

Natarajan Meghanathan et al. (Eds) : CSEIT, CMLA, NeTCOM, CIoT, SPM, NCS, WiMoNe, Graph-hoc - 2019

pp. 01-17, 2019. © CS & IT-CSCP 2019 DOI: 10.5121/csit.2019.91301

SEMANTIC DOCUMENT CLASSIFICATION

BASED ON STRATEGIES OF SEMANTIC

SIMILARITY COMPUTATION AND

CORRELATION ANALYSIS

Shuo Yang1*, Ran Wei2, Hengliang Tan1, and Jiao Du1

1School of Computer Science and Cyber Engineering, Guangzhou University,

Guangzhou, China
2Department of Computer Science, University of California, Irvine, California,

USA

ABSTRACT

Document (text) classification is a common method in e-business, facilitating users in the tasks

such as document collection, analysis, categorization and storage. Semantic analysis can help
to improve the performance of document classification. Though having been considered when

designing previous methods for automatic document classification, more focus should be given

to semantics with the increase number of content-rich electronic documents, forum posts or

blogs online, which can reduce human workload by a great margin. This paper proposes a

novel semantic document classification approach aiming to resolve two types of semantic

problems: (1) polysemy problem, by using a novel semantic similarity computing strategy (SSC)

and (2) synonym problem, by proposing a novel strong correlation analysis method (SCM).

Experiments show that our strategies can help to improve the performance of the baseline

methods.

KEYWORDS

semantic document classification, semantic similarity, semantic embedding, correlation

analysis, machine learning

1. INTRODUCTION

Automatic document classification has many applications in numerous electronic business (e-

business) scenarios [2]. For example, a medium-sized company may receive quite a few emails

daily without accurate and concrete information such as recipient’s name or department, which

have to be read by an assigned agent so that the destinations can be determined. Thus, it is no
doubt that an automatic document classification system can reduce human workload to a great

extent.

More generally, given the rapid growth of web digital documents, it is often beyond one’s ability
to categorize information by reading thoroughly the pool of documents. Accurate and automatic

text classification techniques are hence needed, which can classify the incoming text documents

2 Computer Science & Information Technology (CS & IT)

into different categories such as news, emails, contracts, reports, etc. Users can hence estimate the
content and determine the priorities of each document, maintaining more organized working

schedule and creating more business value [28].

A quantitative definition of text classification was proposed by Aggarwal and Zhai [1]: given a

set of text documents D = {x1,x2,...xN}, each document xi has to be assigned with a set of different

selected indices {1,2,...,k} that represents k different labels of text categories from an overall index

list.

A typical method of automatic text classification is that given a training set of documents with
known category labels and word dependency information, calculation on each member of the test

document set has to end up with a list of possibilities on each label assigned to it. Certainly, the

label with the highest likelihood corresponds to the predicted category that a test document
belongs to. Classical machine learning (ML) algorithms such as Bayesian classifier, decision

Tree, K-nearest neighbour, support vector machine and neural network were often applied in text

classification [16]. In recent years deep learning algorithms are also introduced in these tasks.
One of the representative trials was the application of convolutional neural network (CNN), a

powerful network in computer vision [17]. Recurrent neural network, which has memory function

that can capture sequence-formed information, was later introduced and became popular to

handle classification problems [36].

However, most baselines mentioned above seldom view the classification problem from the

perspective of semantic analysis. For example, the traditional Bayesian-based text classification

method constructs a classification model based on the frequencies of some feature words in
corpus. Unfortunately, this method does not take into account polysemous words (a word which

holds different meanings depending on the context) and synonymous words (different words

which hold a similar meaning) for semantic analysis during the classification procedure. For
example, the Chinese word “Xiaomi” can mean either an agricultural product or a high-tech

company; therefore, when classifying documents based on the traditional Bayesian method,

documents including “Xiaomi” may be classified as “agriculture” or “technology”. Similar

problems also exist in the classification of English documents. For example, English documents
containing the word “program” may not only represent computer code programs and be classified

as “computer”, but also represent a scheduled radio or television show and be classified as

“entertainment”. Similarly, English articles containing the word “center” can either represent a
geometric center and be classified as “mathematics”, or an important place of economy and

culture and be classified as “geography”.

On the other hand, synonymous words can also cause mis-classification of documents. For
example, the word “people” is synonymous with “mass” and “mob”. But they may occur in

articles about different topics (e.g., architecture, culture and history). Therefore, choosing these

words as features of the classification model may cause classification errors. These situations also
exist in document classification tasks of word-embedding-based deep learning methods. For

example, during feature extraction procedure the word dependence is calculated based on

network training upon a particular corpus; in other words, the result is based on the statistical

analysis on the posterior probability of a word following another one. However, a single
embedding cannot represent multiple meanings, while similar embeddings may refer to different

topic types.

