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ABSTRACT 
 

Document (text) classification is a common method in e-business, facilitating users in the tasks 

such as document collection, analysis, categorization and storage. Semantic analysis can help 
to improve the performance of document classification. Though having been considered when 

designing previous methods for automatic document classification, more focus should be given 

to semantics with the increase number of content-rich electronic documents, forum posts or 

blogs online, which can reduce human workload by a great margin. This paper proposes a 

novel semantic document classification approach aiming to resolve two types of semantic 

problems: (1) polysemy problem, by using a novel semantic similarity computing strategy (SSC) 

and (2) synonym problem, by proposing a novel strong correlation analysis method (SCM). 

Experiments show that our strategies can help to improve the performance of the baseline 

methods. 
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1. INTRODUCTION 
 

Automatic document classification has many applications in numerous electronic business (e-

business) scenarios [2]. For example, a medium-sized company may receive quite a few emails 

daily without accurate and concrete information such as recipient’s name or department, which 

have to be read by an assigned agent so that the destinations can be determined. Thus, it is no 
doubt that an automatic document classification system can reduce human workload to a great 

extent. 
 

More generally, given the rapid growth of web digital documents, it is often beyond one’s ability 
to categorize information by reading thoroughly the pool of documents. Accurate and automatic 

text classification techniques are hence needed, which can classify the incoming text documents 
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into different categories such as news, emails, contracts, reports, etc. Users can hence estimate the 
content and determine the priorities of each document, maintaining more organized working 

schedule and creating more business value [28]. 
 

A quantitative definition of text classification was proposed by Aggarwal and Zhai [1]: given a 

set of text documents D = {x1,x2,...xN}, each document xi has to be assigned with a set of different 

selected indices {1,2,...,k} that represents k different labels of text categories from an overall index 

list. 
 

A typical method of automatic text classification is that given a training set of documents with 
known category labels and word dependency information, calculation on each member of the test 

document set has to end up with a list of possibilities on each label assigned to it. Certainly, the 

label with the highest likelihood corresponds to the predicted category that a test document 
belongs to. Classical machine learning (ML) algorithms such as Bayesian classifier, decision 

Tree, K-nearest neighbour, support vector machine and neural network were often applied in text 

classification [16]. In recent years deep learning algorithms are also introduced in these tasks. 
One of the representative trials was the application of convolutional neural network (CNN), a 

powerful network in computer vision [17]. Recurrent neural network, which has memory function 

that can capture sequence-formed information, was later introduced and became popular to 

handle classification problems [36]. 
 

However, most baselines mentioned above seldom view the classification problem from the 

perspective of semantic analysis. For example, the traditional Bayesian-based text classification 

method constructs a classification model based on the frequencies of some feature words in 
corpus. Unfortunately, this method does not take into account polysemous words (a word which 

holds different meanings depending on the context) and synonymous words (different words 

which hold a similar meaning) for semantic analysis during the classification procedure. For 
example, the Chinese word “Xiaomi” can mean either an agricultural product or a high-tech 

company; therefore, when classifying documents based on the traditional Bayesian method, 

documents including “Xiaomi” may be classified as “agriculture” or “technology”. Similar 

problems also exist in the classification of English documents. For example, English documents 
containing the word “program” may not only represent computer code programs and be classified 

as “computer”, but also represent a scheduled radio or television show and be classified as 

“entertainment”. Similarly, English articles containing the word “center” can either represent a 
geometric center and be classified as “mathematics”, or an important place of economy and 

culture and be classified as “geography”. 
 

On the other hand, synonymous words can also cause mis-classification of documents. For 
example, the word “people” is synonymous with “mass” and “mob”. But they may occur in 

articles about different topics (e.g., architecture, culture and history). Therefore, choosing these 

words as features of the classification model may cause classification errors. These situations also 
exist in document classification tasks of word-embedding-based deep learning methods. For 

example, during feature extraction procedure the word dependence is calculated based on 

network training upon a particular corpus; in other words, the result is based on the statistical 

analysis on the posterior probability of a word following another one. However, a single 
embedding cannot represent multiple meanings, while similar embeddings may refer to different 

topic types. 
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The above issues can be summarized as two research problems: 
 

