

pp. 37 – 48, 2019. © CS & IT-CSCP 2019 DOI: 10.5121/csit.2019.90104

ORDER PRESERVING STREAM PROCESSING

IN FOG COMPUTING ARCHITECTURES

K. Vidyasankar

Department of Computer Science, Memorial University of Newfoundland,

St. John’s, Newfoundland, Canada

ABSTRACT

A Fog Computing architecture consists of edge nodes that generate and possibly pre-process

(sensor) data, fog nodes that do some processing quickly and do any actuations that may be

needed, and cloud nodes that may perform further detailed analysis for long-term and archival

purposes. Processing of a batch of input data is distributed into sub-computations which are

executed at the different nodes of the architecture. In many applications, the computations are

expected to preserve the order in which the batches arrive at the sources. In this paper, we

discuss mechanisms for performing the computations at a node in correct order, by storing

some batches temporarily and/or dropping some batches. The former option causes a delay in

processing and the latter option affects Quality of Service (QoS). We bring out the trade-

offsbetween processing delay and storage capabilities of the nodes, and also between QoS and

the storage capabilities.

KEYWORDS

Fog computing, Order preserving computations, Quality of Service

1. INTRODUCTION

Internet of Things (IoT) is about making things smart in some functionality, and connecting and

enabling them to perform complex tasks by themselves. A “thing” is any object of interest with

some communication capability. IoT applications include Connected Vehicles, Smart Grid, Smart

Cities, HealthCare and, in general, Wireless Sensors and Actuators Networks [1]. Billions of

devices are expected to be made smart in the very near future. They will produce massive

amounts of data, requiring enormous amount of computations. In cloud-based IoT environment,

the computations are delegated to the cloud. The cloud is certainly scalable with respect to

processing capability and storage. However, many applications require quick real time

computations and local actuations, and the latency involved in communicating with the cloud is

not tolerable. Further, sending huge amount of data to the cloud requires high network bandwidth

and incurs considerable delay. In addition, in many applications, 24/7 connectivity to the cloud

may not be available. To overcome these constraints, a fog computing architecture has been

proposed recently [1, 2, 3, 4]. It consists of edge nodes that generate and possibly pre-process

(sensor) data, fog nodes that do some processing quickly and enable any actuations that may be

needed, and cloud nodes that may perform further, detailed analytics for long-term and archival

purposes.

Fog computing typically involves continuous processing of stream data that are input to the edge

devices. The data consist of tuples. They are processed in batches of tuples. Each processing

instance at a node uses some input batches and produces an output batch which is sent to the

38 Computer Science & Information Technology (CS & IT)

parent of that node (except at the cloud level) for further processing. The computation to be done

on a batch is decomposed into sub-computations to be executed at the different nodes in the fog

architecture. Edge and fog nodes typically have limited storage, compute and network

connectivity capabilities. Hence, the computations need to be distributed carefully among the

processing nodes. Guaranteeing consistency of the executions is very important. Consistency

issues arise for sub-computations at the individual nodes as well as the entire computations on

individual batches and computations over sequences of input batches.

In this paper, we consider each sub-computation at a node as a transaction. We also assume serial

executions of these transactions in each node. We relate consistency to serializability of these

transactions at every node. In several applications, the computations on the sequence of batches

are expected to preserve the order in which the batches arrive from the sources. This is the

consecutive serializability requirement for the transactions. In some cases, the sub-computations

at some nodes, especially at lower levels of the hierarchy, may not be required tofollow batch

order, that is, the sequence can be saga[5], with the order being restored at higher levels. This

helps also for scalability where the computations at a level can be distributed over multiple nodes

and the results forwarded to a single node in the next higher level. Then the input batches in the

higher level may not arrive according to the batch order. Unreliable network connectivity may

also produce out-of-order message delivery. In this paper, we focus on achieving consecutive

serializability at a node in the presence of out-of-order message delivery. We do this by storing

some input batches temporarily and/or dropping some batches. The first option requires storage

capacity and also causes delay in processing whereas the second option affects the accuracy of

the continuous executions. This affects Quality of Service (QoS). We identify some QoS

parameters that are relevant in this context. We discuss different execution options that offer

trade-offs between QoS and storage capacities of the processing nodes.