Computer Science & Information Technology (CS & IT) 3

The above issues can be summarized as two research problems:

(1) Problem of polysemy: some words have multiple meanings, which may lead to mis-

classification of documents;

(2) Problem of synonym: different words with similar meanings are often used in different
scenarios, but when they appear in an article at the same time, it may lead to mis-classification of

documents;

Khan et al. [16] suggested that semantic analysis could help enhance the performance of
classification. Previous work has made significant progress on this task. Fang, Guo, Wang and

Yang (2007), and Khan, Baharudin, Lee and Khan (2010) claimed that semantic analysis can be

generally implemented by the introduction of ontology that represents terms and concepts in a
domain-wised manner [8,16]. However, ontologies are particularly pre-defined domain-constraint

expert knowledge base. They are not good at eliminating ambiguity across different fields

(domains) or different natural languages, which may lead to polysemy and synonymy issues [29],

finally resulting in uncertainty of document classification [9]. Liu, Scheuermann, Li and Zhu
(2007) proposed a text classification method based on WordNet for word sense disambiguation

(WSD) [20]. Some other approaches use supervised (Jin, Zhang, Chen, Xia (2016) [12]) or

unsupervised method or the joint method of them (Wawer and Mykowiecka (2017) [32]) for word
disambiguation. However, few methods consider document misclassification caused by both the

ambiguity of polysemy and multi-scene characteristics of synonym at the same time. In recent

years, some approaches use name entities for text classification. For example, Stefan, Miroslav,

Ivan, Marko and Aleksandar (2017) proposed a method based on name entity network linking.
However, the author showed that their experiment results did not show any significant

improvement when using named entities, and in some cases even worse performance [28].

Türker, Koutraki, Zhang and Sack (2018) proposed an approach based on a name entity

dictionary (i.e., Anchor-Text Dictionary). However, if the words of the text do not exist in the

dictionary, the classification results may be biased [30].

HIT IR-Lab Tongyici Cilin (Extended) proved that extending word meaning effectively or

replacing keywords with synonyms can significantly improve the performance of information

retrieval, text classification and automatic question answering system [13]. Motivated by this

linguistic evidence, in this research, we propose two strategies to improve the performance of

semantic document categorization of baselines. The first strategy aims to solve polysemy problem

by using a novel semantic similarity computing method (SSC) so that the most context-fitting

meaning of a word can be determined by referring to the meaning of similar sentences in a

common dictionary. In this paper, CoDic [10,34] and Hownet [7] are used as common dictionaries
for meaning determination and term expansion. With the help of CoDic and Hownet, words with

ambiguity will be removed from the feature list, enabling more distinctive features to be selected.

The second strategy aims to solve the synonym problem by adopting a strong correlation analysis

method (SCM), where synonyms unrelated to the classification task are deleted. Otherwise, select
the specific meaning of one word in the synonym group from the common dictionary and replace

the other synonyms in the same group.

4 Computer Science & Information Technology (CS & IT)

2. RELATED WORK

Automated document classification, also called categorization of document, has a history that can
date back to the beginning of the 1960s. The incredible increase in online documents in the last

decades intensified and renewed the interests in automated document classification and data

mining. In the beginning, document classification focused on heuristic methods, that is, solving
the task by applying a group of rules based on expert knowledge. However, this method was

proved to be inefficient, so in recent years more focuses are turned to automatic learning and

clustering approaches. These approaches can be divided into three categories based the

characteristics of their learning phases:

(1) Supervised document classification: this method guidelines the whole learning process of

classifier model by providing complete training dataset that contains document content and

category labels at the same time. The process of supervision is like that of students doing
exercises which have correct answers for them to refer to.

(2) Semi-supervised document classification: a mixture method between supervised and

unsupervised document classification. Parts of documents have category labels while the others
do not.

(3) Unsupervised document classification: this method is executed without priori knowledge of
the document categories. The process of unsupervised learning is like that of students doing final

examination which they do not have standard answers for reference.

However, no matter what kinds of learning methods, many of them require to firstly convert

unstructured text to digital numbers in the data pre-processing stage. The most traditional (and
intuitional) algorithm is one-hot representation, which uses N-dimension binary vector to

represent vocabulary with each dimension stands for one word [16]. However, this strategy easily

incurs curse of dimensionality for representation of long texts. This is because a big vocabulary
generates high-dimension, but extremely sparse vectors for long documents. Therefore,

dimensionality reduction operation which removes redundant and irrelevant features is needed

[4]. This demand is satisfied by the methodology called feature extraction/selection. The goal of
feature extraction is the division of a sentence into meaningful clusters and meanwhile removing

insignificant components as much as possible. Typical tasks at the pre-processing stage include

tokenization, filtering, lemmatization and stemming [31]. After that, feature selection aims to

select useful features of a word for further analysis. Compared with one-hot representation that
generates high-dimensional, sparse vectors, an improved solution called TF-IDF produces more

refined results. In this frequency-based algorithm, the importance of a word is represented by the

product of term frequency (how frequent the word shows up in a document) and inverse
document frequency (log-inverse of the frequency that documents containing such word in the

overall document base) [21,31]. These two algorithms, however, clearly suffer from limitations

brought by neglecting the grammar and word relations in documents. More recently, distributed
representation that illustrates dependencies between words are more widely used, as it reflects the

relationships of words in one document [23]. Currently, the most widely used strategy to learn the

vectorized words is to maximize the corpus likelihood (prediction-based), with the word2vec

toolbox being one of the most popular tools. Implementation of this algorithm is dependent on the
training of representation neural network with words in the form of binary vectors generated by

Computer Science & Information Technology (CS & IT) 5

one-hot representation. The weights of the network keep being updated until convergence, which
generates a vector that lists the possibility of each word could follow the input word in a

document [16,23].