(1) Problem of polysemy: some words have multiple meanings, which may lead to mis-

classification of documents; 
 

(2) Problem of synonym: different words with similar meanings are often used in different 
scenarios, but when they appear in an article at the same time, it may lead to mis-classification of 

documents; 
 

Khan et al. [16] suggested that semantic analysis could help enhance the performance of 
classification. Previous work has made significant progress on this task. Fang, Guo, Wang and 

Yang (2007), and Khan, Baharudin, Lee and Khan (2010) claimed that semantic analysis can be 

generally implemented by the introduction of ontology that represents terms and concepts in a 
domain-wised manner [8,16]. However, ontologies are particularly pre-defined domain-constraint 

expert knowledge base. They are not good at eliminating ambiguity across different fields 

(domains) or different natural languages, which may lead to polysemy and synonymy issues [29], 

finally resulting in uncertainty of document classification [9]. Liu, Scheuermann, Li and Zhu 
(2007) proposed a text classification method based on WordNet for word sense disambiguation 

(WSD) [20]. Some other approaches use supervised (Jin, Zhang, Chen, Xia (2016) [12]) or 

unsupervised method or the joint method of them (Wawer and Mykowiecka (2017) [32]) for word 
disambiguation. However, few methods consider document misclassification caused by both the 

ambiguity of polysemy and multi-scene characteristics of synonym at the same time. In recent 

years, some approaches use name entities for text classification. For example, Stefan, Miroslav, 

Ivan, Marko and Aleksandar (2017) proposed a method based on name entity network linking. 
However, the author showed that their experiment results did not show any significant 

improvement when using named entities, and in some cases even worse performance [28]. 

Türker, Koutraki, Zhang and Sack (2018) proposed an approach based on a name entity 

dictionary (i.e., Anchor-Text Dictionary). However, if the words of the text do not exist in the 

dictionary, the classification results may be biased [30]. 
 

HIT IR-Lab Tongyici Cilin (Extended) proved that extending word meaning effectively or 

replacing keywords with synonyms can significantly improve the performance of information 

retrieval, text classification and automatic question answering system [13]. Motivated by this 

linguistic evidence, in this research, we propose two strategies to improve the performance of 

semantic document categorization of baselines. The first strategy aims to solve polysemy problem 

by using a novel semantic similarity computing method (SSC) so that the most context-fitting 

meaning of a word can be determined by referring to the meaning of similar sentences in a 

common dictionary. In this paper, CoDic [10,34] and Hownet [7] are used as common dictionaries 
for meaning determination and term expansion. With the help of CoDic and Hownet, words with 

ambiguity will be removed from the feature list, enabling more distinctive features to be selected. 

The second strategy aims to solve the synonym problem by adopting a strong correlation analysis 

method (SCM), where synonyms unrelated to the classification task are deleted. Otherwise, select 
the specific meaning of one word in the synonym group from the common dictionary and replace 

the other synonyms in the same group. 

 
 

 

 



4                                   Computer Science & Information Technology (CS & IT) 

 

 

2. RELATED WORK 
 

Automated document classification, also called categorization of document, has a history that can 
date back to the beginning of the 1960s. The incredible increase in online documents in the last 

decades intensified and renewed the interests in automated document classification and data 

mining. In the beginning, document classification focused on heuristic methods, that is, solving 
the task by applying a group of rules based on expert knowledge. However, this method was 

proved to be inefficient, so in recent years more focuses are turned to automatic learning and 

clustering approaches. These approaches can be divided into three categories based the 

characteristics of their learning phases: 
 

(1) Supervised document classification: this method guidelines the whole learning process of 

classifier model by providing complete training dataset that contains document content and 

category labels at the same time. The process of supervision is like that of students doing 
exercises which have correct answers for them to refer to. 
 
(2) Semi-supervised document classification: a mixture method between supervised and 

unsupervised document classification. Parts of documents have category labels while the others 
do not. 
 
(3) Unsupervised document classification: this method is executed without priori knowledge of 
the document categories. The process of unsupervised learning is like that of students doing final 

examination which they do not have standard answers for reference. 
 

