
Natarajan Meghanathan et al. (Eds) : ACITY, AIAA, DPPR, CNDC, WIMNET, WEST, ICSS - 2019

pp. 221-231, 2019. © CS & IT-CSCP 2019 DOI: 10.5121/csit.2019.91720

GITHUB IN SOFTWARE TESTING

Simi Bajaj, Shreejai Raj, Sanket Mantri and Kewal Wadibhasme

School of Computing, Engineering and Mathematics,

Western Sydney University, Australia

ABSTRACT

Software development has an around for quite a while but the progress that has been

madein the last three decade is quite remarkable. Every few years there is an emergence of

new concept, new programming language or framework for software development which

leads to questions around management and control of the software development process.

The goal of this paper is to explore the importance of software in everyday life and the need

for advanced software testing methodologies for producing reliable software products.
Further, this report takes a deep dive into the challenges associated with distributed

software projects such as lack of effective collaboration, awareness of the project, code

conflicts and resolutions which play a vital role in successful software development and

how version control systems like GitHub can prove to be a helpful tool in overcoming these

challenges. GitHub is a powerful version control system and there is discussion about

GitHub how tester can harness the power of GitHub in testing. This paper will shed light on

how GitHub is used by software testers to gain benefits that are sometimes missing in

conventional software testing methods.

KEYWORDS

Github, Software testing, collaborative software testing

1. INTRODUCTION

Software has become an integral part of our lives. Our civilisation depends on a number of

systems for carrying out various tasks and ‘software’ has the ability to define how such

systems work and behave. Systems such as the Web, network routers, transport systems,

financial calculation engines, power grids and other necessary command, control and
communications services, all have a software that runs to make them work. As a result, the

last two decades have not only seen an immense growth in the software industry but also an

upsurge in its competitiveness and its number of users. The use of software in embedded
systems ranges from mundane appliances such as cell phones, microwave ovens, remote

controllers, automatic garage door openers and cars to more complex and exotic applications

used in air traffic control systems, spaceships and air-planes. Hundreds of processors can be

found in modern households and over a thousand processors in modern cars. All these
processors run on software and the consumer is optimistic while using these appliances that

the software running behind these processors will never fail! (Ammann & Offutt, 2016)

This gives rise to the need of producing high quality software that meet consumers’ needs.
Although the software driven appliances are produced with at most attention to factors such

as sound process management and careful design to produce a reliable product, the industry

prefers testing as its primary tool for evaluating a software before its final delivery (Ammann
& Offutt, 2016). As the development team starts the development process so does the testing

team starts to write the test cases. These test cases are the most integral part of the testing

222 Computer Science & Information Technology (CS & IT)

process. Over the years many techniques have been developed to make the testing process
automated to save resources and speed the testing process.

The software industry is highly interested in revolutionising software testing as a means to

produce successful software products. Software testing also seems to be under increased
pressure with the recent growth seen in testing methodologies such as ‘Agile’ (Ammann &

Offutt, 2016). Software projects can impose the need for collaborative efforts to achieve final

product goals and the Agile methodology makes such collaboration possible by encouraging

the sharing of information among departments and teams within an organization. This
transparency allows team members to work together for accomplishing tasks and completing

projects(Adanza, 2016).

Achieving effective collaboration, however, can be a challenge in large-scale projects where
team member are dispersed across various locations across the globe(Adanza, 2016).Large

and distributed projects also bring about other challenges such as communication and co-

ordination breakdowns, which in turn lead to build failures and extended periods of time for
resolution. Maintaining awareness about interdependencies is also a challenge associated with

such projects. With the power of high speed internet and other technologies such as cloud

computing, distributed computing etc. developers can work from any location at any point of
time. The only problem with this approach is centralized control over the team and code

review. There exist tools that provide services such as notifying about possible co-ordination

needs and recommending communication needs between interdependent developers,

however, these do not arrive without overheads. Even with the use of such awareness tools,
conflicts seem to prevail which further call for team efforts to resolve them. Effective

scheduling and division of tasks can limit, however cannot eliminate code clashes and

overheads in co-ordination. Modularization of tasks is an acknowledged method to limit
interdependencies, however, it is not possible to remove the interdependencies altogether

(Kalliamvakou et al., 2015).