We consider the simple case of inputs from a single source in Section 2. We consider individual

executions of the input batches as well as their combined executions. We consider processing

batches from multiple input sources in Section 3 and multiple heterogeneous input sources in

Section 4. We discuss some related works in Section 5. We conclude in Section 6.

2. SINGLE INPUT SOURCE

We use the basic definitions given in Vidyasankar [6]. We consider a hierarchy (rooted tree) V of

nodes v. It consists of n levels. In this section, we consider the simple case of a single input

source. Then, the hierarchy is a simple path of length n −1. The node in the path in j
th

level will be

vj. Here, vn refers to the cloud, v1 to the edge and the intermediate nodes to the fog. We assume

that stream data is generated at level 0. The edge devices at level 1 themselves may generate

some or all of this data. We separate the generation into another level for notational convenience.

Each node vjhas processing capability Pjand storage capacity Sj, each expressed in appropriate

units. The source input batches are numbered sequentially. We refer to the i
th
batch as bi. Each

batch bi is processed in one or more nodes. The computation for bi is referred to as C(bi). We

consider a decomposition of C(bi) into sub-computations as

C(bi) = c1,i+c2,i+ · · · +cn,i.

Such decompositions will be based on the semantics of the applications and of the computations.

He reeach cj,iis to be executed at level j, in the given sequential order of the levels. The sum of the

computations until level j is referred to as Cj,i(with capital C). That is,

Cj,i= c1,i+ · · · +cj,i.

Then, Cn,i= C(bi).

Computer Science & Information Technology (CS & IT) 39

As stated earlier, we assume in this paper that the individual cj,i’s are executed atomically and

serially in each level j. We denote the processing requirement and storage requirement for cj,ias

p(cj,i) and s(cj,i), respectively. Obviously, we must have Pj≥p(cj,i) and Sj≥ s(cj,i). With each cj,i, we

associate an input batch In(cj,i) and an output batch Out(cj,i).

Several (devices in) nodes may have limited range of transmission. Nodes have to be placed such

that dataflow from one level to the next is possible. To facilitate this, some nodes could be placed

just to receive data from the lower level and send it to upper level. (This may involve storing

some data temporarily.) We call these relay nodes. Sub-computation done in such a node will be

nil. Output batch of this computation is the same as the input batch.

We discuss serializable executions of Cj,i’s. We define the following.

(1) C is the set of computations cj,i’s for a given set of batches.

(2) ≺B is the batch order.

(3) ≺L is the level order.

(4) ≺ is ≺B ∪≺L.

(5) A history H over (C, ≺) is a sequence of cj,i’s in C obeying ≺.

(6) A history H is globally serial if it is a sequence of C(bi)’s, that is, all the cj,i’s for each I

occur consecutively in H. It is globally serializable if it is equivalent to a globally serial

history.

Some batches may be processed only partially. That is, C(bi) may only be Ck,i(bi), for some k,

k<n. The above definition applies to such computations also.

2.1 INDIVIDUAL PROCESSING

We first consider processing of the batches individually at each level. Then, consecutive

serializability of Cj,i’s, at each level j, is guaranteed if ck,i’s are executed at each level k between 1

and j serially according to the batch order. (Recall that we are assuming atomic execution of each

cj,i.) In the following, we look at the ways of obtaining serial order effectively when output

batches from one level may arrive at the next level out of order.

If cj,i’s are not conflicting with each other, then an out-of-order execution is serializable. Then,

inputs may be processed as they arrive and the corresponding outputs sent to the next level. This

option is very favourable for horizontal scalability. Batches may be split and processed in

multiple nodes in the same level provided the combined computations will constitute cj,i(bi).

However, an out-of-order execution together with an out-of-order message delivery from the

current level to the next might amplify the extent of the out-of-order in the arrival of batches in

the next level. (The extent of out-of-order can be characterized in many ways: (i) how late a batch

arrives, that is, the number of batches with greater ids that come before this batch, (ii) how early a

batch arrives, namely, the number of batches with smaller ids that come after this batch, (iii) the

number of late or early arriving batches, (iv) averages over thedelay or too early arrival, etc.)