However, no matter what kinds of learning methods, many of them require to firstly convert 

unstructured text to digital numbers in the data pre-processing stage. The most traditional (and 
intuitional) algorithm is one-hot representation, which uses N-dimension binary vector to 

represent vocabulary with each dimension stands for one word [16]. However, this strategy easily 

incurs curse of dimensionality for representation of long texts. This is because a big vocabulary 
generates high-dimension, but extremely sparse vectors for long documents. Therefore, 

dimensionality reduction operation which removes redundant and irrelevant features is needed 

[4]. This demand is satisfied by the methodology called feature extraction/selection. The goal of 
feature extraction is the division of a sentence into meaningful clusters and meanwhile removing 

insignificant components as much as possible. Typical tasks at the pre-processing stage include 

tokenization, filtering, lemmatization and stemming [31]. After that, feature selection aims to 

select useful features of a word for further analysis. Compared with one-hot representation that 
generates high-dimensional, sparse vectors, an improved solution called TF-IDF produces more 

refined results. In this frequency-based algorithm, the importance of a word is represented by the 

product of term frequency (how frequent the word shows up in a document) and inverse 
document frequency (log-inverse of the frequency that documents containing such word in the 

overall document base) [21,31]. These two algorithms, however, clearly suffer from limitations 

brought by neglecting the grammar and word relations in documents. More recently, distributed 
representation that illustrates dependencies between words are more widely used, as it reflects the 

relationships of words in one document [23]. Currently, the most widely used strategy to learn the 

vectorized words is to maximize the corpus likelihood (prediction-based), with the word2vec 

toolbox being one of the most popular tools. Implementation of this algorithm is dependent on the 
training of representation neural network with words in the form of binary vectors generated by 
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one-hot representation. The weights of the network keep being updated until convergence, which 
generates a vector that lists the possibility of each word could follow the input word in a 

document [16,23]. 
 

3. SEMANTIC DOCUMENT CLASSIFICATION 
 

This section proposes two novel strategies to resolve the research problems mentioned above. 
 

3.1. Strategy to Resolve Polysemy Problem: SSC 
 

The first strategy aims to solve polysemy problem by using a novel semantic similarity 
computing method. The most context-fitting meaning of a word can be determined by referring to 

the semantics of related sentences in a common dictionary (e.g., CoDic for English and Hownet 

for Chinese). 

 
In this strategy, we implement the semantic similarity computing method (SSC) for the similarity 

between two sentences. The SSC splits a text document into sentences. For each word (w) in a 

sentence (s), all of its concepts from the dictionary are extracted based on its Part-of-speech (PoS) 
tag in the sentence. Then, semantically compare each concept of w with s and return the concept 

with the maximum similarity score. Words that are not determinative of their exact meanings will 

be removed from the list of features, and hereby more distinctive terms are more likely to be 
selected as features. The pseudocode of the SSC algorithm is shown as Table 1. 

 

The workflow of the SSC is quite simple. From Table 1, it is clear that the first step is to segment 

each sentence into words (word_tokenize) and tokenize each word (pos_tag) with its part of 
speech. Then, we get the synonym set (synset) for each tagged word in the sentence according to 

their PoS (tagged_to_synset). After that, we filter out the null component in each synset. Next, for 

each synset in the first sentence (sent1), we compute the similarity score of the most similar word 
(compute_similarity) in the second sentence (sent2). The aim of our function compute_similarity 

is to measure the similarity between two synsets. If two words are similar, their synsets should 

also be similar. This is because if two words are very similar, then their correlations with the 
same some other words will be very close. On the other hand, if the correlation between two 

words and the same some other words is close, then the two words are similar to each other [26]. 