These challenges typically surface when attempting collaboration in software projects, and
are especially highlighted when the team members in such projects are distributed.

Collaborative Development Environments (CDE) seem to be acknowledged as a solution for

the co-ordination and communication problems that arise in distributed software projects.

CDEs integrate bug trackers and source code administration tools with additional features for
collaboration of team members. Past few years version controlling technology is used widely

to overcome this issue and it has proven to be successful and aided developers. “GitHub” is

one such tool that facilitates collaboration through its interface. GitHub was launched in 2008
and has been popular since then. As of 2016 GitHub had 10 million users and 32 million

monthly visitors (Craig, 2016). Other than its code hosting service, GitHub offers

mechanisms for collaborative review of code, social features and a co-ordinated issue tracker.
It also allows programmers to leave their remarks on issues and new submissions to the

project. This helps is attaching conversations to codes which in turn helps in increasing

awareness about the project (Kalliamvakou et al., 2015).

In recent years, GitHub has played a vital role in testing automation by providing the
developers to develop open source software contributing well to Continuous integration and

continuous development(CICD) or continuous deployment that being effectively used in

software development by the industry. These techniques have catalysed the test automation
process. The following sections of this paper are literature review focusing on GitHub ,

benefits to software testers followed by discussion on how GitHub will be useful in testing

and lastly conclusion.

Computer Science & Information Technology (CS & IT) 223

2. ABOUT GITHUB

GitHub is a popular web service that facilitates users to host their code online and share it
with others for collaborative development. As of 2017, GitHub seems to host over 67 million

repositories by 24 million developers and is used by over 117,000 business worldwide

(GitHub, 2017). It provides an open platform for collaborative work with transparency of the

activities that take place in a given project. This transparency is achieved through a simple
user-friendly interface as well as with the help of notifications. The visibility of the project so

achieved, further helps in spreading awareness about the project status among its members

with minimal communication. In the last decade there has been a lot of advancement in
software version control systems (Defaix, Doyle, & Wetmore, 2010), GitHub being one of

the pioneers. According to (Hackernoon, 2018) Github is one of the most adapted and

renowned version control system all around the world in the software industry. As a result,
GitHub seems to be a good answer for the challenges faced by distributed projects where

problems such as lack of awareness, conflicts in code, communication and co-ordination

breakdowns are the areas of concern. As a matter of fact, this ability of GitHub is also

highlighted in its motto “Collaboration without upfront co-ordination”. (Kalliamvakou et al.,
2015)

3. GIT AND GITHUB

GitHub works on ‘git’, which is a decentralized version control system (DVCS)

(Kalliamvakou et al., 2015). A DVCS is a distributed system with autonomous nodes. It
allows writing over local data at any time and intermittently connects with other repositories

at the user’s command to exchange updated information. It allows concurrent updates as

different branches of development. A DVCS can simultaneously track many different
branches and any conflicts that may arise between these branches can be resolved or

combined by the user using a merge operation (Murphy, 2017).

DVCS are also popular for collaborative software development as it allows for creating
repositories and keeps track of the version history of the file system. This version history is

stored in a content-addressed graphical format that naturally performs de-duplication of

unchanged files. This allows for efficient synchronization of duplicate files in a file system.

De-duplication occurs naturally for all identical files within the project however, for
performing de-duplication between different versions of files, Git relies on algorithms which

are suited for text, but do not seem to work well with large binary files(Murphy, 2017).

Figure 1: Git Process (Blischak, Davenport, & Wilson, 2016).

