
 

David C. Wyld et al. (Eds) : CNSA, DMDB, AIAP - 2018 

pp. 17– 31, 2018. © CS & IT-CSCP 2018                                                        DOI : 10.5121/csit.2018.80102 

 

QUERY INVERSION TO FIND DATA 

PROVENANCE 

 
Md. Salah Uddin

1
, Dmitry V. Alexandrov

2
, Armanur Rahman

3 

 
1
National Research University Higher School of Economics (NRU HSE), 

Faculty of Computer Science, School of Software Engineering,  

Kochnovskiy Proezd 3,  

125319, Moscow, Russian Federation 
2
National Research University Higher School of Economics (NRU HSE), 

Faculty of Computer Science, School of Software Engineering,  

Kochnovskiy Proezd 3, 

125319, Moscow, Russian Federation; 

Bauman Moscow State Technical University (Bauman MSTU), 

Faculty of Engineering Business and Management, 

Chair of Innovative Entrepreneurship, 2-ya Baumanskaya ul. 5, 

105005, Moscow, Russian Federation 
3
BJIT Limited, Level-5, Road-2/C, Block-J, Baridhara, Dhaka-1212, 

Bangladesh 
 

ABSTRACT 

 

Day by day data is increasing, and most of the data stored in a database after manual 

transformations and derivations. Scientists can facilitate data intensive applications to study 

and understand the behaviour of a complex system. In a data intensive application, a scientific 

model facilitates raw data products to produce new data products and that data is collected 

from various sources such as physical, geological, environmental, chemical and biological etc. 

Based on the generated output, it is important to have the ability of tracing an output data 

product back to its source values if that particular output seems to have an unexpected value. 

Data provenance helps scientists to investigate the origin of an unexpected value. In this paper 

our aim is to find a reason behind the unexpected value from a database using query inversion 

and we are going to propose some hypothesis to make an inverse query for complex aggregation 

function and multiple relationship (join, set operation) function. 

 

KEYWORDS 

 

Data Provenance, Structured Query Language (SQL), Query Processing, Query Inversion. 

 

 

1. INTRODUCTION 

 
In the database system domain:  Data provenance, a kind of metadata, it is called lineage or 

pedigree which provides description of the origins of a piece of data and the process by which it 

arrived in a database. At present time, in different areas, such as e-science, data-warehousing etc. 

are required by origin of data to avoid unexpected value. To find data provenance the author has 

introduced different techniques such as GIS, VDL (Virtual Data Language), DB-Notes, BF05, 

SPG05a, SPG05b etc. But, the relation-ship between the data and its sources is very complex and 



18 Computer Science & Information Technology (CS & IT) 

 

difficult to identify. So we want to use a kind of data provenance technology to automatically find 

out from where the unexpected data users were obtained from when users see the anomalous and 

suspicious data. To get better result we are going to introduce query inversion technique for some 

complex aggregation or multiple relationship function. Uses of the property by which some 

derivations can be inverted to find the input data supplied to them to derive the output data. 

Examples include, if an output of a database query Q applied on some source data D and given 

tuple is T then we want to understand which tuples in D contributed to get the output tuple T. A 

natural approach is to generate a new query Q0, determined by Q, D and T, such that when the 

query Q0 is applied to D, it generates a collection of input tuples that contributed to the output 

tuple T. In other words, we would like to identify the provenance by inverting the original query 

[10]. 

 

2. OVERVIEW OF EXISTING APPROACHES 
 
Representing data provenance has two major approaches: annotation and inversion. Inversion 

approach is used to operate on an output data to find an input data. In area of data warehouses, 

Cui, Widom, and Wiener [27] first introduced the problem of relational database tracing data 

using query inversion. A disadvantage of this approach is that it cannot be used as sub-queries of 

normal relational queries and only partially benefit from the query optimization of the underlying 

Database Management System (DBMS). Another mechanism is called where-provenance [1]. 

Mainly, we use this technique for determining where annotations are propagated from. Boris 

Glavic et al. [28] also introduced a mechanism that is call Provenance Extension Relational 

Model (PERM). The PERM prototype supports provenance computation using Structured Query 

Language (SQL). But the disadvantage of this technique is that it does not work for correlated 

sub-queries. 

 

One of the earlier definitions was given in the context of geographic information system (GIS). In 

GIS, data provenance is known as lineage which explicates the relationship among events and 

source data in generating the data product [1]. In the context of data-base systems, data 

provenance provides the description of how a data product is achieved through the transformation 

activities from its input data [2]. 

 

Annotation systems like DB-Notes [CTV05] and MONDRIAN [GKM05] is a common approach 

in life sciences [4] and it enables a user to annotate data item with an arbitrary number of notes 

which are normally propagated when annotated data is transformed. 