 
Table 1. Semantic similarity computing (SSC) 

 

Algorithm: semantic similarity computing (SSC) 

Input: target sentence (ts); a set of test sentences (ss) 

Output: the most similar sentence (s in ss) to ts with its maximum similar score (max) 

def sentence_similarity (sentence1, sentence2) 
#Tokenize & pos tag  

sentence1 = pos_tag(word_tokenize(sentence1)) 

sentence2 = pos_tag(word tokenize(sentence2)) 

# Get the synsets for the tagged words  
synsets1 = [tagged_to_synset(*tagged word) for tagged_word in sentence1] 

synsets2 = [tagged_to_synset(*tagged word) for tagged_word in sentence2] 

# Filter out the Null values  
synsets1 = [synset1 for synset1 in synsets1 if synset1]  
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synsets2 = [synset2 for synset2 in synsets2 if synset2]  
score, count = 0.0, 0 

# For each word in the first sentence  

for synset1 in synsets1 

# Get the similarity score of the most similar word in the second sentence  
best_score = max([synset1.compute_similarity(synset2) for synset2 in synsets2] ) 

# Check that whether the similarity could have been computed if best score is not None 

score += best_score 
count += 1 

# Average the values 

score /= count 

return score # end of sentence similarity function 
# __main__ 

max = 0.0 

most_similar_sentence = None 
for s in ss 

value1 = sentence_similarity(s, ts)  

value2 = sentence_similarity(ts, s)  
avg_similarity = (value1 + value2) / 2 

if avg_similarity >maximum: 

most_similar_sentence = s 

max = avg_similarity 
print (“The most similar sentence is {}, with score {}”.format(most similar sentence, max)) 

 

In the function of compute_similarity, when calculating the similarity of any two words in two 

synsets, we applied the mean value of multiple methods (if applicable): Path Similarity (PS) [3], 
Leacock-Chodorow (LCH) [18], Wu-Palmer (WUP) [33] and Lin [19]. This is because when 

using thesaurus (dictionary) alone to calculate the similarity, if the word is not in the dictionary, 

the similarity cannot be calculated. 
 

PS computes the shortest number of edges from one word to another, assuming that a hierarchical 

structure exits (like WordNet that is essentially a graph) [22]. In general, two word that have a 

longer path distance are less similar than those with a very short path distance. If there is no path 

between two words, PS will return a Null value. This is another reason why we use different 
similarity measures. 
 

simpath(c1, c2)  =  pathLen(c1, c2) (1) 

 

where c1, c2 are two words, and pathLen(c1,c2) is the shortest number of edges between those two 
words in a given thesaurus. 
 

LCH is almost the same as PS, except it uses the negative logarithm of the result of the length of 

path. 
 

simpath(c1, c2) = − log(pathLen(c1, c2)) (2) 

 

Based on LCH, WUP metric expands it by weighting the edges according to the distance in the 

hierarchy. Unlike the above methods, Lin metric considers similarity as both the information 
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content shared between two words, and the difference. It calculates the probability of the lowest 
common word between two words c1 and c2, which is the lowest-leveled node in the hierarchy 

that is the parent of both c1 and c2 based on the corpora used [22]. 
 

After computing the similarity score of all synsets of sent1 with that of sent2, an average 
similarity value between them can be returned. By using this method, we can acquire the 

similarity values between all test sentences (ss) and the target sentence (ts). In the end, the test 

sentence with the maximum similarity value can be chosen as the most semantically similar 

sentence. 
 

3.2. Strategy to Resolve Synonym Problem: SCM 
 

There may be many synonyms in a large text, but not all of them are suitable as text features. As 
is known to all, selecting effective text features can reduce the dimension of feature space, 

enhance the generalization ability of the model and reduce overfitting, so as to improve the effect 

and efficiency of classification and clustering [5]. Therefore, effective feature selection is 
particularly important. In this section, we can turn the synonym problem into a sub-problem: how 

to determine the degree of the relevance between a feature and the classification task and then 

remove the feature words in the synonym group that are weakly relevant to or irrelevant to the 
classification task. 

 

In this paper, a novel correlation analysis algorithm, named SCM, is proposed to obtain effective 

feature sets. The idea of the SCM contains two important considerations: 
 

The feature words with strong category discrimination ability are extracted by using the category 

discrimination method (CDM), and then the correlation between other feature words and 
categories is measured by the feature correlation analysis (FCA). That is, the selected feature is 

guaranteed to be the most relevant to the category first, and then the degree of correlation 

between other features and selected features is calculated. 

 
If a feature has a strong correlation with the selected feature, the SCM will not include it into the 

feature candidate set even if the feature has a strong correlation with the category. Because 

compared with existing feature candidate set, the new undetermined features cannot provide 
additional category-related information. 

