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ABSTRACT 
 

Nonnegative Matrix Factorization (NMF) is a popular tool to estimate the missing entries of a 

dataset under the assumption that the true data has a low-dimensional factorization. One 

example of such a matrix is found in movie recommendation settings, where NMF corresponds 

to predicting how a user would rate a movie. Traditional NMF algorithms assume the input 

data is generated from the underlying representation plus mean-zero independent Gaussian 

noise. However, this simplistic assumption does not hold in real-world settings that contain 

more complex or adversarial noise. We provide a new NMF algorithm that is more robust 

towards these nonstandard noise patterns. Our algorithm outperforms existing algorithms on 

movie rating datasets, where adversarial noise corresponds to a group of adversarial users 

attempting to review-bomb a movie. 
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1. INTRODUCTION 
 

Large datasets are commonplace in multiple data science applications. These datasets suffer from 
two key properties that makes analysis challenging. The first challenge is that the datasets are 
high-dimensional, with each item in the dataset containing many features. The well-cited “curse 
of dimensionality” causes standard machine learning techniques to offer suboptimal performance 
on these large datasets [1,2]. The second challenge is that the datasets contain large amounts of 
missing data. 

 
To handle the first problem, matrix factorization is a popular preprocessing step on numeric data 
to reduce the dimensionality of the data to a more manageable size. The true data is assumed to 
have a low-dimensional linear model. The user has access to noisy samples from this model and 
must learn the underlying model from the samples. The user then applies the learned model to 
predict the missing data. See [3,4,5] and references within. 
 

In mathematical terms, the input data is treated as a sparse n x m matrix V with missing entries. 
The goal to find an n x k matrix W and a k x m matrix H such that the matrix product WH 
approximates the nonmissing entries in V. When both the input and factor matrices are required 
to be nonnegative, the problem is called Nonnegative Matrix Factorization (NMF). NMF has 
been applied to multiple problem domains. NMF also solves the second problem of missing data. 
Once an algorithm has computed W and H, the missing values in V can be estimated using the 
corresponding values in WH. This process is also called matrix completion, as it ‘completes’ V 

by predicting the missing entries. 
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In the movie recommendation setting, the user takes large set of (user, movie, rating) triples as 
input, where rating is a numeric value between 1 and 5, inclusive. The data is convered into a 
matrix V, where each row corresponds to a specific user, each column corresponds to a specific 
movie, and entry (i,j) in V corresponds to how user i rated movie j. Users have only seen or rated 

a small number of movies, meaning the dataset contains a substantial amount missing  data. 
When NMF is applied to V, the result is a matrix W that maps users to genres and a matrix H that 
maps genres to movies. The matrix product WH can be used to predict how a user would have 
scored a movie. If user i1 and i2 have given similar review scores, the i1-th row in W and the i2-th 
row in W will be similar, and so the matrix completion will receive similar recommendations. 
NMF was successfully used in the Netflix movie recommendation challenge [6] and on a Flickr 
image recommendation challenge [7]. 
 

Standard NMF algorithms assume that the input data is drawn from the low rank linear model, 
plus mean-zero independent and identically distributed Gaussian noise. However, this assumption 
may be violated on real world datasets, which may contain anomalies or hostile users trying to 
harm the performance of the algorithm. In the movie setting, a `review-bomb' or `nuke-attack’ is 
a phenomenon where a group of adversarial users create fake accounts and ratings in order to 
artificially harm a movie's review score [8,9,10]. In matrix terms, the H matrix will be polluted 
by the adversarial users, and as a result the matrix completion process will give incorrect 

predictions for the non-adversarial users. 
 
In this paper, the authors consider two existing NMF algorithms and demonstrate their 
performance suffers under adversarial noise. They then introduce a new algorithm with improved 
performance on movie recommendation data suffering from a review bomb. The new algorithm 
alternates between marking elements as corrupt and learning the factor matrices from the 
noncorrupt entries. The goal of the algorithm is to find a better linear model (i.e. a better W and 

H) for data under adversarial noise, which can be used to produce better recommendations. 
 