 

VDL (Virtual Data Language) provides query and data definition facilities for the Chimera 

system [3] and it supports relational or object-oriented databases and SQL-like transformations. 

 

The PReServ (Provenance Recording for Services) [GMM05, GJM+06a] approach uses a central 

provenance management service. It uses a common interface to enable different storage systems 

as a provenance store. 

 

Trio is a recursive traversing lineage algorithm to achieve complete provenance of a par-ticular 

output tuple which introduces a new query language TriQL [5] to deal with uncer-tainty and 

lineage information. 

 

3. QUERY INVERSION MECHANISM 
 
A considerable research effort has been made by the database community to manage data 

provenance. Data provenance can be defined at different granularity levels such as relation or 

tuple. Furthermore, data provenance has been categorized based on the type of queries (e.g. why, 



Computer Science & Information Technology (CS & IT)                                   19 

 

where, how) it can satisfy. Different techniques have been proposed to generate data provenance 

in the context of a database system. But we are using query inversion techniques to find out data 

provenance from relational and complex database system easiest and fastest way. 

 

To find specific data from databases we used some query. But we do not know behind this query 

at the execution time compiler need to process some tuples to generate output. Sometimes due to 

those tuples we get some unexpected results. We can not find which tuple is responsible for this 

unexpected value. But following our query inversion technique we have become able to find the 

problem showing the original data (see figure 1). Example, we wanted to see the sum of salary as 

per job category. 

 
 

Figure 1. Data provenance technique overview. 

 

Code: select job,sum(salary) from emp group by job 

 
So we wrote above query to see the result, but it was showing an “Invalid number”. Although 

our query is right but it was showing unexpected result because in our database there might be 

unwanted tuple. Due to that tuple this query is not working properly. Now we need to check all 

the values of the database to figure out the problem but at the present time the data is increasing 

and we have to process a huge amount of data daily. So it is not possible to check all the values 

and it is not time efficient. After analyzing the query we have developed an inverse query that is 

showing that unexpected tuple.  

 

Code: select job,salary from emp where job in (select job from emp group by job) (see 

figure 2). 

 

 
 

Figure 2. Showing the unexpected tuple using an inverse query. 



20 Computer Science & Information Technology (CS & IT) 

 

3.1. Inverse Query hypothesis making technique 

Inversion technique provides compact representation of provenance and this is the main 

advantage of this technique. But it is restricted to a certain class of multiple relationship queries 

and not universally applicable [26]. So in this section, our aim is to provide a hypothesis about 

possibility of developing of inverse query technique that can eliminate a limitation of multiple 

relationship queries.  

 

When we need data manipulation we use some queries to get output but behind this output 

compiler need to process some tuples. After analyzing those tuples we have introduced some keys 

and extra tuples for our inverse query. Here we have described some complex aggregation and 

multiple relationship function in a generalized form of query and inverse query. We also have 

described the flow chart of the whole development procedure. In the flow chart we have to follow 

a life cycle to complete our inverse query (see figure 3, 4, 5). A Life cycle is a Black Arrow → 

Green Arrow → Red Arrow → Green Arrow. 

 

3.1.1. Aggregation Functions 

Oracle and other query languages support at least five aggregation functions such as min, max, 

count, sum, and avg. Aggregate functions are handled by adding parameter values to the group by 

list and adding the keyword condition for the aggregate column in the having clause instead of the 

where clause of the inverted query. For example if the general form query is: 

 

Code: select ∆H1, f(∆H2) from r group by ∆H1 having <predicate> 
 

Then, the inverse query is as follows: 

 

Code: select ∆H1, ∆H2 from r where ∆H1 in (select ∆H1 from r group by ∆H1 having 

<predicate> 
 

Now, when adding keyword selections to the above keyword inverse query, any selections related 

to ∆H1 are added to the WHERE clause as before; however, selections relating to f(∆H2) are 

added to a HAVING clause. 

The relational algebraic translation of our above inverse query is: 

 

∏∆H1, ∆H2,…∆Hn( ԾԾԾԾp^contains((∆H1, ∆H2,… ∆Hn),k)(r)) ∩ ∏∆H1, ∆H2,… ∆Hn( ԾԾԾԾp^contains((∆H1, ∆H2,… 

∆Hn),k)>0 (r))  
 

Here ∏=select clause, Ծ=where clause for predicate, p=projection of attributes and r=table name. 

 

Example of complex Aggregation function: Our generalized approach will work for all normal, 

complex and multiple relational aggregation functions. 