 

This paper adopts TF-IDF (Term Frequency-Inverse Document Frequency) [14,27] as the 
implementation of CDM. By applying TF-IDF to the synonym group in undetermined features, 

we can get a feature candidate set composed of a number of features with strong category 

discrimination ability. The TF-IDF method is a frequency-based algorithm. In TF-IDF, the 

importance of a word is represented by the product of the word frequency (i.e., the frequency 
with which the word appears in the document) and the inverse document frequency (i.e., dividing 

the total number of documents by the number of documents containing the term, and then taking 

the logarithm of that quotient). The formulas of TFIDF are as follows. 
 

tf𝑖,𝑗 =
𝑛𝑖,𝑗

∑ 𝑛𝑘,𝑗𝑘
 

(3) 
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idf𝑖 = 𝑙𝑔
|𝐷|

|{𝐷𝑗: 𝑡𝑖𝜖 𝑑𝑗}| + 1
 

(4) 
 

 

tf − idf𝑖,𝑗 = 𝑡𝑓𝑖,𝑗 ∗ 𝑖𝑑𝑓𝑖 (5) 

 

where (3) refers to the importance of a term ti in a particular document dj. The molecule ni,j is the 

number of occurrences of ti in dj, and the denominator is the sum of the number of occurrences of 
all words in dj. Formula (4) is a measurement of the general importance of a word in all 

documents. Its molecule represents the total number of documents in the corpus. The 

denominator represents the number of documents containing the word ti. Formula (5) is the 
product of “term (word) frequency (TF)” and “inverse document frequency (IDF)”. The more 

important a word is to a certain category of texts, the higher its tf-idf value will be, and vice 

versa. Therefore, TF-IDF tends to filter out common words and retain important words to certain 

category of texts. 
 

The SCM proceeds to calculate how strongly all features (in each synonym group) are related to 

category (C) in the feature candidate set. The formulas are as follows, 
 

 H(x) = ∑ (𝑝𝑖 ∗ 𝑙𝑔
1

𝑝𝑖
)𝑛

𝑖=0  (6) 

 

𝐻(𝑋|𝑌) = ∑ 𝑝(𝑌𝑗) ∑ 𝑝(𝑋𝐼|𝑌𝐽)𝑙𝑔
1

𝑃(𝑋𝑖|𝑌𝑗)
𝑖𝑗

 
(7) 

 

 

𝐼(𝑋|𝑌 )  =  𝐻(𝑋)  −  𝐻(𝑋|𝑌 ) (8) 
 

Corr(X, Y) =
𝐼(𝑋|𝑌) + 𝐼(𝑌|𝑋)

𝐻(𝑋) + 𝐻(𝑌)
 

(9) 

 
where X is an n-dimensional random variable and Y is a certain of class (or category). 
Formula (6) represents the entropy of X, that is the uncertainty of X. Formula (7) means the 
uncertainty of X given the occurrence of Y. Formula (8) represents information gain between 
H(X) and H(X|Y ). Formula (9) is used to measure the degree of correlation between a 
feature (X) and a category (Y). 
 
According to the degree of correlation, the features in each synonym group are arranged in a 
descending order respectively, and then the ordered feature sequences are put back into the 

feature candidate set. Select the first feature in the sequence, that is, the feature with the strongest 

correlation with category (C), and remove it from the feature candidate set and put it into the 

feature result set. 
 

In order to eliminate redundant features, it is necessary to calculate the degree of mutual 

independence between any two features (within a synonym group). Thus, this section proposes a 

novel feature correlation analysis method, called FCA, to exclude unnecessary features in 
synonym groups of the feature candidate set. The idea of the FCA is simple: if a remaining 

feature in the candidate set is a strong category-correlated feature, and its mutual independence 

with the selected feature is greater than or equal to a threshold alpha, it indicates that the 
candidate feature is independent of the selected feature, and it needs to be included in the feature 
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result set. Otherwise, the feature is considered as redundant and should be deleted. Repeat this 
process until the feature candidate set is empty. The formulas are as follows: 

 

IDP(X𝑖 , Y|X𝑗) =
𝐼(X𝑖 , Y|X𝑗 ) + 𝐼(X𝑗 , Y|X𝑖)

2𝐻(𝑌)
 

(10) 

 
 

I(X; Y|Z) = lg
𝑝(𝑋|𝑌𝑍)

𝑝(𝑋|𝑍)
 

(11) 

 
where (10) is used to measure the degree of mutual independence between feature Xi and feature 

Xj when the category (Y) is known. Formula (11) describe the mutual information between feature 
X and feature Y in the case of given condition Z. 