1.1. Prior Work 
 

Lee and Seung [12] popularized the NMF problem in the setting where V is a dense matrix with 
no missing values and derive a pair of multiplicative update rules. Subsequent follow-up work 
has considered different objective functions that are more resilient to noise, see [13,14,15]. 
However, these works focus on the simpler case where V has no missing values. 
 

When V has missing values, there are two popular techniques. The first technique by Mao and 
Saul [16] ignores the missing values when computing update (see equations below). This 
approach is referred to as the ignore-missing-data approach. Let Z be a matrix with Z=1 if V is 
present and Z=0 if V is missing. The Mao and Saul update rules have two components: fix H and 
update W, then fix W and update H. These two steps are repeated until convergence. 
 
 

 
 
 

where ○ denotes elementwise multiplication, and division is done elementwise. The Mao and 
Saul algorithm is theoretically guaranteed to be monotonic in the squared loss, where Ø is used to 
denote missing values, i.e. the summation is over all non-missing values in V. Additionally, the 
Mao and Saul algorithm can be implemented on a distributed Map-Reduce framework [17] 
 

Squared loss= ∑ (V −WH)2 

                        V ≠∅ 
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The second approach by Zhang et al [18] replaces the missing values with their current values 
(see below). This approach is referred to as the replace-missing-data approach. The Zhang et al 
approach has three components: fix H and update W, then fix W and update H, then replace all 
missing values with the corresponding value in WH. Let V be the filled-in matrix with no 

missing values. Then the Zhang et al update rules are 
 

        
 
When the data is very large, calculating the dense matrix V is not practical, and the ignore- 

missing-data approach is preferable. But for smaller datasets, the replace-missing-data approach 
has been experimentally shown to offer better performance than the ignore-missing-data approach 
on data without adversarial noise. 
 

There are many different types of adversarial attacks on machine learning models – see [8-11] for 
a comprehensive overview of adversarial attacks on non-NMF based recommendation systems. 
This work focuses on profile injection attacks where malicious users can insert bad entries into 
the dataset. In the movie recommendation setting, this corresponds to adding entries of the form 
(baduser, movie, score) into the training data, where baduser is an adversarial user. When the raw 

data is converted into a matrix V, the entries in V corresponding to these tuples will be called 
corrupt entries. The adversary is not allowed to modify the ratings given by other non-adversarial 
users. 
 

2. FACTORIZATION WITH ADVERSARIAL NOISE 
 

To develop a new NMF algorithm to factor data under adversarial noise, a simple rule to identify 
which elements are created by adversarial users is needed. The input data has already been 
converted from raw tuples into a matrix V with each row corresponding to a user and each 
column corresponding to a movie. 
 

Let λ > 0 be a user fixed hyper-parameter. We discuss a probabilistic interpretation of λ in 
Section 2.3. For any given W and H, an element (i,j) is marked as corrupt if the squared error 
between V and WH is greater than λ. Intuitively, this choice allows the algorithm to mark an 

element as corrupt by `paying' a cost of λ. Similar to how missing elements could be ignored or 
replaced, corrupt elements can either be ignored or deleted. Both approaches are considered. 
 

Algorithm 1: NMF under adversarial noise 
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2.1. Ignore-Corrupt-Data Approach 
 
Just as Mao and Saul’s algorithm ignores the missing datapoints when computing W and H, our 

algorithm can choose to ignore the corrupted elements when updating W and H. This approach 
corresponds to minimizing a clipped loss function. Define ERR(t) to be the standard squared loss 
and define L(t) to be the clipped squared loss at the very end of iteration t (after step 4 has been 
completed). The clipped loss (also called the trimmed loss in some settings) has been well 
established as more robust to outliers and anomalies than the standard squared loss [19,20,21]. 
The clipped loss has been successfully applied to many machine learning problems, including 
regression and L(t) replaces errors with value greater than λ with a value of λ, thereby ‘clipping’ 

large errors. The clipped error has been successfully applied to other 
 

         
 
We now argue L(t) > L(t+1). Let Z(t) be the value of Z at the end of iteration t: either Z(t) = 0 or 
Z(t) =1. Then L(t) can be decomposed into two parts 
 