3. SEMANTIC DOCUMENT CLASSIFICATION

This section proposes two novel strategies to resolve the research problems mentioned above.

3.1. Strategy to Resolve Polysemy Problem: SSC

The first strategy aims to solve polysemy problem by using a novel semantic similarity
computing method. The most context-fitting meaning of a word can be determined by referring to

the semantics of related sentences in a common dictionary (e.g., CoDic for English and Hownet

for Chinese).

In this strategy, we implement the semantic similarity computing method (SSC) for the similarity

between two sentences. The SSC splits a text document into sentences. For each word (w) in a

sentence (s), all of its concepts from the dictionary are extracted based on its Part-of-speech (PoS)
tag in the sentence. Then, semantically compare each concept of w with s and return the concept

with the maximum similarity score. Words that are not determinative of their exact meanings will

be removed from the list of features, and hereby more distinctive terms are more likely to be
selected as features. The pseudocode of the SSC algorithm is shown as Table 1.

The workflow of the SSC is quite simple. From Table 1, it is clear that the first step is to segment

each sentence into words (word_tokenize) and tokenize each word (pos_tag) with its part of
speech. Then, we get the synonym set (synset) for each tagged word in the sentence according to

their PoS (tagged_to_synset). After that, we filter out the null component in each synset. Next, for

each synset in the first sentence (sent1), we compute the similarity score of the most similar word
(compute_similarity) in the second sentence (sent2). The aim of our function compute_similarity

is to measure the similarity between two synsets. If two words are similar, their synsets should

also be similar. This is because if two words are very similar, then their correlations with the
same some other words will be very close. On the other hand, if the correlation between two

words and the same some other words is close, then the two words are similar to each other [26].

Table 1. Semantic similarity computing (SSC)

Algorithm: semantic similarity computing (SSC)

Input: target sentence (ts); a set of test sentences (ss)

Output: the most similar sentence (s in ss) to ts with its maximum similar score (max)

def sentence_similarity (sentence1, sentence2)
#Tokenize & pos tag

sentence1 = pos_tag(word_tokenize(sentence1))

sentence2 = pos_tag(word tokenize(sentence2))

Get the synsets for the tagged words
synsets1 = [tagged_to_synset(*tagged word) for tagged_word in sentence1]

synsets2 = [tagged_to_synset(*tagged word) for tagged_word in sentence2]

Filter out the Null values
synsets1 = [synset1 for synset1 in synsets1 if synset1]

6 Computer Science & Information Technology (CS & IT)

synsets2 = [synset2 for synset2 in synsets2 if synset2]
score, count = 0.0, 0

For each word in the first sentence

for synset1 in synsets1

Get the similarity score of the most similar word in the second sentence
best_score = max([synset1.compute_similarity(synset2) for synset2 in synsets2])

Check that whether the similarity could have been computed if best score is not None

score += best_score
count += 1

Average the values

score /= count

return score # end of sentence similarity function
__main__

max = 0.0

most_similar_sentence = None
for s in ss

value1 = sentence_similarity(s, ts)

value2 = sentence_similarity(ts, s)
avg_similarity = (value1 + value2) / 2

if avg_similarity >maximum:

most_similar_sentence = s

max = avg_similarity
print (“The most similar sentence is {}, with score {}”.format(most similar sentence, max))

In the function of compute_similarity, when calculating the similarity of any two words in two

synsets, we applied the mean value of multiple methods (if applicable): Path Similarity (PS) [3],
Leacock-Chodorow (LCH) [18], Wu-Palmer (WUP) [33] and Lin [19]. This is because when

using thesaurus (dictionary) alone to calculate the similarity, if the word is not in the dictionary,

the similarity cannot be calculated.

PS computes the shortest number of edges from one word to another, assuming that a hierarchical

structure exits (like WordNet that is essentially a graph) [22]. In general, two word that have a

longer path distance are less similar than those with a very short path distance. If there is no path

between two words, PS will return a Null value. This is another reason why we use different
similarity measures.

simpath(c1, c2) = pathLen(c1, c2) (1)

where c1, c2 are two words, and pathLen(c1,c2) is the shortest number of edges between those two
words in a given thesaurus.

LCH is almost the same as PS, except it uses the negative logarithm of the result of the length of

path.

simpath(c1, c2) = − log(pathLen(c1, c2)) (2)

Based on LCH, WUP metric expands it by weighting the edges according to the distance in the

hierarchy. Unlike the above methods, Lin metric considers similarity as both the information

Computer Science & Information Technology (CS & IT) 7

content shared between two words, and the difference. It calculates the probability of the lowest
common word between two words c1 and c2, which is the lowest-leveled node in the hierarchy

that is the parent of both c1 and c2 based on the corpora used [22].