 

4. EXPERIMENTS 
 
This section first introduces the datasets and evaluation metrics. Then, we experiment our 

strategies based on several baselines with detailed experimental procedure. After that, 

classification assessment is given based on the performance. 
 

4.1. Dataset and Evaluation Metrics 
 

To test the reliability and robustness of our strategy, we use: 
 

Dataset 1: a movie review dataset from Rotten Tomatoes [24, 37]. This dataset contains 10662 

samples of review sentences, with 50% positive comments and the remaining negative ones. The 

size of the vocabulary of the dataset is 18758. Since the dataset does not come with an official 
train/test split, we simply extract 10% of shuffled data as evaluation (dev) set to control the 

complexity of model. In the next research stage, we will use 10-fold cross-validation on the 

dataset. 
 

Dataset 2: 56821 Chinese news dataset, which is available in PaddlePaddle 1 that is an open 

source platform launched by Baidu for deep learning applications. It contains 10 categories: 

international (4354), culture (5110), entertainment (6043), sports (4818), finance (7432), 

automobile (7469), education (8066), technology (6017), stock (3654) and real estate (3858). 
We assess the classification quality automatically with macro-average on accuracy and loss. 
 

4.2. Experiment on neural network (NN) 
 

In this experiment, the baseline CNN is taken as an example to compare the performance of 

classical NN and the improved one with our proposed strategy in document classification. The 

detail of model parameters is listed in Table 2. Both of the two trained models are evaluated on 
the dev dataset every 100 global steps and then they are stored in checkpoints before the training 

process starting again. After multiple training epochs, the models stored in checkpoint can be 

recovered and used for testing on a new dataset. Partial code for this work is available on github 2. 
The experimental procedure is described as follows. 
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(1) Each document in the corpus will be firstly transformed into our semantic document (i.e., 
documents with semantics embedding) [35] by extending each polysemous word and category-

correlated synonymous word with its context-fitting concepts from the common dictionary (i.e., 

CoDic for English and Hownet for Chinese) with the help of the SSC and the SCM strategies, 

which aims for accurate semantic interpretation and term expansion. 
 

CoDic is a semantic collaboration dictionary constructed under our CONEX project [10,34,35]. 

In CoDic, each concept is identified by a unique internal identifier (iid). The reason of this design 

is to guarantee semantic consistency and interoperability of documents while transferring across 
heterogeneous contexts. For example, from Figs. 1 and 2, it is clear that in CoDic, the word 

“program” with the meaning of “a scheduled radio or television show” is uniquely labelled by an 

iid “0x5107df021015”, while its another meaning “a set of coded instructions for insertion into a 
machine...” has another unique iid “0x5107df02101c”. Currently, CoDic is implemented in XML, 

where each concept is represented as an entry with a unique iid (see Fig. 3). It is convenient to 

extract all different meanings of any given word for later semantic analysis by using existed 
packages (e.g., xml.etree.cElementTree for Python and javax.xml.parsers for Java). Hownet as a 

common dictionary to handle Chinese documents is used similarly.  

 
Table 2. Parameter settings of our experiments 

 

Parameters values 

Percentage of splitting a dataset for training, 

testing and validating, respectively 

0.8/ 0.1/ 0.1 

Dimensionality of character embedding 128 

Filter sizes 3,4,5 

Number of filters per filter size 128 

Dropout keep probability 0.5 

L2 regularization lambda 0.01 

Batch Size 64 

Number of training epochs 1/ 5/ 10/ 50/ 100 

Evaluate model on evaluation (dev) dataset 

after these steps 

100 

 

 
 

Figure 1. Word “program” with the meaning “a scheduled radio or television show” in CoDic 
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Figure 2. Word “program” with the meaning “a set of coded instructions for insertion into a machine” in 

CoDic 

 