          
 
The Mao and Saul update rules are monotonic, so we have ERR(t) > ERR(t+1). This means that 
after the W and H update steps are applied (after step-1 is completed), we have 

 

        
 
We then consider the Z update step. If Z(t) = 0 but ERR(t+1) > λ, then setting Z(t+1) = 1 replaces 
a value in Intermediate(t)  that was greater  than  λ with the value   λ.  Similarly, if   Z(t) = 1 but 
ERR(t+1) < λ, then setting Z(t+1) = 0 replaces a value of λ in Intermediate(t) with  a value that is 

less than λ. Therefore, we have that 
 

          
 
Combining the above three equations proves the desired result, that L(t) > L(t+1). This proves 
that the algorithm monotonically decreases the clipped loss. 
 

2.2. Replace-Corrupt-Data Approach 
 
Just as Zhang et al algorithm ignores the replaces datapoints when computing W and H, our 
algorithm can choose to replace the corrupt elements when updating W and H. The seemingly 
obvious choice would be to replace corrupt elements with the current estimate WH. However, 
during iterations of the algorithm, WH is a bad estimation of V. Instead, we replace corrupt 
elements with an interpolation between V and WH, defined as 
 

V = 0.99 t∗V +(1− 0.99t )∗WH for corrupted entries in V 
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In early iterations, V and V are very close, and we apply a minimal correction. In later iterations, 
the algorithm is allowed to make a more substantial correction. 
 

2.3. Probabilistic Interpretation of λ 
 
We can treat λ as an arbitrary user-specified parameter that denotes the `cost’ of marking an 
element as corrupt. However, λ also has a probabilistic interpretation, where the magnitude of λ is 
defined by the probability an element has undergone adversarial corruption. Assume that the 
non-corrupt entries of V are generated from the underlying low-rank model Vtrue, plus Gaussian 
noise with mean 0 and standard deviation σ. Let f be the probability density function of this 

Gaussian distribution applied to a specific entry (i,j). Then 
 

       
 

where a and b are defined below. We next assume that the probability that entry (i,j) is corrupted 
is given by p, where 0 < p < 1. Finally, define 
 

       
 

Note that a, b, and log p are all negative, so λ must be positive. In other words, λ is defined by an 
assumption about the probability an element is corrupt, plus an assumption about the underlying 
distribution of the non-corrupt data. Additionally, if ERR(t) > λ, then log f < log p and f < p. In 
other words, one way to interpret Algorithm 1 is that an element is marked as corrupt if the 
probability that the good distribution generated that element (defined by f defined above) is less 
than the probability it was corrupted (defined by p). Note that we could have made other 
assumptions about the good or bad elements, which would have derived a different definition for 

λ and a different rule for which elements should be marked as corrupt. 
 

3. EXPERIMENTS 
 
To demonstrate the effectiveness of our Corrective NMF algorithm, we run a series of 
experiments using the same experimental setup used in [8,10,17], We begin with the 1M 
MovieLens dataset [22] a public dataset of user-movie scores where each user has rated at least 
twenty movies between one star and five stars. All experiments are run 20 times, and we report 
averages. All algorithms are implemented in Python using the NumPy library, are run on a 12- 
core Intel i7 Unix desktop, are given the same random initializations, and are given same amount 
of time to run. Following the setup of [17], we set k=20, as there are 20 movie genres in the 

MovieLens dataset. 
 

3.1. Non-Adversarial Noise 
 
We begin by considering two non-adversarial noise models. 
 

 Model 1 – No Noise – We use the MovieLens dataset, unaltered. 

 Model 2 – Random Noise – Every entry in the test set flips a coin. With probability 0.1, a 
value of 1-3 is flipped to a 5, and a value of 4-5 is flipped to a 1. 

 

Recall that the goal of the algorithm is to first estimate a low-rank model from non-missing data, 
then to use that model to estimate the missing values. To evaluate the performance of the 
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algorithms on non-adversarial noise, we divide the MovieLens scores into a training set (90% of 
the data), and a test set (10% of the data). In Model 1, the training set is used as-is. In Model 2, 
the training set undergoes random noise. The training set is then fed as input to each factorization 
algorithm, which produces the factor matrices W and H. The elements in the test set are then 

compared to the predicted values in WH to test whether the low-rank approximation is a good 
model. The evaluation matrix is the normalized mean absolute error defined below, which is the 
same metric used by Zhang et al in [5]. 
 

