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ABSTRACT 
 

Nearest-neighbor query processing is a fundamental operation for many image retrieval 

applications. Often, images are stored and represented by high-dimensional vectors that are 

generated by feature-extraction algorithms. Since tree-based index structures are shown to be 

ineffective for high dimensional processing due to the well-known “Curse of Dimensionality”, 

approximate nearest neighbor techniques are used for faster query processing. Locality 

Sensitive Hashing (LSH) is a very popular and efficient approximate nearest neighbor 

technique that is known for its sublinear query processing complexity and theoretical 

guarantees. Nowadays, with the emergence of technology, several diverse application domains 

require real-time high-dimensional data storing and processing capacity. Existing LSH 

techniques are not suitable to handle real-time data and queries. In this paper, we discuss the 

challenges and drawbacks of existing LSH techniques for processing real-time high-

dimensional image data. Additionally, through experimental analysis, we propose 

improvements for existing state-of-the-art LSH techniques for efficient processing of high-

dimensional image data.  
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1. INTRODUCTION 
 

Nearest-neighbour queries in high dimensional spaces play a very vital role in a significant part 

of numerous applications in the image processing domain. While conventional tree-based index 

structures (such as k-d trees [1], Quadtrees [2], etc.) are a good fit for low-dimensional data, 

they suffer from the well-known “Curse of Dimensionality” for high dimensional spaces [3]. In 

high-dimensional spaces, these conventional index structures are often slower than brute-force 

searches. Looking into approximate results in lieu of exact results is one of the solutions to deal 

with this problem. Finding approximate results is much faster than finding the exact results in 

the applications where 100% precision is not necessary. Locality Sensitive Hashing (LSH) [3] is 

a popular approximate processing technique for processing nearest-neighbour queries in high-

dimensional spaces.  
 

Locality Sensitive Hashing (LSH) is based on the idea that adjacent points in the high-

dimensional space are also mapped near each other in lower-dimensional spaces. are placed 

close in the lower dimensional spaces. The process of obtaining these lower-dimensional spaces 
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is through using random projections. Data points are mapped in these random projections in the 

lower-dimensional space. The goal of the process is to map close points in the original high-

dimensional spaces near to each other in the low-dimensional random projections with a high 

probability. Also, points that are far away in the high-dimensional space should be mapped near 

each other in the low-dimensional space with a low probability. While querying on this lower-

dimensional space, misses and false-positive can occur. Therefore, multiple independently 

chosen hash projections are used by LSH data structures which are further organized into 

several hash layers to control the precision of the query processing. Theoretical guarantees on 

sublinear query time with respect to the dataset size is one of the major advantages of LSH. It 

makes the use of LSH competent and practical to use. 

 

Image data is often represented by high-dimensional feature descriptors. These high-

dimensional descriptors help in efficiently storing and retrieval of these image data. These 

descriptors are extracted by using popular feature extraction algorithms namely SIFT [4], SURF 

[5], ORB [6], etc. To search for similar images, high-dimensional features (or feature – depends 

on which algorithm for the feature extraction is being used) are first extracted from the query 

image. Then the database that has the features extracted and stored from the images is queried. 

In particular, similarity search queries are executed for each descriptor in the query image to 

find the closest matched image. Note that, other domains such as Audio retrieval [7], Video 

retrieval [8], Computational Biological processing [9], Earth Science data [10], etc., also require 

high-dimensional data processing. 
 

1.1. Paper Organization 
 

The remaining of the paper is organized into several sections. In section 2, we talk about the 

motivations behind this paper. Section 3 gives a brief overview of several well-known 

Approximate Nearest Neighbour (ANN) methods. The section is further divided into two 

subsections, talking about data-dependent techniques and real-time variations. Section 4 

specifies the problem is this domain which our method is going to solve. Section 5 explains our 

proposed method in detail. Next, section 6 presents the experimental evaluation results and an 

analysis of the results. Finally, section 7 concludes our paper and also presents some 

suggestions for future work. 
 