 
 

Figure3. CoDic in XML 
 

(2) Build a SemCNN (CNN+SSC/SCM) network. The first layer embeds words and their extracted 

accurate concepts into low-dimensional vectors. The second layer performs convolutions over the 

semantic-embedded document tensors using different sized filters (e.g., filter size = [3, 4, 5]). 
Different sized filters will create different shaped feature maps (i.e., tensors). Third, max-pooling 

is used to merge the results of the convolution layer into a long feature vector. Next, dropout 

regularization is added in the result of max-pooling to trade-off between the complexity of the 
model being trained and the generalization of testing on evaluation dataset. The last layer is to 

classify the result using a Softmax strategy. 
 

(3) Calculate loss and accuracy. The general loss function for classification problems is the cross-
entropy loss which takes the prediction and the real value as input. Accuracy is another useful 

metric being tracked during training and testing processes. It can be used to prevent model 

overfitting during model training. At the beginning of the training, the training error on training 
dataset and the verification error on the evaluation dataset will decrease continuously. However, 

when the training process reaches a certain critical point, the accuracy of classification on the 

evaluation dataset will decline while the accuracy of training will continue to increase. At this 
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time, in order to avoid overfitting of the model, the training process should be interrupted and the 
parameters at the critical point should be used as the training results of the model. 
 

(4) Record the summaries/checkpoints during training and evaluation. After an object declaration 

of CNN/SemCNN class, batches of data are generated and fed into it to train a reliable classification 
model. While the loss and accuracy are recorded to keep track of their evolvement over iterations, 

some important parameters (e.g., the embedding for each word, the weights in the convolution 

layers) are also needed to be saved for later usage (e.g., testing on new datasets). 
 

(5)  Test the classification model. Data for testing are loaded and their true labels are extracted for 

computing the performance of prediction. Then, the classification model is restored from the 

checkpoints, executing on the test dataset and producing a prediction for each semantic 

document. After that, the prediction results are compared with the true labels to obtain the testing 
accuracy of the classification model. 
 

4.3. Experiment on ML approaches 
 

The procedures of training classification models using classical machine learning algorithms with 

the proposed strategies are listed as follows, while the details can be also found in our open 

source code. 
 

(1) Transform words into vectors based on inputted texts (Note: Chinese document needs to 

execute word segmentation beforehand.). Collect all words used in texts, perform a frequency 

distribution and then find out effective features suitable for document classification by using the 
proposed strategies (SSC and SCM). After that, each text will be converted to a long word vector, 

where True (or 1) means a word (or a feature) exists while False (or 0) means absent. 
 

(2) Execute multiple classical machine learning approaches (e.g., Naïve Bayes, NB) based on the 

word vectors from Step (1). In this experiment, three variants of NB classifier are used. They are 

Original NB, multinomial NB and Bernoulli NB classifier. All of them take word features and 

corresponding category labels as input to train classification models. It is of note that sometimes 
the classifier should be modified based on realistic cases. For example, in order to avoid the 

probability being close to zero and underflow problem in NB, it is better to initialize the 

frequency of each word to one and take natural log of the product in the computation of posterior 
probability, respectively. 

(3) Save the trained classifiers for later usage. This is because the training process might be time-

consuming, which depends on numerous factors such as dataset size and the computation 

complexity during model training. Thus, it is impractical to train classification models each time 
while you need to use them. 
 

(4) Boost multiple classifiers to create a voting system that is taken as a baseline for comparison. 

To do this, we build a typical classifier (i.e., VoteClassifier) with multiple basic classical ML 
classification algorithms (i.e., taking multiple basic classifier objects as input when initialized), 

each of which gets one vote. In VoteClasssifier, the classify method is created by iterating 

through each basic ML classifier object to classify based on the same input features. This 
experiment chooses the most popular metrics (e.g., accuracy) among these classifiers. The 

classification can be regarded as a vote. After iterating all the classifier objects, it returns the most 

popular vote. 



Computer Science & Information Technology (CS & IT)                               13 

 

4.4. Experiment Result and Analysis 
 

In the actual testing process, we need to maintain a common synonymous word dictionary and a 

common polysemous word dictionary. The reason we need to maintain these two dictionaries is 
that the computation workload to judge polysemy and synonyms in a long text are very heavy. 