In the following, we consider the case where cj,i’s are conflicting.

• Out-of-order inputs (messages) can be kept in a pending set, and the executions themselves

can be done in correct order when the respective batches arrive. This involves waiting, causing

delay in execution, and requires storage space for the pending set. Depending on the extent of

the out-of-order, both the delay and the required amount of storage space will vary.

• Without pending set, executions can be done for batches arriving in increasing order of their

ids, as they arrive, and late-arriving batches can be ignored (dropped). This implies that the

40 Computer Science & Information Technology (CS & IT)

dropped batches are processed only partially, up to the previous level. No storage space is

required here. In the example sequence (1,8,4,2,5,7,9,3), batches (with ids) 1, 8 and 9 will be

processed and the remaining will be ignored.

• Without pending set, executions can be done for batches in the correct consecutive order of

their ids. Out-of-order batches (those that arrive too early) can be ignored. In the above

example sequence (1,8,4,2,5,7,9,3), batches 1,2 and 3 will be processed and the remaining

ignored.

• A limited storage space can be kept for the pending set and early-arriving out-of-order

messages that cannot be added to the pending set can be ignored. For example, with

(1,8,4,2,5,7,9,3), if storage space is available only for three batches, after batches 8,4 and 5,

batches 7 and 9 might be ignored. (Other options regarding which three batches to store can

also be exercised.) Similarly, out-of-order messages arriving later than a certain amount of

delay can be ignored.

We define drop ratio as the number of batches dropped compared to the total number of batches.

We note that, in the above options, a trade-off exists between drop ratio and storage space, and

between drop ratio and processing delay. Message loss is equivalent to dropping the message due

to excessive delay.

If network connectivity is disrupted intermittently and hence output batches cannot be transmitted

immediately after the executions, then the following options exist:

• When storage space is available, the options are the following. Here, two pending sets are

used, one for storing input batches and the other for storing output batches.

o Store output batches in the output pending set and send several of them together when

connectivity is restored. Continue processing the input batches. (This option can be followed

even when network connectivity is available, if transmitting several batches together will be

cheaper than sending them one at a time.)

o Stop processing until the output batch is sent, and store the incoming batches in the input

pending set.

o Store output batches in the output pending set until connectivity becomes available, and also

store input batches in the input pending set until they can be processed. Continue processing.

This option is suitable when input arrives from the lower level as a set of batches.

• When sufficient storage space, for output batches and/or pending sets, is not available, the

options are the following.

o Drop the output batch thus terminating the processing of the corresponding batch and

continue processing the input batches.

o Stop processing until the output batch is sent, and drop the batches that are incoming in the

mean time, thus terminating their executions.

Here also, we observe a trade-off between drop ratio and storage space. Nodes in the hierarchy

could be heterogeneous. Different nodes may follow different options. Out-of-order execution

may be acceptable at some levels, and correct order required at certain levels. This amounts to

cj,i’s being non-conflicting at the former levels and conflicting in the latter ones. Then, the

execution options may be chosen appropriately. We also note that allowing some out-of-order

execution will reduce drop ratio. That is, there is a trade-off between the extent of the out-of-order

and drop ratio.

Computer Science & Information Technology (CS & IT) 41

2.2 COMBINING MULTIPLE BATCHES

At any level, several input batches may be combined and processed together. That is, the

computation at vj could be cj(bi:k), combining cjfor batches bito bk. The combined output will be

sent to vj+1. An example is when the frequencies of executions at different levels are different. For

instance, c1 may be performed every 5 seconds and c2 performed every 10 seconds. Then, the

outputs of two executions of c1 may be processed together in one execution of c2. Another

situation is when network connectivity is not always available to send data from one level to the

next level and the output batches corresponding to several computations kept and sent together

when connectivity becomes available.

In the following discussions, we use examples where three batches are combined.

2.2.1 NON-OVERLAPPING GROUPINGS.

(1) Grouping of consecutive batches:

Wait until all the relevant batches arrive and then process. Delay and storage space considerations

discussed in the single batch processing case are applicable here also. In addition, we need to

consider the following.