224 Computer Science & Information Technology (CS & IT)

Blischak et. al. 2016 outlines the Git process as shown in Figure 1. The main code or the
main repository is controlled by the core team of the software providing read only access to

only contribute using branches to the developers. Developers can pull the code by pull

request and further if satisfied with their code can push their work on the main branch for the

core team to review and if appropriate merge with the main repository. Hence number of
developers can work together at any point from any location. GitHub provides with the social

coding(Lima, Rossi, & Musolesi,2014) and enables developers to broadcast new methods and

learn new methods. In the research by (Dabbish, Stuart, Tsay, & Herbsleb, 2012) gives a
study of how transparency affects the coding style with the help of GitHub. The core team

must review each requested submitted and check for the compatibility and then merge with

the main repository.

The workflow of GitHub seems to be a good fit for Open Source Software (OOS) projects,

however, a rapid growth is also seen in the number of commercial projects using GitHub as a

development interface. These include large corporations such as Microsoft, Walmart,
Lockheed Martin and Living Social. Since such corporations in general, do not prefer

allowing public access to their files, GitHub also provides for private repositories in its

enterprise versions (Kalliamvakou et al., 2015).

Figure 2: Working on Open Source with Git (Blischak et al.,2016)

GitHub provides various tools and charts to track the branches and help to know there
responsible for bugs. Many of these repositories are open source and can be accessed either

for use or to contribute for the development of the project. One of the best examples is Ruby

on Rails project developed on GitHub and is still continuously improved and deployed for the
users.

Computer Science & Information Technology (CS & IT) 225

An online survey which involved 240 developers as well as interviews with 30 GitHub users
revealed that common Open Source Software practices such as reduced communication and

co-ordination needs, self-organization and independent work are being successfully adopted

by many commercial software projects (Kalliamvakou et al., 2015).

4. BENEFITS FOR TESTERS

Software testing is considered to be one of the most widely practiced and studied methods to

assess and improve the quality of any built software (Orso & Rothermel, 2014). Testing of

any software is important to avoid any failures that may create problems for the customers

using the software and potentially sue the software development company for damages.

Some notable examples of software failures include the failure of credit cards in Germany on

1st January 2010, leaving millions of Germans cashless and unable to purchase any items

from retail stores without any warning beforehand, that their credit cards would suddenly stop
working. Another example is of the Airbus flight A380, which had a software failure on its

autopilot function that forced it to return to New York which was on route to Paris on 20th

November 2009 (Homès, 2013). Such software failures can have catastrophic results, and
therefore it is best to thoroughly test all software before releasing to the public.

After going through the brief overview of the concepts, let us now look at how GitHub can be

used with any testing software. As GitHub is used to track updates and bugs in software code
while working on a software as a team of large number of developers, the people at GitHub

started adding more features to the tool that relate to project management such as issue-

tracker. These additional features combined with simple version control offered initially by

GitHub make it a great tool for tracking bugs found while testing a software (Gaspar, 2016).

4.1. Hosting project artefacts online

GitHub, along with its ability to let developers and testers store their code, also seems to
facilitate testers in a number of other ways. According to Matt Heuser, M.D. of Excelon

Development, GitHub is also useful for storing test artifacts such as test plans, how-tos and

session notes in version control. Specifications of the project whether in HTML or MS Word
format can also be stored at GitHub. Heauser further states that, by using GitHub, testers can

gain an understanding of the developers’ workflow and their jargons, which further assists in

minimizing the friction between the two. It also helps testers get one step closer to the source
code for better understanding the code. Using these facilities of GitHub, testers can also get

better at reading the code and pointing out errors at the source code level. They may even be

able to make contributions to code review. An rise is also seen in the number of non-profit as

well as profit organizations that make use of GitHub to host their code (Ben Linders, 2017).