For example, if there are n words in a text and each word has m different meanings, then the 

computational complexity of determining polysemous words is O(n∗m), and the computational 

complexity of determining synonyms is O(n∗(n−1)), so that the total computational complexity is 

O(n∗(m+n−1)) > O(n2). Therefore, maintaining these two dictionaries can reduce computational 

complexity and reduce the pre-processing time of text classification. 
 

Table 3 shows the experimental comparison between classical machine learning algorithms and 

their improved counterparts on Dataset 1. In this experiment, classical machine learning 
algorithms include Original Naïve Bayes (NB), Multinomial Naïve Bayes (MNB), Bernoulli 

Naïve Bayes (BNB), Logistic Regression (LR), support vector machine (SVM) with stochastic 

gradient descent (SGD), Linear SVC (SVC) and Nu-Support Vector Classification (NSVC). 
 

From Table 3, it is clear that our improved algorithms have better performance than the classical 

ML algorithms in the accuracy of model prediction on the evaluation dataset. It is of note that 

three-variant NB algorithms and LR perform better than three-variant SVM algorithms, in both of 
the classical ones and improved ones. The VoteClassifier plays a role of baseline for the 

comparison between different algorithms. Table 4 and 5 show that SemCNN performs better than 

CNN in terms of accuracy and loss in different numbers of epochs. As the number of epoch 

increases, both of them increase in the accuracy of evaluation and decrease in the loss 
continuously (before reaching overfitting). 

 

Table 3. Comparison of classical machine learning algorithms and our improved ones on Dataset 1 

 

Accuracy (%) Accuracy (%) 

NB 73.493 Improved NB 78.464 

MNB 74.698 Improved MNB 79.518 

BNB 74.096 Improved BNB 79.819 

LR 73.494 Improved LR 76.506 

SGD 69.879 Improved SGD 74.096 

SVC 72.741 Improved SVC 73.946 

NSVC 72.892 Improved NSVC 76.355 

VoteClassifier 74.397 Improved VoteClassifier 74.398 
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Table 4. Comparison of SemCNN and traditional CNN on Dataset 1. 

 

Number of epochs 
Accuracy Loss 

SemCNN CNN SemCNN CNN 

Epoch = 1 0.586 0.568 0.818 0.876 

Epoch = 5 0.713 0.676 0.567 0.59 

Epoch = 10 0.744 0.722 0.519 0.62 

Epoch = 50 0.841 0.724 0.621 0.742 

Epoch = 100 0.902 0.739 0.961 0.999 

 
Table 5. Comparison of SemCNN and traditional CNN on Dataset 2. 

 

Number of epochs 
Accuracy Loss 

SemCNN CNN SemCNN CNN 

Epoch = 1 0.861 0.828 0.473 0.560 

Epoch = 5 0.956 0.923 0.211 0.295 

Epoch = 10 0.990 0.953 0.095 0.212 

Epoch = 20 0.990 0.966 0.0919 0.170 

 

5. CONCLUSION 
 

This paper introduces new strategies for semantic document classification. It mainly has two 

improvements: (1) solving polysemy problem by using a novel semantic similarity computing 
method (SSC). The SSC implements semantic analysis by executing semantic similarity 

computation and semantic embedding with the help of common dictionary. In this paper, we use 

CoDic for English texts and Hownet for Chinese texts. (2) solving synonym problem by 
proposing a novel strong correlation analysis method (SCM). The SCM consists of the CDM 

strategy for the selection of feature candidate set and the FCA strategy for the determination of 

the final feature set. Experiments show that our strategy can improve the performance of semantic 

document classification compared with that of traditional ones. 
 

We will continue going deep in this research of semantic document classification. More multiple 

deep learning models (e.g., DualTextCNN, DualBiLSTM, DualBiLSTMCNN or 

BiLSTMAttention) will be tested for semantic document similarity on well-known document 
datasets with different natural languages. We would also try to compare our strategies with state-

of-the-art embedding methods such as FastText [15], BERT [6] and ULMFit [11] and ELMo [25] 

and other classification methods such as the ones based on knowledge graph. 
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