 
 
We report the normalized mean absolute error in Table 1. On non-adversarial noise, the ignore- 
corrupt algorithm has equivalent performance as other algorithms, and the replace-corrupt 
approach offers a 5-10% improvement over existing algorithms 
 

Table 1: Absolute Error on non-Adversarial MovieLens Data 

 

Algorithm Model 1 (no noise) Model 2 (random noise) 

Ignore-missing [16] 0.160 0.168 

Replace-missing [18] 0.156 0.163 
Ignore-corrupt 0.156 0.164 
Replace-corrupt 0.149 0.153 

Replace-corrupt, no interpolation 0.155 0.155 
 

3.2. Adversarial Noise 
 
We next consider two adversarial noise models. These models choose a specific ‘target movie’ 
and will add adversarial noise in an attempt to harm that movie’s rating. Every user in the clean 
MovieLens dataset has assigned scores to at least twenty movie scores, so the hostile users must 

also have assigned scores to at least twenty movies, or it would be trivial to detect and delete 
these adversarial users. The low-knowledge attack simply adds random users to the dataset, while 
the informed attack adds users who appear similar to legitimate users. 
 

 Model 3 – Low-Knowledge Attack: We augment the dataset with synthetic users. Each 
synthetic user assigns the target movie a score of 1 and gives nineteen other movies in the 

dataset a random score between 1-5. 

 Model 4 – Informed Attack: We randomly choose existing users and convert them into 
adversarial users. Adversarial users assign the target movie a score of 1 and leaves their 
other ratings unaltered. 

 
Recall the assumption that the data has a low-rank model. Define WH* to be the factorization 

that the algorithm would have found if there were no adversarial users. Define WH to be the 
factorization the algorithm finds with adversarial users. To measure the difference between the 
two models, the mean absolute prediction shift is defined as the absolute error between WH* and 
WH on the column that corresponds to the targeted movie. This evaluation metric was used in 
[9, 11] and measures how effective the adversary was at harming the targeting movie’s rating. 
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Table 2: Mean Absolute Prediction Shift on Adversarial MovieLens Data 

 

Algorithm Model 3 (low-knowledge) Model 4 (informed) 

Ignore-missing [16] 0.062 0.083 

Replace-missing [18] 0.042 0.050 
Ignore-corrupt 0.027 0.019 

Replace-corrupt 0.621 0.159 
Replace-corrupt, no interpolation 0.467 0.134 

 

On data that has undergone adversarial noise, the ignore-corrupt approach offers a dramatic 64% 

improvement over the existing algorithms. The replace-corrupt approach does not succeed. 
Inspecting the data reveals that the replace-corrupt technique fills the missing entries of 
adversarial users with bad data. In the low-knowledge attack, the adversarial users are imputing 
random numbers, so it is impossible to estimate what their true values ‘should’ be in V. 
 

4. CONCLUSIONS 
 
In this work, we study the effectiveness of nonnegative matrix factorization under non-Gaussian 
noise and adversarial noise. Existing NMF algorithms which assume Gaussian noise struggle in 
the presence of this noise. The new algorithm offers extends existing NMF approaches to find 

better factorizations under adversarial noise. The key innovation is to define a parameter λ, mark 
elements with error greater than λ as corrupt, and to either ignore or replace those entries when 
computing the factorization. Our algorithm is monotonic in a clipped loss function and 
experimentally outperforms existing NMF techniques. 
 
In this work, we focused on a relatively simple adversarial attacks and a relatively simple rule for 
marking elements as corrupt. One potential future direction is to consider more sophisticated 
adversaries and more complex rules for marking elements. Alternatively, while we focus on the 

standard NMF formulation, the ideas could potentially be applied to other dimensionality 
reduction techniques like semi-NMF or Bayesian factorization. 
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