4.2. Builds portfolio by showcasing contributions

GitHub can also be used to make workflows by approving team members to perform tasks

such as filing bugs and pushing sets. One more benefit of working with a GitHub account is

that it also creates a public portfolio of the user which can further help members in getting
hired based on their contributions. Recruiters and organizations progressively look to GitHub

accounts as an approach to assess possibility for employments(Ben Linders, 2017). Many

interviewers like to check the applicant’s public GitHub account to assess their consistency

and interest in the role (Mar, 2016). This also makes their task of finding the right candidate
easier as they get to make decisions based a public work-based portfolio of the user rather

226 Computer Science & Information Technology (CS & IT)

than going through his / her resume.This portfolio presents a more valuable demonstration of
skills than a mere resume.(Ben Linders, 2017).

This implies that it is very likely for software professionals to utilize the GitHub work

process in their professional lives. One of the benefits of using this workflow is that any
changes in code and be submitted through a process called “pull requests” and both the

programmers and testers can observe the differences in these codes and test those differences

independently before they are merged for the final production. The ‘pull requests’ get

processed by automated tests that keep running at different levels of the system giving
potentially huge testing and process benefits to the team. This also helps testers to report bugs

and contribute to code reviews through GitHub Issues (Ben Linders, 2017).

4.3. GITHUB Watchers

Motivated communities of programmers who collectively produce software products initiate

and maintain open source software projects. Such projects must be able to efficiently sustain
a pool for interested programmers to make individual contributions to the project. Moreover,

there are different kinds of contributors to an open source software project. There are core

contributors who focus on building the code base. There are peripheral contributors who
engage in activities like reporting bugs and submitting patches. There are also other groups of

users that don’t contribute code but actively participate in providing their feedback and

support for the project. The success of a project can be identified in accordance with the span

of the developer community around it, which goes about as a pool of potential contributors to
the project. Without an in-exhaustive source of such supporters, an open source software

project can become stagnant or fall flat (Sheoran et al., 2014).

GitHub, with its well-known code-hosting facility, has an expansive number of open source
programming ventures. It gives social features that permit building a network of contributors

around the codebase. Any user can keep a “watch” on an open GitHub repository to get

notified about any changes that occur within the repository. “Watching” a GitHub repository
signals the interest of the user in the activities that take place within the repository and also

indicates that the user is likely to contribute to the project. This can be viewed as a passive

engagement of users to a given project (Sheoran et al., 2014).

4.4. Continuous Integration and Continuous Deployment

GitHub is also capable of supporting open collaboration within organizations. Organizations
see an advantage in removing barriers between projects and teams that run within them in

order to promote inter-team collaborations. GitHub can be helpful in building this

transparency within commercial organizations by centralizing their tools and data
(Kalliamvakou et al., 2015). Collaboration brings the individual efforts of team members and

co-ordinate them to work towards a common objective. It also seems to be an efficient way of

managing interdependencies (Kalliamvakou et al., 2015).

Initial software development models had a lot of drawbacks such as lack of communication,

time consuming, manual documentation etc. Agile methodology revolutionized the process

and help enhance the process drastically. Today maximum number of companies have
adopted to agile methodology and are delivering great results. New development

methodologies are introduced such as DevOps that encourages the companies to use

techniques that help developers and operations teams to work together. GitHub has played a

vital role in DevOps method (Bissyandé et al., 2013). Apart from these methods companies
and developers had to wait for the testing feedback to know the bugs and fix them. One of the

Computer Science & Information Technology (CS & IT) 227

most recent methodology implemented by the companies is continuous integration (CI) and
continuous development (CD).

Figure 3: CI/CD Using GitHub (Heins, 2016)

As seen in the above figure developers get the feedback of the issues the moment any new

merge is made. If the new code has any bugs the developer is notified, and the faulty code is
not deployed on the QA server. If the new code is bug free it is auto deployed in the QA

servers and the testing teams continue with further testing. This method has helped testing

automation greatly and for the same GitHub has been a crucial part. Unlike previous methods

for deployment CI has enabled test results to be available at early stages and help reduce bugs
seeping into production (Meyer, 2014;Vasilescu, Van Schuy lenburg, Wulms, Serebrenik, &

van den Brand, 2014). The primary requirement for the success of the CI/CD is the test cases

to be automated and deployed on the repository server. Whenever the developers push the
code for merge into the main repository the automated test cases are runand the initial test

results are available to the developer as test reports. If the test cases havepassed the code is

merged with the main repository and deployed on the staging server, on which the testers can
carry out further testing. This ensures that the initial code is up to the requirement and error

free. This also helps to reduce the time and cost for the testing which is crucial factor

(Stolberg, 2009).