 

Code: select sum(e.sal), count(t.deptno) from emp e, dept t 

 

Now if we want to make an inverse query following our algorithm (see figure 3) for complex 

relationship, first of all we need to put select key then all attributes, from keyword and table 

name. After that according our algorithm, we need to put where keyword and first attribute 

without function attribute value, but here we can see that without function attribute there is no 

attribute, so we do not need to check the rest of the query after a table name. Our final inverse 

query will be as following: 

 

 



Computer Science & Information Technology (CS & IT)                                   21 

 

Code: select e.sal, t.deptno from emp e, dept t   

Following our generalized formula, it is possible to find data provenance for all simple, complex 

and multiple relationship aggregation functions. But for some correlated sub-queries our 

generalized formula does not work and it is the only limitation. 

 
Figure 3. Inverse Query making procedure for aggregation functions. 

 

3.1.2. Join Operation 

The problem of join ordering is very restricted and at the same time it is a very complex one 

because it combines two or more tables in a relational database. At the compilation time if it has 

found any abnormal tuple it can not produce a result. So it is very difficult to find out the problem 

after searching multiple tables. For every tuple in the left input an output tuple must be produced 

for every tuple in the right input. A join operation can be implemented much more efficiently. 

The approaches to handle the join operations are very similar to the ones for handling the 

aggregation function queries that are described in detail in the above section (3.1.1) but the 

difference is here we need to create a relationship between two or multiple tables. For example if 

the general form query is: 

 

Code: select ∆H1, f(∆H2) from r1 natural join r2 group by ∆H1 having <predicate> 

 

Then, the inverse query is as follows: 

 

Code: select ∆H1, ∆H2 from r1 natural join r2 where ∆H1 in (select ∆H1 from r1 natural 

join r2 group by ∆H1 having <predicate> 

 

In this case we have to be more careful about the tuples in relationship to the different tables.  

The relational algebraic translation of our above inverse query is: 

 



22 Computer Science & Information Technology (CS & IT) 

 

∏∆H1, ∆H2,…∆Hn( ԾԾԾԾp^contains((∆H1, ∆H2,… ∆Hn),k)(r⋈⋈⋈⋈r)) ∩ ∏∆H1, ∆H2,… ∆Hn( ԾԾԾԾp^contains((∆H1, ∆H2,… 

∆Hn),k)>0 (r⋈⋈⋈⋈r))  
 

Here ∏=select clause, Ծ=where clause for predicate, p=projection of attributes, r=table name and 

⋈⋈⋈⋈=join operation name. 

 

 
Figure 4. Inverse Query making procedure for join operation. 

 

Example of complex Join operation: Our generalized approach will work for all normal, 

complex and multiple relational join operations. 

 

Code: select count(cus.cust_first_name), sum(ord.order_total), sum(pro.quantity) from 

demo_customers cus natural join demo_orders ord natural join demo_order_items pro 
 

Now if we want to make an inverse query following our algorithm (see figure 4) for multiple  

relationship, first of all we need to put select key then all attributes, from keyword and table name 

with join keyword. After that according our algorithm, we need to put where keyword and first 

attribute without function attribute value, but here we can see that without function attribute there 

is no attribute, so we do not need to check the rest of query after a table name. Our final inverse 

query will be as following: 

 

Code: select cus.cust_first_name,ord.order_total,pro.quantity from demo_customers cus 

natural join demo_orders ord  natural join demo_order_items pro 

Following our generalized formula it is possible to find data provenance for all simple, complex 

and multiple relationship join operations. But for some correlated sub-queries our generalized 

formula does not work and it is the only limitation. 

 



Computer Science & Information Technology (CS & IT)                                   23 

 

3.1.3. Set Operation 

Set operation allows to be combined the results of multiple queries into a single result. Queries 

containing set operators are called compound queries. It includes union, intersect, minus 

operation in a database. 

 

3.1.3.1 Intersect 

 

A Set Intersection can be handled by individually inverting a query with respect to each keyword 

and then taking a join of the inverted queries on the common parameters. Let’s consider a general 

query: 

 

Code: select ∆H1 from r where <predicate1> intersect select ∆H1 from r where 

<predicate2> 

 
Then, the inverse query is as follows: 

 

Code: select distinct ∆H1, ∆H2, ∆H3….. from r where <predicate1> and ∆H1 in (select ∆H1 

from r where <predicate2> 

 
The relational algebraic translation of our above inverse query is: 

∏∆H1, ∆H2,…∆Hn( ԾԾԾԾp^contains((∆H1, ∆H2,… ∆Hn) ∩k>0))( r⋈⋈⋈⋈r)) ∩ ∏∆H1, ∆H2,… ∆Hn( ԾԾԾԾp^contains((∆H1, 

∆H2,… ∆Hn),k)>0 (r⋈⋈⋈⋈r))  
 

 3.1.3.2 Union 

 
Handling the Union clause is complex mainly due to these reasons: 

 

1. Each subquery involved in the Union may contain some of the keywords. 

 

2. Each subquery in the Union may contain only a subset of the overall query parameters. 

 