2. MOTIVATION 
 

With the increase in technological advances, applications in the image retrieval domain face an 

increasing need for processing fast real-time high dimensional data [11]. Numerous real-world 

application scenarios vigorously need to find similar objects (also called Nearest Neighbour 

queries) in real-time. For example, it is an important task to find the near-duplicate images or 

videos in real-time (for applications which emphasize on video copyright enforcement, content-

based video clustering and annotation [12]) on the social Web. In terms of videos, thumbnail 

images are frequently used to figure out analogous thumbnail images of videos in the present 

database [11]. Real-time querying of high-dimensional objects is essential for detecting and 

eliminating image/video duplicates. Also, satellite data, which usually consists of images and 

remote sensing data, are used to improve decision-making in many earth science applications 

such as volcanic or earthquake activity monitoring [13], flood management [14], etc. When 

hazardous situations or natural disasters are occurring, satellites generate important and 

necessary data more frequently. It is very important for these applications to have real-time 

indexing and querying support to find comparable situations for the existing data to take future 

aid decision-making.  
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2.1. Benefits of using Locality Sensitive Hashing 
 

The random hash functions that Locality Sensitive Hashing uses are data-independent, i.e. data 

characteristics such as data distribution are not needed to generate these random hash functions. 

On the other hand, data-dependent methods require an analysis of the data during index 

construction. For static data, this overhead cost is an offline process and hence does not affect 

the query processing time. However, considering real-time data, the flow of data is a continuous 

process and this overhead cost becomes an online cost, i.e. the query processing time is affected 

by the ability of the index structure to index the data. If the indexing is slower, the query 

processing time will be affected negatively. The indexing process will not add an overhead to 

the overall processing time if there are no overhead costs, such as analysis of the data 

distribution. Since LSH uses random hash functions, the generation of these hash functions is a 

simple process that takes a negligible time. In addition, the generation of these hash functions is 

not affected by data distribution. Also, these hash functions do not require any change during 

runtime as newer data are coming in.  
 

While original LSH index structure suffered from large index sizes [15, 16], state-of-the-art 

LSH techniques [17, 18, 19] have alleviated this issue by using advanced methods such as 

Collision Counting and Virtual Rehashing. Thus, owing to their small index sizes, and most 

importantly, lack of any required expensive offline processes, LSH-based techniques are more 

suitable than other approaches for real-time Approximate Nearest-Neighbour (ANN) processing 

of high-dimensional image data. 
 

3. RELATED WORK 
 

In this section, we give a brief overview of the state-of-the-art techniques in the Approximate 

Nearest Neighbour (ANN) problem domain in high-dimensional spaces. Since our focus is on 

Locality Sensitive Hashing (LSH), we focus on LSH and its variants. Also, since our focus is on 

efficiently solving the ANN problem for real-time environments, we discuss the state-of-the-art 

techniques with respect to their applicability in real-time environments. Indexing techniques in 

the ANN problem domain should have these following “good” characteristics [15]: 1) Ability to 

return results with very low latency, 2) Ability to return results with high accuracy, 3) Index size 

should be as small as possible and preferably should be linear in the data size, and 4) Practical 

to use (i.e. the user should not be required to input non-trivial parameters that can drastically 

change the performance and are specific to each dataset). 
 

3.1. Data-Dependent Techniques 
 

Data-dependent hashing techniques [20, 21, 22] provide high accuracy but require offline hash 

function learning and hash code computation. In addition, these techniques require a high 

sampling rate for higher accuracy which incurs a high training cost. These methods have been 

shown to be very slow or infeasible when handling large scale data (when the data points are in 

billions) [23, 24]. Combined with the additional challenge of handling real-time data, these 

methods are also inefficient for processing real-time ANN queries. 
 