(a) Suppose batches 1, 2 and 3 are to be grouped, and 2 arrives very late (or does not arrive due

to message loss). Then, we can drop that batch. Then, we can do one of the following:

• drop batches 1 and 3, that is, the entire group;

• do the computation for batch 1 alone (if the application semantics allows it) and combine

batch 3 with 4 and 5; or

• combine batches 1, 3 and 4 if the application semantics allows grouping of a broken

sequence of batches.

All these options relate to QoS differently: (i) absence or presence of broken sequences and, in

the latter case, the number or percentage of broken sequences and (ii) fixed or variable size

groupings.

(b) The batches for latter groupings may become available before those for earlier groupings (for

example, (4,5,6) before (1,2,3)). If the computations are not conflicting, they can be processed in

any order. Otherwise, they have to be processed in the correct batch order. If (4,5,6) grouping is

processed first and then we find that batch 2 has to be dropped, the options are dropping 1 and 3

also or processing them either individually or by combining them.

(2) Grouping of non-consecutive batches:

As and when sufficient number of batches are available, the grouping can be done. The only

storage space required will be for the batches waiting for the grouping.

2.2.2 OVERLAPPING GROUPINGS.

An example is (1,2,3), (2,3,4), (3,4,5), etc. After 1 and 2, suppose 5 arrives. Then wait for 3.

When 3 arrives, combine (1,2,3). Then, wait for 4, etc. Whichever batches need to arrive, wait for

them. Here, suppose 3 does not arrive for a long time and so it is dropped. Then, groupings

(1,2,4), (2,4,5), etc. can be considered. Another possibility is dropping (1,2,3), (2,3,4) and (3,4,5),

namely, all the originally intended groupings with 3. The choice would depend on the application

42 Computer Science & Information Technology (CS & IT)

semantics of ‘consecutive’ batches. Here also, different options affect QoS differently. The delay

and the storage space factors are the same as with non-overlapping groupings.

3. MULTIPLE HOMOGENEOUS INPUT SOURCES

In this section, we consider multiple input sources, all producing similar data that are to be

processed the same way. The hierarchy is a tree. We consider a general height-balanced tree. (The

discussion in the next section covers arbitrary trees.) We again separate the data generation part

into level 0 and each source feeds to, that is, sends its output to a distinct node in level 1. Thus,

each node in level 1 has one child.

We consider the case where, at each level, each node performs the same computation. (This

restriction is also relaxed in the next section.) Each node in level 1 will process its source input

and send its output to its parent. Each node in level j, for 1 <j <n, will process the inputs from all

its children and will send a single output batch, at the end of processing, to its parent.

We will first consider the case where all sources generate data synchronously. We refer to one

such set of batches as a batch-set. We first consider synchronous processing of the batch-sets.

That is, at each step, one batch arrives from each child and the set of these batches is processed.

The batch-sets are indexed sequentially. A batch-set with index iis referred to as Bi. A

computation at a node vjin each level j combines the computations cj(x) of all the source input

batches x in a batch-set that are input to the descendants of vjin level 1. The computation required

for Bi isC(Bi), decomposed into c1(Bi) +c2(Bi) + · · · +cn(Bi).

We now consider out-of-order message delivery from one level to another. We assume that the

communication between any two nodes (a parent and a child) is independent of the

communications between other pairs of such nodes. Therefore, the extent of the out-of-order will

vary with respect to messages from different children. In the following, we illustrate the options

with an example where the messages from only one child arrive out-of-order and messages from

all other children arrive in correct order. We consider the example sequence (1,8,4,2,5,7,9,3) for

messages from child x. Input batch from x with batch id k is denoted xk.

• The executions are done in correct consecutive order when all the inputs for the

corresponding batch-set have arrived. Until then, the incoming batches are kept in

separate pending sets, one for each child. For the sequence (1,8,4,2,5,7,9,3), after

processing B1, the pending set for x will store inputs for batch-set ids 8 and 4 and pending

sets for the other children will store 2 and 3 until x2 arrives. Then, the computation can be

done for B2. After three further steps, the pending set for x will have (8,4,5,7,9) and other

pending sets will have (3,4,5,6,7). On arrival of x3, B3 will be processed, followed by B4

and B5, waiting for x6 for the processing of B6, and so on. This involves waiting, causing

delay in execution, and requires considerable storage space for the pending sets.