5. ANALYSIS OF GITHUB FOR SOFTWARE TESTING

It has been established that software testing does play an extremely important role in the

software development cycle. Often companies do not consider it so important and result into

a spending more on bug fixing. Using testing automation and unit testing for code can help
detect bugs at proper time and fix it. One of the important documents to track and fix bugs is

the issue reports. Many systems do provide with the issue reporting, but GitHub is more

popular and helps to trace back the issue to the developer.

GitHub has enabled developers and the operations teams to work together to find issues and

bugs with ease and on time. As with the open source systems users are able to contribute to

bug fixing under the watch of the core team. GitHub has assists developers to keep track of
the versions, detect the location and the origin of the bug if any. (Feliciano, Storey, &

Zagalsky, 2016) discusses a case study of student perspective in using GitHub as learning

tool for software engineering. This case study shows how apart from testing GitHub is aiding
students to learn engineering process by using GitHub as platform. Students still feel the

flexibility and the privacy are main concerns for using GitHub. Another GitHub feature that

228 Computer Science & Information Technology (CS & IT)

supports reviewing work of the peers, may enable the novice developers to have better
understanding of the testing process in the early stages of the software development.

The following table outlines the strengths and weaknesses of Github:

Table 1: Strengths and weaknesses of Github

One other important concept that allows the developers to test their software code is through

making use of an assertion statement i.e. a statement that helps the developers to test an
assumption they may have of a fragment of code that they may have written. The result of an

assertion statement is always denoted using Boolean expression that needs to be satisfied for

the execution of program statements. If any execution fails to execute, the Assertion Error is

raised to flag that the test case did not run as expected. Such assertion statements could be
used to check preconditions, post-conditions and other variables as defined by the developers

or by the business requirements. The study by (Lo & Kochar, 2017) has highlighted the

relation between assertions and defect occurrence on GitHub projects using the study
by(Casalnuovo, Devanbu, Oliveira, Filkov, & Ray, 2015) who also seem to have found that

the projects on GitHub that used assertions have significantly lower amount of failure rates as

compared to the software projects that do not use assert statements in their projects.

GitHub has reduced the testing workload as identified in CI/CD. It has also enabled the

developers to automate the merge process more efficiently and accurately. One of the good

examples of GitHub providing this platform is GitHub Education which is meant for code

learning and does unit testing on the go and with immediate feedback (Zagalsky, Feliciano,
Storey, Zhao, & Wang, 2015). Platforms like this will enable better learning techniques for

the students and for the teachers. Another breakthrough in the testing is Travis-CI that has

Computer Science & Information Technology (CS & IT) 229

enabled both testing and CI/CD efficiently and was developed on GitHub (Beller, Gousios, &
Zaidman, 2016).

Despite a very few research papers seem to be focused on software testing using the social

software coding platforms such as GitHub, we can clearly see by the recent research that the
topic seems to be gaining popularity. Further, it can be assured that the very vast codebase

offered by GitHub can be used in combination with Machine Learning to build a proper

software testing tool that is able to predict any issues that may arise in the software

development life cycle.

On the other hand, GitHub - one of the most popular social coding platform, offers a number

of features that allow the software developers to maintain history of changes to the code and

raise any bug reports directly on GitHub. This makes it easier for developers to pay attention
and resolve any critical issues with the code without relying on any other software or

collaboration tool. This makes GitHub a great platform to perform software testing and may

enable to pin-point and resolve many issues with the code which may sometimes go
unnoticed.