Similar to data-dependent hashing techniques, Convolutional Neural Networks (CNNs) have 

become very popular in finding similar media objects [25]. Multi-view alignment hashing 

(MVAH) [26] learns hash codes with regularized kernel non-negative matrix factorization. It 

considers both the hidden semantics and joint probability distribution of multiple visual 

features. To enhance the weights for changed views and concurrently produce the low-

dimensional illustration, it incorporates multiple visual features from different views together 

[26]. By first propagating through the network, [27] encodes incoming images in a faster 
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manner than conventional hashing methods. Afterward, it quantizes the network outputs to 

binary code representations. The YOLO model [28] operates on a single scale feature map to 

reframe object detection as a single regression problem. It predicts detections by running a 

neural network on a new image at 45 frames per second which accomplishes the mean average 

precision more than twice of other system works in real-time. CNN-based techniques and the 

above techniques require expensive offline processes such as training and building the neural 

networks which make them inefficient (and un scalable) for processing real-time ANN queries 

[25].  
 

3.2. Real-time Variants of Locality Sensitive Hashing 
 

While there are several real-time/streaming applications in high-dimensional spaces that 

leverage LSH, there have been few works [29, 30, 31] that aim at improving LSH for streaming 

applications. In [29], the authors present a parallel LSH framework that is designed to handle 

similarity searches on incoming twitter data. The goal of their cache-conscious model is to 

improve on the creation and updation of the hash tables (which are based on the original LSH 

design). Similar to other works on Twitter streaming data, the incremental design of the hash 

tables is designed for social media data where data can expire. In this work, the authors also 

propose an insert-optimized delta hash table that is periodically merged into the main LSH 

structure. [30] works on a fast and effective online generation of LSH signatures for streaming 

data. This work is only applicable to the original LSH design; meanwhile, their goal is to 

decrease the size of the hash tables when compared to the original work in the presence of 

streaming data. These works are not optimized for newer LSH designs (that involve Collision 

counting and Virtual rehashing). [31] introduces a technique called “oLSH” (for online LSH) 

which improves buffering of incoming data records by storing similar records together on pages. 

This work does not try to solve the ANN problem in high-dimensional spaces. Instead, they use 

the “idea” of LSH of storing similar records together on pages for streaming network data and 

hence call their technique “oLSH”. 
 

4. PROBLEM SPECIFICATION 
 

Given a multidimensional database D that contains points that belong to a bounded 

multidimensional space S, the k-NN version of the Approximate Nearest Neighbour problem 

returns c-approximate results for a given query. Here, c is an approximation ratio greater than 1 

and k is the desired number of objects that the user wants to be returned. The goal is to return 

the correct results with a user-specified success probability, 1-δ.  
 

5. DRAWBACKS AND PROPOSED SOLUTIONS OF CURRENT STATE-OF-

THE-ART TECHNIQUES 
 

In this section, we first present the drawbacks for processing real-time image data of the two 

existing state-of-the-art techniques, C2LSH [17] and QALSH [18]. As mentioned in Section 2, 

real-time query processing systems require fast indexing of incoming data and low latency in 

query execution. The original LSH index structure [3] required many hash layers of several hash 

functions in order to return high accuracy for the input queries. Additionally, the width of the 

hash bucket of the hash projections had to be pre-determined before populating the index 

structure.   
 

5.1. Collision Counting Locality Sensitive Hashing (C2LSH) 
 

C2LSH was proposed in [17] that solved these problems by introducing a collision counting 

method that effectively reduced the index sizes by reducing the number of required hash 
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functions. Additionally, it introduced Virtual Rehashing that solved the problem of pre-

determination of the width of the hash bucket. In order to use these techniques and return 

correct results with a 1-δ success probability (where δ is a user-specified probability), C2LSH 

requires m hash projections to be built. By using Collision Counting, C2LSH avoids creating 

multiple hash functions in each layer and instead only requires one hash function per layer, and 

by using Virtual Rehashing, C2LSH can automatically determine the query radius in order to 

return top-k results. Additionally, C2LSH can also determine the number of layers required for a 

dataset (which depends on the cardinality of the dataset) to satisfy a given success probability. 

While the memory footprint was much lower and the parameter tuning drawback was solved,  

the accuracy of C2LSH was still not high [18]. 
  