• We can reduce the size of the pending sets considerably as follows. Executions can be

done in the correct consecutive order of the batch-sets with the batches arriving from

children in the correct order, and not waiting for the batches of that batch-set from other

children; when these batches arrive later, they are ignored. Out-of-order batches from

other children with greater ids (those arriving too early) are stored in the pending sets,

and used when their turns arrive. In our sequence (1,8,4,2,5,7,9,3), after B1, batch-sets B2

and B3 will be processed without the inputs from child x. Batches 8 and 4 will be stored

in the pending set for x. Then, B4 will be processed with the newly arriving batches from

other children and the one stored in the pending set for x, ignoring x2. Batch-set B5 will be

Computer Science & Information Technology (CS & IT) 43

processed with batches from all children, and B6 with inputs from all except x, storing 7

in the pending set of x, and so on.

o This implies executions on partial batch-sets. This affects QoS relating to

whether there are executions on partial batch-sets and, if so, a measure of the

density of the partial sets, for example, how many batches, how well they

represent various geographical regions, etc.

o The execution can be subject to receiving batches from a minimum number of

children, to make it meaningful. Otherwise, no execution may be done, resulting

in dropping the entire batch-set in that level. This affects QoS differently: the

drop ratio can be categorized as batch drop ratio and batch-set drop ratio.

• A variation in the above option is dropping the out-of-order inputs (those with greater ids,

8 in the above example), instead of storing in the pending set. That is, all out-of-order

messages are dropped. Then, no pending sets are kept.

Combinations of the above options are possible, especially when the extent of the out-of-order is

expected to be small. The first option of keeping the batches in the pending sets until all the

inputs of the next batch-set arrive can be used for a while. At some stage, if the storage space

becomes insufficient or the delay becomes too much, executions with partial batch-sets can be

done. If the computations on different batch-sets are not conflicting, then the batch-sets can be

processed soon after all their input batches are received. For example, in the sequence

(1,8,4,2,5,7,9,3), B4 can be processed without waiting for B3 (in the case of not opting for

executions on partial batch-sets). This will also reduce the number of entries in the pending sets.

We note that, as illustrated in the above example, if the inputs from even one child are out-of-

order, the inputs from all other children have to be kept in the pending sets for correct,

consecutive, order of execution.

Allowing for non-synchronous arrival of input batches (at any level, including the source level)

and hence non-synchronous execution is straightforward. The batches from each input can be

kept in the respective pending sets and when a batch-set is complete it can be processed. The

processing could be in the correct order or any order. At some stage, an incomplete batch-set can

either be dropped or processed as such.

If network connectivity is disrupted intermittently, the options discussed in Section 2 are

applicable here also. We recall that the options are storing output batches, storing input batches,

and dropping batches before or after the current computation. The requirement of storage space

for pending input batches and/or output batches is inevitable. Less space will be needed for output

batches due to (i) storage of one batch per computation in contrast to all input batches for that

computation and (ii) computations such as aggregation producing outputs that are likely to be

much smaller in size than any input or at least all inputs put together. Here also, nodes in the

hierarchy could be heterogeneous and may follow different options.

Considerations for overlapping and non-overlapping groupings of several batch-sets are similar to

those for grouping batches from a single source case. Several QoS parameters can be applied for

the groups for different options. Some of them for non-overlapping groupings where out-of-order

messages are ignored are:

• the number of complete batch-sets;

• the number of missing batch-sets;

• minimum number of batches in a processed batch-set; and

• average number of batches from a child.

44 Computer Science & Information Technology (CS & IT)

For example, in a grouping of 5 batch-sets from 4 children, the quantities mentioned above for the

sets of batches ((1,1,1,1),(2,2,-,2),(-,3,-,3),(5,-,5,5),(-,6,-,6)) will be 1 (for the first batch-set), 1

(for the fourth batch-set), 2 (with respect to the third batch-set) and 14/6 (with 6 batch-sets),

respectively. (Here, "-" denotes messages arriving out-of-order messages and hence being

dropped.) Different aggregations for several groups of batch-sets can also be considered.We note

that grouping of individual out-of-order messages may result in reduced out-of-order among

messages relevant for the entire group. For example, with grouping of three batch-sets from three

children, for the batches arriving in the sequence (1,2,1), (2,1,3) and (3,3,2), there is no out-of-

order messages with respect to the entire group.