6. CONCLUSION

GitHub seems to be a great tool for collaborative approaches in software development. New
members need to accustom themselves with the command lines associated with Git to get

started with using GitHub, however, the advantages of using GitHub seem to outweigh the

learning curve (Mar, 2016). GitHub plays a vital role in assisting projects with a large number
of distributed users by providing an open development environment and a simple user-

friendly interface which showcases all the activities that take place within a given project.

This promotes a better understanding of the project within the team members and a better
collaboration with minimal communication needs. As a result, GitHub seems to be the

answer to problems such as collaboration, lack of communication and understanding and

code clashes which arise in distributed software projects. Privacy and latency are still

concerning in this area which are open to future research. Open source software development
will be benefited by using CI/CD to reduce bugs in the code and repair the code in time and

automate. GitHub along with third party software testing tools such as Travis CI already

allows us to test the code in real-time further enhancing the possibility of GitHub becoming a
critical component of software testing tools.

REFERENCES

[1] Adanza, F. (2016). Collaboration: the backbone of agile testing | Zephyr. Retrieved October 17,

2018, from https://www.getzephyr.com/insights/collaboration-backbone-agile-testing

[2] Ammann, P., & Offutt, J. (2016). Introduction to software testing. Retrieved from

https://books.google.com.au/books?hl=en&lr=&id=58LeDQAAQBAJ&oi=fnd&pg=PR10&dq=s

oftware+testing+process&ots=Vzf4RKRIU_&sig=DMnt_nfymEoE9vW7pFhjBJGCrtM#v=onep

age&q=software testing process&f=false

[3] Beller, M., Gousios, G., & Zaidman, A. (2016). Oops, mytests broke the build: An analysis of
travis cibuilds with github (2167-9843).

[4] Ben Linders. (2017). GitHub for Testers. Retrieved October 17, 2018, from

https://www.infoq.com/news/2017/07/github-testers

230 Computer Science & Information Technology (CS & IT)
[5] Bissyandé, T. F., Lo, D., Jiang, L., Réveillere, L., Klein,J., & Le Traon, Y. (2013). Got issues?

whocares about it? a large scale investigation ofissue trackers from github. Paper presented atthe

Software Reliability Engineering (ISSRE),2013 IEEE 24th International Symposium on.

[6] Blischak, J. D., Davenport, E. R., & Wilson, G. (2016). Aquick introduction to version control
with Gitand GitHub. PLoS computational biology, 12(1),e1004668.

[7] Casalnuovo, C., Devanbu, P., Oliveira, A., Filkov, V., & Ray, B. (2015). Assert use in

GitHubprojects. Proceedings - International Conference on Software Engineering, 1, 755–

766.https://doi.org/10.1109/ICSE.2015.88

Craig, S. (2016). 10 Amazing GitHub Statistics(December 2016). Retrieved

fromhttps://expandedramblings.com/index.php/github-statistics/

[8] Dabbish, L., Stuart, C., Tsay, J., & Herbsleb, J. (2012).

Social coding in GitHub: transparency andcollaboration in an open software repository.

Paper presented at the Proceedings of the ACM2012 conference on Computer Supported

Cooperative Work

[9] Defaix, F., Doyle, M., & Wetmore, R. (2010). Version control system for software

development. In: Google Patents.

[10] Feliciano, J., Storey, M.-A., & Zagalsky, A. (2016).Student experiences using github in

softwareengineering courses: a case study. Paperpresented at the Proceedings of the

38thInternational Conference on SoftwareEngineering Companion.