Implementation details: for each projection, C2LSH stores a bucket number for each dataset 

point. These values are then copied into a vector and sorted. It is worth mentioning that sorting 

can be done on the array itself and copying into a vector and sorting the vector has lower 

efficiency. For each projection, a separate binary index file is created. The number of buckets is 

written to the file as the first 4 bytes. The header size of this file is 4 bytes for the number of 

buckets and 8 bytes (4 bytes for bucket number and 4 bytes for its offset) for each of the 

buckets. After writing the header, the algorithm writes the ids belonging to each bucket in the 

file. As a result, having a bucket number, it is easy to get its offset and then seek to the offset 

and get all point ids in that bucket. This process is repeated for all projections. 
 

In the query processing phase, the whole dataset file is loaded into an array and parameters are 

calculated based on the dataset array. The hash functions are also read from the file. Then, the 

query set and ground truth files are loaded into their respective arrays. Next, the collision 

counting process (explained below) is done for each desired top K value and each query in the 

query set. After collision counting, the resultant distances are compared to the ground truth and 

the ratio is calculated. 
 

In the collision counting process, the hash value (and bucket number) of the query is calculated 

using the hash functions generated in the indexing phase. Then, based on a page size, which is 

user input, the initial radius (the number of buckets to process) is determined so that the size of 

these buckets is not greater than the page size. Based on this radius value, the left and right 

offsets for all projections are computed. C2LSH then continues processing these hash buckets 

and increasing the radius as long as the stopping conditions are not met. Also, to process 

buckets, based on the left and right offsets that were calculated based on the query bucket and 

radius, C2LSH reads the index files (from the secondary storage) in order to get the point IDs in 

that range and then increment the collision counts for those points. Each point that has a 

collision count more than or equal to a collision threshold is considered to be a candidate. 

Finally, the Euclidean distance is computed for the candidates and false positives are removed 

in order to return the final results to the user. 
 

Proposed improvements to C2LSH: To make this algorithm work in real-time and efficient 

for streaming applications, everything will need to be stored in memory for faster indexing and 

retrieval of real-time data. Right now, the collision counting is based on the file offsets and no 

actual buckets are involved. Basically, in the real-time scenario, after the arrival of each new 

data, we need to update the indexes and add the incoming data in them. One naïve way of doing 

this is to recreate the whole indexes as the new data arrives and build them from scratch using 

the new and previous data. However, since for each indexing phase, files need to be written to 

and read from the disk, the I/O cost is not efficient and will be a bottle-neck. Also, if a query 

arrives while the algorithm is still adding a new point to the indexes, the query processing will 

be further affected negatively. But since these are impractical requirements for many big data 

applications (where the index size is larger than the given memory size), the other option that 
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should be considered is to store a delta hash projection in main memory while the existing 

projection is stored on the secondary storage. This delta hash projection will index the incoming 

points so that expensive I/Os can be reduced for indexing the incoming points onto the 

projections on the disk.  

The delta hash projection can be implemented using dynamically allocated data structures which 

can be easily expanded as the new data arrives and is optimized for insertions. However, the 

drawback of using delta hash projection is that since internally their data is not stored 

contiguously, they are not optimized for querying. As a result, the delta hash projection 

eventually needs to be merged with the static data structure residing on the secondary storage. 

For this purpose, the users can have a threshold that defines the trade-off between insertion 

speed and querying speed. 
 

5.2. Query-Aware Locality Sensitive Hashing (QALSH) 
 

QALSH [18] was introduced that utilized these two novel techniques to improve upon accuracy 

(at the slight expense of performance). QALSH introduced query-aware hash functions by 

creating a B+-tree on each random projection and performing incremental range queries until 

top-k candidates are found. Note that, these hash functions are not created based on the query 

point, but rather the range queries are more intelligently executed based on the query point. 