4. HETEROGENEOUS INPUTS

We assume an arbitrary rooted tree for the fog infrastructure. Leaf nodes could be at different

levels. In the following, we will assume that each source input is different and that computation

performed at each node is different.

We will first consider the processing of a batch-set, consisting of one batch per source. In general,

each input batch will be processed first individually and then together with other input batches (or

the batches derived from them). For example, we consider a fog architecturewhere each of the

three inputs x, y and z is processed individually first, then (derived batches from) x and y are

processed together and then all the three are processed together. We refer to the computation done

on a set S of batches as C(S). Each of these computations is decomposed into sub-computations

and then grouped into cj’s for execution at respective nodes. Let the corresponding sequences of

computations be C(x),C(y),C(z),C(x,y) and C(x,y,z). For each C(S), the analysis as in the

homogeneous case can be applied. We focus on the nodes where batches from different subtrees

are combined. We refer to them as merging nodes. For simple exposition, we will take a single

sub-computation for each set S, namely, c1(x),c1(y),c1(z),c2(x,y) and c3(x,y,z).

First, we consider synchronous arrival and synchronous execution of batch-sets Bi consisting of

{xi,yi,zi}.At merging nodes, we assume that if input batches from one or more children are not

available, then the computation cannot be done. With out-of-order batch arrival, the options are

the following:

• Store the batches in the pending sets and process a batch-set when it is complete, that is,

when all the input batches corresponding to that batch-set have arrived.

• At any (synchronous) step, if all the input batches in the expected batch-set are not

available, ignore the batch-set.

The options when network connectivity is disrupted are the same as in the homogeneous inputs

case. We note that computations on the dropped batch-sets will not be done in any ancestors. This

was called ancestral-abort in [7].

We now consider asynchronous arrival of the individual batches.For simple illustration, we

consider the execution of c2,i(x,y), where only the batches (derived from) x and y are

combined.We refer to the batches as x-batch and y-batch for convenience. The frequencies of

generation of x- and y-batches may be different. We assume that the computation is triggered

each time a new x- or y- or both batches arrive. In the first case, the most recent y-batch is used, in

the second case, the most recent x-batch and in the last case both new batches are used for the

computations. To be able to identify consistent pairing of the batches, we assume a global time

stamping of the batches. We assume integer counter values as timestamps and index the batches

with these timestamps. An example sequence of arrival of the batches, in correct order, is given in

Computer Science & Information Technology (CS & IT) 45

Table 1. Here, for example, y3 is paired with x1, and also with x4.We note that the indices of x-

batches (similarly, y-batches) may not be continuous.

Table 1: Time stamped Sequence

x1

x4x5x6

...

y1y2y3

y6

...

Table 2: Indexed Time stamped Sequence

x1,1x1,2x1,3x2,4x3,5x4,6

...

y1,1y2,2y3,3y3,4y3,5y4,6

…

Now, we consider out-of-order message delivery. Then,x-batches and y-batches may arrive out of

order at the merging node. We can store the batches in the respective pending sets, wait for a

while for late-arriving batches and then order the batches correctly and pair them. For example, at

some stage, if we assume that all batches with timestamps less than or equal to 6 have arrived,

then the sequence shown in Table 1 can be formed and used for pairing. Batches arriving very

late, very much out-of-order, can be ignored. Suppose, for instance, that y3 has not arrived yet

when we do the pairing. Then, we will end up pairing x4 with y2 and also x5 with y2. This causes

inconsistency, in addition to not being able to use y3, and QoS is affected.

Suppose that after y1, y6 arrives, perhaps after some time. Then, we will not know whether there

are some yi’s in between. Suppose, with each yj, the batch-id of the previous y-batch is sent. Then,

on the arrival ofy6, we would know about the existence ofy3. However, until y3 arrives, we will

not know the existence of y2. Thus, some mechanism can be implemented to indicate possible late

arrivals of at least some batches.