After computing the similarity score of all synsets of sent1 with that of sent2, an average
similarity value between them can be returned. By using this method, we can acquire the

similarity values between all test sentences (ss) and the target sentence (ts). In the end, the test

sentence with the maximum similarity value can be chosen as the most semantically similar

sentence.

3.2. Strategy to Resolve Synonym Problem: SCM

There may be many synonyms in a large text, but not all of them are suitable as text features. As
is known to all, selecting effective text features can reduce the dimension of feature space,

enhance the generalization ability of the model and reduce overfitting, so as to improve the effect

and efficiency of classification and clustering [5]. Therefore, effective feature selection is
particularly important. In this section, we can turn the synonym problem into a sub-problem: how

to determine the degree of the relevance between a feature and the classification task and then

remove the feature words in the synonym group that are weakly relevant to or irrelevant to the
classification task.

In this paper, a novel correlation analysis algorithm, named SCM, is proposed to obtain effective

feature sets. The idea of the SCM contains two important considerations:

The feature words with strong category discrimination ability are extracted by using the category

discrimination method (CDM), and then the correlation between other feature words and
categories is measured by the feature correlation analysis (FCA). That is, the selected feature is

guaranteed to be the most relevant to the category first, and then the degree of correlation

between other features and selected features is calculated.

If a feature has a strong correlation with the selected feature, the SCM will not include it into the

feature candidate set even if the feature has a strong correlation with the category. Because

compared with existing feature candidate set, the new undetermined features cannot provide
additional category-related information.

This paper adopts TF-IDF (Term Frequency-Inverse Document Frequency) [14,27] as the
implementation of CDM. By applying TF-IDF to the synonym group in undetermined features,

we can get a feature candidate set composed of a number of features with strong category

discrimination ability. The TF-IDF method is a frequency-based algorithm. In TF-IDF, the

importance of a word is represented by the product of the word frequency (i.e., the frequency
with which the word appears in the document) and the inverse document frequency (i.e., dividing

the total number of documents by the number of documents containing the term, and then taking

the logarithm of that quotient). The formulas of TFIDF are as follows.

tf𝑖,𝑗 =
𝑛𝑖,𝑗

∑ 𝑛𝑘,𝑗𝑘

(3)

8 Computer Science & Information Technology (CS & IT)

idf𝑖 = 𝑙𝑔
|𝐷|

|{𝐷𝑗: 𝑡𝑖𝜖 𝑑𝑗}| + 1

(4)

tf − idf𝑖,𝑗 = 𝑡𝑓𝑖,𝑗 ∗ 𝑖𝑑𝑓𝑖 (5)

where (3) refers to the importance of a term ti in a particular document dj. The molecule ni,j is the

number of occurrences of ti in dj, and the denominator is the sum of the number of occurrences of
all words in dj. Formula (4) is a measurement of the general importance of a word in all

documents. Its molecule represents the total number of documents in the corpus. The

denominator represents the number of documents containing the word ti. Formula (5) is the
product of “term (word) frequency (TF)” and “inverse document frequency (IDF)”. The more

important a word is to a certain category of texts, the higher its tf-idf value will be, and vice

versa. Therefore, TF-IDF tends to filter out common words and retain important words to certain

category of texts.

The SCM proceeds to calculate how strongly all features (in each synonym group) are related to

category (C) in the feature candidate set. The formulas are as follows,

 H(x) = ∑ (𝑝𝑖 ∗ 𝑙𝑔
1

𝑝𝑖
)𝑛

𝑖=0 (6)

𝐻(𝑋|𝑌) = ∑ 𝑝(𝑌𝑗) ∑ 𝑝(𝑋𝐼|𝑌𝐽)𝑙𝑔
1

𝑃(𝑋𝑖|𝑌𝑗)
𝑖𝑗

(7)

𝐼(𝑋|𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌) (8)

Corr(X, Y) =
𝐼(𝑋|𝑌) + 𝐼(𝑌|𝑋)

𝐻(𝑋) + 𝐻(𝑌)

(9)

where X is an n-dimensional random variable and Y is a certain of class (or category).
Formula (6) represents the entropy of X, that is the uncertainty of X. Formula (7) means the
uncertainty of X given the occurrence of Y. Formula (8) represents information gain between
H(X) and H(X|Y). Formula (9) is used to measure the degree of correlation between a
feature (X) and a category (Y).

According to the degree of correlation, the features in each synonym group are arranged in a
descending order respectively, and then the ordered feature sequences are put back into the

feature candidate set. Select the first feature in the sequence, that is, the feature with the strongest

correlation with category (C), and remove it from the feature candidate set and put it into the

feature result set.