Both of these approaches have one main restriction: as the dataset size grows, more hash 

functions are required to satisfy the query accuracy guarantee. Hence, as the dataset size grows, 

new projections need to be created in run-time and all dataset points need to be hashed (and 

these hash values have to be subsequently sorted) on to this new projection. Additionally, in 

order to keep the accuracy high, QALSH builds B+-trees on top of each projection, whose 

creation can be an expensive operation when new projections are created. 
 

Implementation details: The hash functions that QALSH uses are also generated randomly like 

C2LSH. Hash values of all dataset points in each projection are calculated and stored in arrays 

along with the point IDs. The arrays are sorted in ascending order of the hash values. Based on 

the page size, each index and leaf node in the B+-tree will have a certain amount of capacity. 

For page size of 4096 bytes, each leaf node can hold up to 1018 entries (since the point IDs are 

stored as integers and each integer requires 4 bytes to be stored), and each index node can hold 

up to 510 entries. Hash values are divided into 1018 sized parts and the lowest hash value in 

each part is used as the key of the leaf node. The tree is then built in a bottom-up fashion. After 

building the leaf nodes, each index node holds the keys for 510 leaf nodes. After building the 

trees for all projections, they’re written into binary files. In the binary files, the page size, 

number of nodes, and several zeroes are written as the header. The header is followed by the 

data in leaf nodes and index nodes. Since the size of each node was set to be equal to the page 

size, it’s easy to seek to a specific node and read its content. One of the issues with the current 

implementation of the B+-tree is that the algorithm is not benefiting much from the B+-tree as 

the number of index nodes is too small compared to the number of leaf nodes. Basically, that 

means that most of the operation is focused on doing range searches in the leaf nodes, without 

actually using the benefit of having a hierarchical tree-based structure. For example, for a 

dataset that contains 1 million 128-dimensional points (that are extracted using the SIFT 

algorithm [4]), each B+-tree contains 983 leaf nodes and only 2 index nodes. 
 

The collision counting technique is slightly different from C2LSH since QALSH uses B+-trees. 

In the collision counting phase, the hash values of the query are computed and based on those, 

the leaf nodes where the query belongs to are found. Moreover, a threshold will be defined as w 

* radius / 2.0f. This threshold will define the number of range queries to be performed in each 

radius value. Afterward, the algorithm enters a loop that increases the radius in each iteration, 

and as a result, the threshold gets increased in each iteration. The algorithm starts with the query 
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node and retrieves the left and right neighbouring nodes based on the threshold. For all IDs in 

these nodes, a frequency gets incremented at each time. When a frequency of a point reaches the 

collision threshold, that point will be added to the candidate list. The Euclidean distance is also 

computed for the candidates, and as soon as the stopping conditions are met, the algorithm 

breaks out of the loops. One main performance issue in this algorithm is that the range searches 

are being done in a bidirectional manner which results in more disk seeks. Moreover, if the 

query resides at the end of node X, at radius 1, the algorithm retrieves node X+1 instead of node 

X. Doing this, the algorithm is skipping the points in node X that might be near the query at 

radius 1. Also, the usage of the radius is not similar to the logical interpretation of it. The only 

effect that the radius has in this algorithm is changing the range search threshold. Therefore, a 

radius value of 2 does not mean that the algorithm will retrieve 2 neighbouring nodes.  
 

Proposed improvements to QALSH: QALSH returns more accurate results than C2LSH, 

mainly due to their usage of the B+-tree to provide query-aware hash functions. This 

improvement in the result accuracy comes with an overhead of maintaining the B+-trees. For 

static data, this overhead is worth the improvements in accuracy. But for real-time data, 

inserting and indexing data into the B+-trees incurs additional overhead. This overhead is 

dominant especially when the B+-trees are stored on the disk. Note that, every projection in the 

index structure has a B+-tree built on it. Thus, for each incoming data point, m B+-trees need to 

be updated. Additionally, similar to the delta hash functions introduced in Section 5.1, delta 

B+-trees should be used for efficient handling of real-time data. LSM-trees [29] are a popular 

indexing paradigm used to handle real-time data. While extending the B+-trees to LSM-trees is 

a simpler task, extending the concepts of Collision Counting and Virtual Rehashing to LSM-

trees is not trivial. Thus, in order to efficiently handle real-time high-dimensional data, modified 