To avoid the inconsistencies mentioned above, batches can be indexed with both batch number

(independent of timestamp) and global timestamp as in Table 2. The batches with the same

timestamp can be combined. We note that this is as in the case of synchronous execution of

batch-sets. The timestamp synchronizes the batch-sets.

5. RELATED WORKS

Consistencies of continuous executions have been discussed widely in the literature in the context

of stream processing. The sub computations are treated as transactions in Conway [8], Meehan et

al. [9] and Botan et al. [10]. Serializability of the entire computation on a batch, treated as a

composite transaction, is discussed in Gürgen [11] and Oyamada et al. [12]. Serializability of

continuous queries is discussed in Vidyasankar [13]. Distributing computations in fog

architectures has been described in Andrade et al. [14], Mortazavi et al. [15] andVidyasankar [6].

The property that computations at some levels are non-conflicting and hence they need not be

order preserving has been used in Transactional Topologies [16]. Order preserving computations

have been discussed in stream processing in Li et al. [17] and Shen et al. [18], and for Big Data

Streams in Xhafa et al. [19].

46 Computer Science & Information Technology (CS & IT)

6. DISCUSSION AND CONCLUSION

In fog architectures, stream inputs are processed in several stages at nodes in different levels. In a

hierarchical structure, at each node, the computation is over the input batches that arrive from the

children, producing an output batch which is sent to the parent. In this paper, we have addressed

several issues relating to obtaining order preserving executions when messages do not arrive in

correct order. We have discussed mechanisms for performing computations in correct order, by

storing some batches temporarily and/or dropping some batches. The former option causes a

delay in processing and the latter option affects QoS. We have brought out some trade-offs

between processing delay and storage capabilities of the nodes, and also between QoS and the

storage capabilities. Here, only transient storage of batches is considered, not persistent store for

the results of the computation.

We have identified several QoS parameters that are relevant in this context. All of them deal with

the non-inclusion of a batch in a computation. This can be identified at the node where the

computation is done and its effect on the appropriate QoS parameter can be used at that node and

also transmitted to the parent as part of the context associated with the output batch. The context

may include batches explicitly with ids or just implicitly, for example, that a batch has been

dropped. For doing this, batches need to be indexed. A natural place for indexing is the source

level. However, in many applications, sources connect to gateways that filter the source input

batches and pre-process them. The batches that are dropped in that level may not be relevant for

the computations. Hence the (output) batches at the gateway level may be indexed. The gateways

are expected to have the contextual information such as id, location, and other deployment details

of the sources (sensors). Hence, indexing at that level may be more comprehensive than at the

source level.

When the batches are processed individually throughout the entire hierarchy, the initial indexing

may be adequate. However, when several batches are combined and processed together at some

level, new index could be given to the output batch. (One example is assigning the largest batch

index of that group, when the batches arriving at the next level need not have consecutive

indexes.) That is, depending on the context that is attached to the output, separate independent

indexing can be used at different levels, rather than carrying the initial index throughout.

Several non-hierarchical fog infrastructures have been proposed in the literature, for example,

clustered, vehicular and smart-phone in [3]. These can be modeled by extending a hierarchy by

replacing single nodes with clusters of nodes where the nodes within a cluster can communicate

with each other in peer-to-peer fashion. Several sub-computations may be assigned to a cluster.

They will be executed by one or more nodes in the cluster based on their processing and storage

capabilities. Message transmissions among the nodes in a cluster may not have delay, loss and

out-of-order properties. Even if they do, a cluster on the whole may have adequate capacity to

store input and/or output batches to do the computations in correct order. Thus, our considerations

in this paper need to be applied to inter-cluster communications only.

ACKNOWLEDGEMENTS

This research is supported in part by the Natural Sciences and Engineering Research Council of

Canada Discovery Grant 3182.

Computer Science & Information Technology (CS & IT) 47

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu & S. Addepalli (2012)“Fog computing and its role in the internet of

things”, Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, MCC

’12, pp 13–16, New York, NY, USA, ACM.