In order to eliminate redundant features, it is necessary to calculate the degree of mutual

independence between any two features (within a synonym group). Thus, this section proposes a

novel feature correlation analysis method, called FCA, to exclude unnecessary features in
synonym groups of the feature candidate set. The idea of the FCA is simple: if a remaining

feature in the candidate set is a strong category-correlated feature, and its mutual independence

with the selected feature is greater than or equal to a threshold alpha, it indicates that the
candidate feature is independent of the selected feature, and it needs to be included in the feature

Computer Science & Information Technology (CS & IT) 9

result set. Otherwise, the feature is considered as redundant and should be deleted. Repeat this
process until the feature candidate set is empty. The formulas are as follows:

IDP(X𝑖 , Y|X𝑗) =
𝐼(X𝑖 , Y|X𝑗) + 𝐼(X𝑗 , Y|X𝑖)

2𝐻(𝑌)

(10)

I(X; Y|Z) = lg
𝑝(𝑋|𝑌𝑍)

𝑝(𝑋|𝑍)

(11)

where (10) is used to measure the degree of mutual independence between feature Xi and feature

Xj when the category (Y) is known. Formula (11) describe the mutual information between feature
X and feature Y in the case of given condition Z.

4. EXPERIMENTS

This section first introduces the datasets and evaluation metrics. Then, we experiment our

strategies based on several baselines with detailed experimental procedure. After that,

classification assessment is given based on the performance.

4.1. Dataset and Evaluation Metrics

To test the reliability and robustness of our strategy, we use:

Dataset 1: a movie review dataset from Rotten Tomatoes [24, 37]. This dataset contains 10662

samples of review sentences, with 50% positive comments and the remaining negative ones. The

size of the vocabulary of the dataset is 18758. Since the dataset does not come with an official
train/test split, we simply extract 10% of shuffled data as evaluation (dev) set to control the

complexity of model. In the next research stage, we will use 10-fold cross-validation on the

dataset.

Dataset 2: 56821 Chinese news dataset, which is available in PaddlePaddle 1 that is an open

source platform launched by Baidu for deep learning applications. It contains 10 categories:

international (4354), culture (5110), entertainment (6043), sports (4818), finance (7432),

automobile (7469), education (8066), technology (6017), stock (3654) and real estate (3858).
We assess the classification quality automatically with macro-average on accuracy and loss.

4.2. Experiment on neural network (NN)

In this experiment, the baseline CNN is taken as an example to compare the performance of

classical NN and the improved one with our proposed strategy in document classification. The

detail of model parameters is listed in Table 2. Both of the two trained models are evaluated on
the dev dataset every 100 global steps and then they are stored in checkpoints before the training

process starting again. After multiple training epochs, the models stored in checkpoint can be

recovered and used for testing on a new dataset. Partial code for this work is available on github 2.
The experimental procedure is described as follows.

10 Computer Science & Information Technology (CS & IT)

(1) Each document in the corpus will be firstly transformed into our semantic document (i.e.,
documents with semantics embedding) [35] by extending each polysemous word and category-

correlated synonymous word with its context-fitting concepts from the common dictionary (i.e.,

CoDic for English and Hownet for Chinese) with the help of the SSC and the SCM strategies,

which aims for accurate semantic interpretation and term expansion.

CoDic is a semantic collaboration dictionary constructed under our CONEX project [10,34,35].

In CoDic, each concept is identified by a unique internal identifier (iid). The reason of this design

is to guarantee semantic consistency and interoperability of documents while transferring across
heterogeneous contexts. For example, from Figs. 1 and 2, it is clear that in CoDic, the word

“program” with the meaning of “a scheduled radio or television show” is uniquely labelled by an

iid “0x5107df021015”, while its another meaning “a set of coded instructions for insertion into a
machine...” has another unique iid “0x5107df02101c”. Currently, CoDic is implemented in XML,

where each concept is represented as an entry with a unique iid (see Fig. 3). It is convenient to

extract all different meanings of any given word for later semantic analysis by using existed
packages (e.g., xml.etree.cElementTree for Python and javax.xml.parsers for Java). Hownet as a

common dictionary to handle Chinese documents is used similarly.

Table 2. Parameter settings of our experiments

Parameters values

Percentage of splitting a dataset for training,

testing and validating, respectively

0.8/ 0.1/ 0.1

Dimensionality of character embedding 128

Filter sizes 3,4,5

Number of filters per filter size 128

Dropout keep probability 0.5

L2 regularization lambda 0.01

Batch Size 64

Number of training epochs 1/ 5/ 10/ 50/ 100

Evaluate model on evaluation (dev) dataset

after these steps

100

Figure 1. Word “program” with the meaning “a scheduled radio or television show” in CoDic

Computer Science & Information Technology (CS & IT) 11

Figure 2. Word “program” with the meaning “a set of coded instructions for insertion into a machine” in

CoDic

Figure3. CoDic in XML

(2) Build a SemCNN (CNN+SSC/SCM) network. The first layer embeds words and their extracted

accurate concepts into low-dimensional vectors. The second layer performs convolutions over the

semantic-embedded document tensors using different sized filters (e.g., filter size = [3, 4, 5]).
Different sized filters will create different shaped feature maps (i.e., tensors). Third, max-pooling

is used to merge the results of the convolution layer into a long feature vector. Next, dropout

regularization is added in the result of max-pooling to trade-off between the complexity of the
model being trained and the generalization of testing on evaluation dataset. The last layer is to

classify the result using a Softmax strategy.