LSM-trees should be created on top of each of the m projections. LSM-trees involve two 

components: one tree (called C0) that is stored in the main memory, while another tree (called 

C1) is stored on the secondary storage. Incoming data is added to C0 (in order to avoid the 

expensive I/Os of updating a tree on the secondary storage), and when C0 becomes full, C0 is 

merged with C1 and the process continues. Thus, Collision Counting will need to be updated so 

that it can run concurrently and efficiently to deal with two B+-trees.  
 

6. EXPERIMENTAL EVALUATION 
 

In this section, we present the experimental evaluation of C2LSH and QALSH for real-time 

scenarios. All experiments are performed on machines with the following configurations: Intel 

Core i7-6700, 16GB RAM, 2TB HDD, Ubuntu 16.04 OS, and GCC 7.4.0. The reported results 

are averaged over 50 queries to reduce any bias. The results are showing a simulation of the 

streaming implementation of C2LSH and QALSH. The codes are written in C++-11 and 

provided by the authors. Timers are added using the chrono library. We use the same settings 

for both algorithms (c=2, w=2.7191, δ=0.1).  
 

6.1. Datasets and Queries 
 

We use several datasets to provide a fair comparison for the two algorithms, C2LSH and 

QALSH. In particular, we used the following datasets: 
 

 Mnist dataset [33] was created from NIST’s Special Database 3 and Special Database 1 

which contains binary images of handwritten digits. The resulting dataset has 60,000 

examples and 50 dimensions,  

 Sift dataset [34] which contains the Sift descriptors extracted from images, and  

 Audio dataset [35] which contains the first 192 features extracted using the Marsyas 

library [36] from the telephone conversations. 
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These datasets cover both image and audio applications. From these datasets, we generated sub-

datasets with different cardinalities to help us with the simulation. Table 1 shows a summary of 

these datasets. In our simulated streaming scenario, we assume there are already some data 

points in the system that are already added to the indexes (20,000 for Mnist – 400,000 for Sift – 

10,000 for Audio). For the simulation, since some parameters such as the number of projections 

(and B+-trees) depend on the cardinality of the dataset, we assume the final cardinality is the 

last cardinality in Table 1, and create the indexes and parameters based on that. 
 

Table 1.  Datasets characteristics 

 

Name Dimensions Cardinalities 

Mnist 50 20,000 – 30,000 – 40,000 – 50,000 – 60,000 

Sift 128 400,000 – 600,000 – 800,000 – 1,000,000  

Audio 192 10,000 – 20,000 – 30,000 – 40,000 – 50,000 

 

For the queries, we chose the first 50 points from each dataset as the query set. Since the dataset 

points are shuffled themselves and LSH does not depend on the order of the points, there was no 

need to use random queries. Besides, choosing the first 50 points which are common between 

all cardinalities of the same dataset, guarantees that the comparison is fair. 
 

6.2. Evaluation Criteria and Parameters 
 

We evaluate the accuracy of the algorithms (ratio), which is computed based on the outputted 

distances and ground truth distances. Equation (1) shows how the ratio is calculated. In this 

equation oi is the ith object returned by a method, oi
* is the true ith nearest object, i = 1, 2, 3, …, 

k, and ||x, y|| denotes the Euclidean distance between two points x and y. We also provide 

detailed timers to simulate the indexing, query time, and disk I/O size of the streaming scenario. 

Since we do not change the underlying logic of the algorithm, note that the accuracy of the 

algorithms does not change (when compared to the original codes).  