[2] F. Bonomi, R. Milito, P. Natarajan & J. Zhu (2014) “Fog computing: A platform for internet of things

and analytics”, In N. Bessis and C. Dobre, editors, Big Data and Internet of Things: A Roadmap for

Smart Environments, pp169–186, Springer International Publishing, Cham.

[3] C. Chang, S. N. Srirama& R. Buyya (2017)“Indie fog: An efficient fog-computing infrastructure for

the internet of things”,Computer, Vol. 50, No. 9, pp 92–98.

[4] A. V. Dastjerdi& R. Buyya(2016)“Fog computing: Helping the internet of things realize its

potential”,Computer, Vol. 49, No. 8, pp 112–116.

[5] K. Vidyasankar (1991)“Unified theory of database serializability”, FundamentaInformatica, Vol. 1,

No. 2, pp 145-153.

[6] K. Vidyasankar (2018a)“Distributing computations in fog architectures”, TOPIC’18 Proceedings.

Association for Computing Machinery.

[7] K. Vidyasankar (2018b)“Atomicity of executions in fog computing architectures”,Proceedings of the

Twenty Seventh International Conference on Software Engineering and Data Engineering (SEDE-

18).

[8] N. Conway (2008)“Transactions and data stream processing”, Online Publication, pages 1–28.

http://neilconway.org/docs/stream_txn.pdf.

[9] J. Meehan, N. Tatbul, S. Zdonik, C. Aslantas, U. Cetintemel, J. Du, T. Kraska, S. Madden, D. Maier,

A. Pavlo, M. Stonebraker, K. Tufte, & H. Wang (2015) “ S-store: Streaming meets transaction

processing”,Proc. VLDB Endow., Vol. 8, No. 13, pp 2134–2145.

[10] I. Botan, P. M. Fischer, D. Kossmann, & N. Tatbul (2012)“Transactional stream processing”,

Proceedings EDBT, ACM Press.

[11] L. Gürgen, C. Roncancio, S. Labbé& V. Olive (2006)“Transactional issues in sensor data

management”, Proceedings of the 3rd International Workshop on Data Management for Sensor

Networks (DMSN’06), Seoul, South Korea, pp 27–32.

[12] M. Oyamada, H. Kawashima, & H. Kitagawa (2013)“Continuous query processing with concurrency

control: Reading updatable resources consistently”, Proceedings of the 28th Annual ACM Symposium

on Applied Computing, SAC ’13, pp 788–794, New York, NY, USA, ACM.

[13] K. Vidyasankar (2017) “On continuous queries in stream processing”, The 8th International

Conference on Ambient Systems, Networks and Technologies (ANT-2017), Procedia Computer

Science, pp 640–647. Elsevier.

[14] L. Andrade, M. Serrano& C. Prazeres (2018)“The data interplay for the fog of things: A transition to

edge computing with IoT”,Proceedings of the 2018 IEEE International Conference on

Communications (ICC), IEEE Xplore.

[15] S. H. Mortazavi, M. Salehe, C. S. Gomes, C. Phillips & E. de Lara (2017)“Cloudpath: A multi-tier

cloud computing framework”, Proceedings of the Second ACM/IEEE Symposium on Edge

Computing, SEC ’17, pp 20:1–20:13, New York, NY, USA, ACM.

[16] storm.apache.org/releases/1.0.6/Transactional-topologies.html.

48 Computer Science & Information Technology (CS & IT)

[17] Jin Li , Kristin Tufte, VladislavShkapenyuk, VassilisPapadimos, Theodore Johnson & David Maier

(2008) “Out-of-Order Processing: A new Architecture for high-performance stream systems”,

PVLDB ’08, pp 274-288, VLDB Endowment.

[18] Zhitao Shen, Vikram Kumaran, Michael J. Franklin, Sailesh Krishnamurthy, Amit Bhat, Madhu

Kumar, Robert Lerche& Kim Macpherson (2015) “CSA: Streaming engine for internet of things”,

Data Engineering bulletin, Vol. 38, No. 4, pp 39-50, IEEE Computer Society.

[19] F. Xhafa, V. Naranjo, L. Barolli& M. Takizawa (2015)“On streaming consistency of big data stream

processing in heterogeneous clusters”, Proceedings of the 18th International Conference on Network-

Based Information Systems. IEEE Xplore.