(3) Calculate loss and accuracy. The general loss function for classification problems is the cross-
entropy loss which takes the prediction and the real value as input. Accuracy is another useful

metric being tracked during training and testing processes. It can be used to prevent model

overfitting during model training. At the beginning of the training, the training error on training
dataset and the verification error on the evaluation dataset will decrease continuously. However,

when the training process reaches a certain critical point, the accuracy of classification on the

evaluation dataset will decline while the accuracy of training will continue to increase. At this

12 Computer Science & Information Technology (CS & IT)

time, in order to avoid overfitting of the model, the training process should be interrupted and the
parameters at the critical point should be used as the training results of the model.

(4) Record the summaries/checkpoints during training and evaluation. After an object declaration

of CNN/SemCNN class, batches of data are generated and fed into it to train a reliable classification
model. While the loss and accuracy are recorded to keep track of their evolvement over iterations,

some important parameters (e.g., the embedding for each word, the weights in the convolution

layers) are also needed to be saved for later usage (e.g., testing on new datasets).

(5) Test the classification model. Data for testing are loaded and their true labels are extracted for

computing the performance of prediction. Then, the classification model is restored from the

checkpoints, executing on the test dataset and producing a prediction for each semantic

document. After that, the prediction results are compared with the true labels to obtain the testing
accuracy of the classification model.

4.3. Experiment on ML approaches

The procedures of training classification models using classical machine learning algorithms with

the proposed strategies are listed as follows, while the details can be also found in our open

source code.

(1) Transform words into vectors based on inputted texts (Note: Chinese document needs to

execute word segmentation beforehand.). Collect all words used in texts, perform a frequency

distribution and then find out effective features suitable for document classification by using the
proposed strategies (SSC and SCM). After that, each text will be converted to a long word vector,

where True (or 1) means a word (or a feature) exists while False (or 0) means absent.

(2) Execute multiple classical machine learning approaches (e.g., Naïve Bayes, NB) based on the

word vectors from Step (1). In this experiment, three variants of NB classifier are used. They are

Original NB, multinomial NB and Bernoulli NB classifier. All of them take word features and

corresponding category labels as input to train classification models. It is of note that sometimes
the classifier should be modified based on realistic cases. For example, in order to avoid the

probability being close to zero and underflow problem in NB, it is better to initialize the

frequency of each word to one and take natural log of the product in the computation of posterior
probability, respectively.

(3) Save the trained classifiers for later usage. This is because the training process might be time-

consuming, which depends on numerous factors such as dataset size and the computation

complexity during model training. Thus, it is impractical to train classification models each time
while you need to use them.

(4) Boost multiple classifiers to create a voting system that is taken as a baseline for comparison.

To do this, we build a typical classifier (i.e., VoteClassifier) with multiple basic classical ML
classification algorithms (i.e., taking multiple basic classifier objects as input when initialized),

each of which gets one vote. In VoteClasssifier, the classify method is created by iterating

through each basic ML classifier object to classify based on the same input features. This
experiment chooses the most popular metrics (e.g., accuracy) among these classifiers. The

classification can be regarded as a vote. After iterating all the classifier objects, it returns the most

popular vote.

Computer Science & Information Technology (CS & IT) 13

4.4. Experiment Result and Analysis

In the actual testing process, we need to maintain a common synonymous word dictionary and a

common polysemous word dictionary. The reason we need to maintain these two dictionaries is
that the computation workload to judge polysemy and synonyms in a long text are very heavy.

For example, if there are n words in a text and each word has m different meanings, then the

computational complexity of determining polysemous words is O(n∗m), and the computational

complexity of determining synonyms is O(n∗(n−1)), so that the total computational complexity is

O(n∗(m+n−1)) > O(n2). Therefore, maintaining these two dictionaries can reduce computational

complexity and reduce the pre-processing time of text classification.

Table 3 shows the experimental comparison between classical machine learning algorithms and

their improved counterparts on Dataset 1. In this experiment, classical machine learning
algorithms include Original Naïve Bayes (NB), Multinomial Naïve Bayes (MNB), Bernoulli

Naïve Bayes (BNB), Logistic Regression (LR), support vector machine (SVM) with stochastic

gradient descent (SGD), Linear SVC (SVC) and Nu-Support Vector Classification (NSVC).

From Table 3, it is clear that our improved algorithms have better performance than the classical

ML algorithms in the accuracy of model prediction on the evaluation dataset. It is of note that

three-variant NB algorithms and LR perform better than three-variant SVM algorithms, in both of
the classical ones and improved ones. The VoteClassifier plays a role of baseline for the

comparison between different algorithms. Table 4 and 5 show that SemCNN performs better than

CNN in terms of accuracy and loss in different numbers of epochs. As the number of epoch

increases, both of them increase in the accuracy of evaluation and decrease in the loss
continuously (before reaching overfitting).

Table 3. Comparison of classical machine learning algorithms and our improved ones on Dataset 1

Accuracy (%) Accuracy (%)

NB 73.493 Improved NB 78.464

MNB 74.698 Improved MNB 79.518

BNB 74.096 Improved BNB 79.819

LR 73.494 Improved LR 76.506

SGD 69.879 Improved SGD 74.096

SVC 72.741 Improved SVC 73.946

NSVC 72.892 Improved NSVC 76.355

VoteClassifier 74.397 Improved VoteClassifier 74.398

14 Computer Science & Information Technology (CS & IT)

Table 4. Comparison of SemCNN and traditional CNN on Dataset 1.