           
6.3. Discussion of the Performance Results 
 

Although that in many applications, indexing is an offline process and its time is not included in 

the total processing time; however, in the streaming applications where there is a need to 

constantly index the new incoming data, the indexing phase of the algorithms should also be 

considered as important. Therefore, we measured the indexing time on different datasets and 

different cardinalities. The results of this experiment are shown in Fig. 1. This figure shows the 

benefits of QALSH indexing method over C2LSH algorithm. The reason behind having a better 

indexing time in the QALSH algorithm is that QALSH uses an already organized data structure 

(B+-tree), where it is divided into index and leaf nodes. Furthermore, since B+-trees have been 

around since a long time ago, they have been fully optimized over the years and their overhead 

is small. However, C2LSH uses its own custom data structure using the file offsets. Building 

this custom data structure has a larger overhead compared to QALSH. Another observation 

from Fig. 1 is that C2LSH is not scalable as the cardinality of the dataset increases. The index 

structure in C2LSH only contains one header and increasing the data size will make a lot of 

header data included in this single header structure which makes it inefficient.  
 

(1) 
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Figure 1.a.  Effect of cardinality on Indexing Time in the Audio dataset 

  

     
 

Figure 1.b.  Effect of cardinality on Indexing Time in the Mnist dataset 

 

     
 

Figure 1.c.  Effect of cardinality on Indexing Time in the Sift dataset 
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We then show the effect of cardinality on the query time for the different datasets in Fig. 2. 

Query time is mainly the most important factor for users in offline applications. In terms of 

query time, our analyses showed us that our datasets are not large enough to fully benefit the 

features of a B+-tree. Therefore, a simple custom structure like C2LSH index structure will 

serve the users better in the query processing phase. It can also be seen in Fig. 2, C2LSH has a 

better query time compared to QALSH. For the Sift dataset, which is one of the common 

datasets in Big Data researches, the query time of QALSH is about 50% times more than the 

query time in C2LSH. The figure also shows us that C2LSH is more scalable as the cardinality 

increases. Talking about scalability, a large B+-tree will have a lot of vertical and horizontal 

traversals, which will make the querying slow, and that is the reason why QALSH is not having 

good scalability in terms of query processing.  
 

     
 

Figure 2.a.  Effect of cardinality on Query Time in the Audio dataset  

 

     
 

Figure 2.b.  Effect of cardinality on Query Time in the Mnist dataset 
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Figure 2.c.  Effect of cardinality on Query Time in the Sift dataset 

 

The main purpose of the ANN methods is to provide users with the most accurate results in the 

shortest time possible. Therefore, a lower ratio will help users have the closest results to the 

exact nearest neighbors. Fig. 3 shows the ratio for different cardinalities of the datasets. Since a 

ratio value of one shows the best accuracy and considered to be the baseline, all of these ratio 

values are near one and considered accurate. Results also show that as the cardinality increases, 

QALSH will have a better ratio value compared to C2LSH. 
 

     
 

Figure 3.a.  Effect of cardinality on Ratio in the Audio dataset 
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Figure 3.b.  Effect of cardinality on Ratio in the Mnist dataset  

 

     
 

Figure 3.c.  Effect of cardinality on Ratio in the Sift dataset 

 

7. CONCLUSIONS 
 

In this paper, we present the challenges of real-time processing of image data. Through 

extensive analysis, we also discuss the drawbacks of existing state-of-the-art Locality Sensitive 

Hashing techniques. These techniques suffer from several drawbacks that make them unsuitable 

for real-time processing of high-dimensional image data. Additionally, we present our 

algorithmic and implementation analysis of the existing state-of-the-art locality sensitive 

hashing-based algorithms. Further, we proposed improvements over these techniques that can 

improve the performance of these techniques in real-time environments. Our experimental 

analysis confirms our algorithmic and implementation analysis.  
 

8. FUTURE WORK 
 

In the future, we are planning to implement our proposed technique and also apply it to other 

ANN techniques. This will help us compare and observe the benefits of our proposed technique 

over several ANN techniques. We also plan on comparing with the existing real-time ANN 
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techniques which are not based on Locality Sensitive Hashing. In the paper, we mentioned that 

there are several trade-offs between insertions and querying and also between accuracy and 

performance. Our future research will also be focused on analyzing these trade-offs and finding 

the optimal configurations for given scenarios. 
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