[11] Gaspar, G. (2016). 7 Examples of Bug Reporting Template You Can Copy For Your Web

TestingProcess. Retrieved September 24, 2017, from https://marker.io/blog/bug-reporttemplate/

[12] GitHub. (2017). GitHub - The World’s leading software development platform. Retrieved

September 24, 2017, from https://github.com/

[13] Hackernoon. (2018, june 2018). How Git Changed The History of Software Version

Control. Retrieved from https://hackernoon.com/how-git-changed-the-history-ofsoftware-

version-control-5f2c0a0850df accessed: 16/10/2018

[14] Heins, C. (2016). CI/CD WITH DOCKER CLOUD.Retrieved

fromhttps://blog.docker.com/2016/04/cicdwith-docker-cloud/

[15] Homès, B. (2013). Fundamentals of Software Testing. Fundamentals of Software Testing.

https://doi.org/10.1002/9781118602270

[16] Kalliamvakou, E., Damian, D., Blincoe, K., Singer, L., & German, D. M. (2015). Open Source-

Style Collaborative Development Practices in Commercial Projects Using GitHub. Retrieved

from https://help.github.com/articles/using-pull-requests/

[17] Lima, A., Rossi, L., & Musolesi, M. (2014). CodingTogether at Scale: GitHub as a Collaborative

Social Network. Paper presented at the ICWSM.

[18] Lo, D., & Kochar, P. S. (2017). Revisiting Assert Use in GitHub Projects.

[19] Mar, W. (2016). Git and GitHub for Testers | StickyMinds. Retrieved October 17, 2018, from
https://www.stickyminds.com/presentation/git-and-github-testers

[20] Meyer, M. (2014). Continuous integration and its tools.IEEE software, 31(3), 14-16.

[21] Murphy, M. (2017). Scalability of Distributed Version Control Systems. Retrieved from

http://ojs.bibsys.no/index.php/NIK/article/view/434/394

Computer Science & Information Technology (CS & IT) 231
[22] Orso, A., & Rothermel, G. (2014). Software testing: a research travelogue (2000–

2014).Proceedings of the on Future of Software Engineering - FOSE 2014, 117–

132.https://doi.org/10.1145/2593882.2593885

[23] Sheoran, J., Blincoe, K., Kalliamvakou, E., Damian, D., & Ell, J. (2014). Understanding
"Watchers" on GitHub Uncovering dependencies in software ecosystems View

project Understanding "Watchers" on GitHub.

https://doi.org/10.1145/2597073.2597114

[24] Stolberg, S. (2009). Enabling agile testing throughcontinuous integration. Paper presented at

theAgile Conference, 2009. AGILE'09.

[25] Vasilescu, B., Van Schuylenburg, S., Wulms, J.,Serebrenik, A., & van den Brand, M. G.

(2014).Continuous integration in a social-coding world:Empirical evidence from GitHub.

Paperpresented at the Software Maintenance andEvolution (ICSME), 2014 IEEE

InternationalConference on.

[26] Zagalsky, A., Feliciano, J., Storey, M.-A., Zhao, Y., &Wang, W. (2015). The emergence of

github as acollaborative platform for education. Paperpresented at the Proceedings of the 18th

ACMConference on Computer Supported CooperativeWork & Social Computing.

AUTHORS

Simi Bajaj

Simi, currently Lecturer of Computing in SCEM, graduated with B.Sc. first class

followed by double Mastersdegree where she was awarded a medal for her

academic achievement. She won APAI scholarship to pursue her PhD in Computer

Science. She has developed a REcursive, MUlti-stage Classifier for Client-side

email Spam filtering using machine learning and deep learning methods. She has

worked with National Australia bank in the role of Senior Analyst, nabCERT -

Monitoring and Response Infrastructure and Security Services.

She is passionate about enhancing student learning and growth and collaborates with industry and

institutions locally and globally. In last 5 years, Simi has joined editorial boards of journals, obtained

research grants, published in journals as well as rank A and B conferences in the areas of software
development and testing, information security, cyber fraud, malware detection, learning & education,

and machine learning. Simi has established research partnerships with the industry and has

successfully worked on projects with them.

Shreejai Raj, Sanket Mantri, Kewal Wadibhasmeare students of MICT in School of Computing,

Engineering and Mathematics, Western Sydney University, Australia