Number of epochs
Accuracy Loss

SemCNN CNN SemCNN CNN

Epoch = 1 0.586 0.568 0.818 0.876

Epoch = 5 0.713 0.676 0.567 0.59

Epoch = 10 0.744 0.722 0.519 0.62

Epoch = 50 0.841 0.724 0.621 0.742

Epoch = 100 0.902 0.739 0.961 0.999

Table 5. Comparison of SemCNN and traditional CNN on Dataset 2.

Number of epochs
Accuracy Loss

SemCNN CNN SemCNN CNN

Epoch = 1 0.861 0.828 0.473 0.560

Epoch = 5 0.956 0.923 0.211 0.295

Epoch = 10 0.990 0.953 0.095 0.212

Epoch = 20 0.990 0.966 0.0919 0.170

5. CONCLUSION

This paper introduces new strategies for semantic document classification. It mainly has two

improvements: (1) solving polysemy problem by using a novel semantic similarity computing
method (SSC). The SSC implements semantic analysis by executing semantic similarity

computation and semantic embedding with the help of common dictionary. In this paper, we use

CoDic for English texts and Hownet for Chinese texts. (2) solving synonym problem by
proposing a novel strong correlation analysis method (SCM). The SCM consists of the CDM

strategy for the selection of feature candidate set and the FCA strategy for the determination of

the final feature set. Experiments show that our strategy can improve the performance of semantic

document classification compared with that of traditional ones.

We will continue going deep in this research of semantic document classification. More multiple

deep learning models (e.g., DualTextCNN, DualBiLSTM, DualBiLSTMCNN or

BiLSTMAttention) will be tested for semantic document similarity on well-known document
datasets with different natural languages. We would also try to compare our strategies with state-

of-the-art embedding methods such as FastText [15], BERT [6] and ULMFit [11] and ELMo [25]

and other classification methods such as the ones based on knowledge graph.

ACKNOWLEDGMENT

This research is supported by both National Natural Science Foundation of China (grant no.:
61802079 and 61802418) and Guangzhou University grant (no.: 2900603143). The authors

would like to thank all the anonymous referees for their valuable comments and helpful

suggestions.

Computer Science & Information Technology (CS & IT) 15

REFERENCES

[1] Aggarwal, C.C., Zhai, C.: Mining text data. Springer Science & Business Media (2012)

[2] Altınel, B., Ganiz, M.C.: Semantic text classification: A survey of past and recent advances.

Information Processing & Management 54(6), 1129–1153 (2018)

[3] Budanitsky, A., Hirst, G.: Evaluating wordnet-based measures of lexical semantic relatedness.

Computational Linguistics 32(1), 13–47 (2006)

[4] Cerda, P., Varoquaux, G., K´egl, B.: Similarity encoding for learning with dirty categorical variables.

Machine Learning 107(8-10), 1477–1494 (2018)

[5] Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Computers & Electrical

Engineering 40(1), 16–28 (2014)

[6] Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers
for language understanding. arXiv preprint arXiv:1810.04805 (2018)

[7] Dong, Z., Dong, Q., Hao, C.: Hownet and the computation of meaning (2006)

[8] Fang, J., Guo, L., Wang, X., Yang, N.: Ontology-based automatic classification and ranking for web

documents. In: Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD

2007). vol. 3, pp. 627–631. IEEE (2007)

[9] Gambhir, M., Gupta, V.: Recent automatic text summarization techniques: a survey. Artificial

Intelligence Review 47(1), 1–66 (2017)

[10] Guo, J., Da Xu, L., Xiao, G., Gong, Z.: Improving multilingual semantic interoperation in cross-

organizational enterprise systems through concept disambiguation. IEEE Transactions on Industrial

Informatics 8(3), 647–658 (2012)

[11] Howard, J., Ruder, S.: Universal language model fine-tuning for text classification. arXiv preprint
arXiv:1801.06146 (2018)

[12] Jin, P., Zhang, Y., Chen, X., Xia, Y.: Bag-of-embeddings for text classification. In: IJCAI. vol. 16,

pp. 2824–2830 (2016)

[13] Jiu-le, T., Wei, Z.: Words similarity algorithm based on tongyici cilin in semantic web adaptive

learning system [j]. Journal of Jilin University (Information Science Edition) 6(010) (2010)

[14] Jones, K.S.: A statistical interpretation of term specificity and its application in retrieval. Journal of

documentation (2004)

[15] Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text classification. arXiv

preprint arXiv:1607.01759 (2016)

[16] Khan, A., Baharudin, B., Lee, L.H., Khan, K.: A review of machine learning algorithms for text-

documents classification. Journal of advances in information technology 1(1), 4–20 (2010)

[17] Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882
(2014)

[18] Leacock, C., Chodorow, M.: Combining local context and wordnet similarity for word sense

identification. WordNet: An electronic lexical database 49(2), 265–283 (1998)

[19] Lin, D., et al.: An information-theoretic definition of similarity. In: Icml. vol. 98, pp. 296–304.

Citeseer (1998)

[20] Liu, Y., Scheuermann, P., Li, X., Zhu, X.: Using wordnet to disambiguate word senses for text

classification. In: international conference on computational science. pp. 781–789. Springer (2007)

[21] Manning, C.D., Raghavan, P., Schu¨tze, H.: Scoring, term weighting and the vector space model.

Introduction to information retrieval 100, 2–4 (2008)

[22] Martin, J.H., Jurafsky, D.: Speech and language processing: An introduction to natural language

processing, computational linguistics, and speech recognition. Pearson/Prentice Hall Upper Saddle
River (2009)

[23] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words

and phrases and their compositionality. In: Advances in neural information processing systems. pp.

3111–3119 (2013)

[24] Pang, B., Lee, L.: Seeing stars: Exploiting class relationships for sentiment categorization with

respect to rating scales. In: Proceedings of the 43rd annual meeting on association for computational

linguistics. pp. 115–124. Association for Computational Linguistics (2005)

16 Computer Science & Information Technology (CS & IT)

[25] Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., Zettlemoyer, L.: Deep

contextualized word representations. arXiv preprint arXiv:1802.05365 (2018)

[26] Qun, L., Sujian, L.: Semantic similarity calculation based on zhiwang. International Journal of

Computational Linguistics and Chinese Language Processing 7(2), 59– 76 (2002)

[27] Salton, G., Fox, E.A., Wu, H.: Extended boolean information retrieval. Tech. rep., Cornell University
(1982)

[28] Stefan Aneli, Miroslav Kondi, I.P.M.J.A.K.: Text classification based on named entities. In: ICIST.

pp. 23–28 (2017)

[29] Thangaraj, M., Sivakami, M.: Text classification techniques: A literature review. Interdisciplinary

Journal of Information, Knowledge & Management 13 (2018)

[30] Tu¨rker, R., Zhang, L., Koutraki, M., Sack, H.: Tecne: Knowledge based text classification using

network embeddings. In: EKAW (Posters & Demos). pp. 53–56 (2018)

[31] Wang, Y., Wang, X.J.: A new approach to feature selection in text classification. In: 2005

International conference on machine learning and cybernetics. vol. 6, pp. 3814–3819. IEEE (2005)

[32] Wawer, A., Mykowiecka, A.: Supervised and unsupervised word sense disambiguation on word

embedding vectors of unambigous synonyms. In: Proceedings of the 1st Workshop on Sense, Concept

and Entity Representations and their Applications. pp. 120–125 (2017)
[33] Wu, Z., Palmer, M.: Verbs semantics and lexical selection. In: Proceedings of the 32nd annual

meeting on Association for Computational Linguistics. pp. 133–138.

[34] Association for Computational Linguistics (1994)

[35] Xiao, G., Guo, J., Gong, Z., Li, R.: Semantic input method of chinese word senses for semantic

document exchange in e-business. Journal of Industrial Information Integration 3, 31–36 (2016)

[36] Yang, S., Wei, R., Shigarov, A.: Semantic interoperability for electronic business through a novel

cross-context semantic document exchange approach. In: Proceedings of the ACM Symposium on

Document Engineering 2018. p. 28. ACM (2018)

[37] Young, T., Hazarika, D., Poria, S., Cambria, E.: Recent trends in deep learning based natural

language processing. ieee Computational intelligenCe magazine 13(3), 55–75 (2018)

[38] Zhang, Y., Wallace, B.: A sensitivity analysis of (and practitioners’ guide to) convolutional neural
networks for sentence classification. arXiv preprint arXiv:1510.03820 (2015)

AUTHORS

Shuo Yang received the Master's degree in software engineering from the Dalian

Jiaotong University, China, in 2013. He was awarded a doctorate degree in software

engineering, University of Macau, in 2017. Currently, he is a researcher in
Guangzhou University. His research interests include semantic interoperability and

semantic inference with AI technology, mainly applied to the fields of e-commerce, e-

marketplace and clinical area.

Ran Wei received the Ph.D. degree in biomedical science from Rutgers University,

USA, in 2018. He is currently a researcher in the Department of Computer Science,

University of California, Irvine. His interests focus on bioinformatics, health

informatics and artificial intelligence-aided healthcare.

Jiao Du was born in Chongqing, P.R.China, in1988. She received M.S. and Ph. D

degree from Chongqing University of Posts and Telecommunications, Chongqing,

P.R.China in 2013 and 2017, respectively. Currently, she is a lecturer with the school

the School of Computer Science and Educational Software, Guangzhou University,

Guangzhou 510006, China. Her research interests include pattern recognition and

image fusion.

Computer Science & Information Technology (CS & IT) 17

Hengliang Tan received his B.E. degree from Foshan University, Foshan, China, in

2006 and his M.E. and Ph.D. degrees from Sun Yat-sen University, Guangzhou, China,

in 2011 and 2016, respectively. He joined the School of Computer Science and Cyber

Engineering, Guangzhou University, Guangzhou, China in 2016. His current research
interests include machine learning, pattern recognition and manifold learning.

	Abstract
	Keywords
	semantic document classification, semantic similarity, semantic embedding, correlation analysis, machine learning