The approaches to handle the Union clause are very similar to the ones for handling the intersect 

queries and are described in detail in section (3.1.3.3). Let’s consider a general query: 

 

Code: select ∆H1 from r where <predicate1> union select ∆H1 from r where <predicate2> 
 

Then, the inverse query is as follows: 

 

Code: select distinct ∆H1, ∆H2, ∆H3….. from r where <predicate1> or ∆H1 in (select ∆H1 

from r where <predicate2> 
 

The relational algebraic translation of our above inverse query is: 

 

∏∆H1, ∆H2,…∆Hn( ԾԾԾԾp^contains((∆H1, ∆H2,… ∆Hn) ՍՍՍՍ k>0))( r⋈⋈⋈⋈r)) ∩ ∏∆H1, ∆H2,… ∆Hn( ԾԾԾԾp^contains((∆H1, 

∆H2,… ∆Hn),k)>0 (r⋈⋈⋈⋈r))  
 
3.1.3.3 Minus/Except 

 
The Minus/Except clause/operator is used to combine two SELECT statements and returns rows 

from the first SELECT statement that are not returned by the second SELECT statement. This 

means except/minus returns only rows, which are not available in the second SELECT statement. 



24 Computer Science & Information Technology (CS & IT) 

 

Let’s consider a general query: 

 

Code: select ∆H1 from r where <predicate1> minus select ∆H1 from r where <predicate2> 
 

Then, the inverse query is as follows: 

 

Code: select distinct ∆H1, ∆H2, ∆H3….. from r where <predicate1> and ∆H1 not in (select 

∆H1 from r where <predicate2> 
The relational algebraic translation of our above inverse query is: 

 

∏∆H1, ∆H2,…∆Hn( ԾԾԾԾp^contains((∆H1, ∆H2,… ∆Hn) ∩k>0))( r⋈⋈⋈⋈r)) ¬∩ ∏∆H1, ∆H2,… ∆Hn( ԾԾԾԾp^contains((∆H1, 

∆H2,… ∆Hn),k)>0 (r⋈⋈⋈⋈r))  
 

 
 

Figure 5. Inverse Query making procedure for set operation. 

 

Example of complex Set operation: Our generalized approach will work for all normal, 

complex and multiple relational set operations. 

 

Code: select course_id from section where semester='Fall' and year=2009 intersect select 

course_id from section where semester='Spring' and year=2010 union select course_id from 

teaches where semester='Fall' and year=2009 
 

From above query we can see that there are two set operations: intersect and union. So following 

our algorithm (see figure 5), the inverse query will be: 

 

Code: select course_id,semester,year from section where semester='Fall' and year=2009 and 

course_id in (select course_id from section where semester='Spring' and year=2010) or 

course_id in ( select course_id from teaches where semester='Fall' and year=2009) 



Computer Science & Information Technology (CS & IT)                                   25 

 

Following our generalized formula it is possible to find data provenance for all simple, complex 

and multiple relationship set operations. But for some correlated sub-queries our generalized 

formula does not work and it is the only limitation. 

 

3.2. Prototype Development Algorithm: 
 

First of all we have separated all keys, tables, attributes and predicates from the main query then 

we have checked the query to find it,s aggregation, set operation or join operation. Finally our 

prototype dynamically set those values following the sequence of the previous flow chart (see 

figure 3, 4, 5). 

 

 
 

Figure 6. Algorithm for separating keys, attributes, tables and predicate. 

 

4. EXPERIMENTAL RESULT 
 
We have developed a prototype that is providing an inverse query for any given query. After that 

we have checked this inverse query is right or wrong in Oracle Database XE 11.2.  We have 

written a query to get total summation of salary and bonus information the specific department 

name category field. 

 

Query: select dept_name,sum(bonus+salary) from instructor group by dept_name 

Output: Invalid Number 

 



26 Computer Science & Information Technology (CS & IT) 

 

After that, now we want to know how to get the above results which tuples are working and 

which one is responsible for an unexpected result. Then we use our inverse query:  

 

Inverse Query: select dept_name,bonus,salary from instructor where dept_name in(select 

dept_name from instructor group by dept_name) 

 

 
 

Figure 7. Output of inverse query for above aggregation function. 

 

From our inverse query output (see figure 7) we can see that there is a tuple which contains an 

unexpected value. Due to this value our main query provides an unexpected result. 

We tested for set operation and join query, we got accurate result to find data provenience. 

 

Query: select course_id from section where semester='Fall' and year=2009 intersect select 

course_id from section where semester='Spring' and year=2010 union select course_id from 

teaches where semester='Fall' and year=2009 minus select course_id from takes where 

semester='Fall' and year=2010 (see figure 8). 

 

 
 

Figure 8. Output of above intersect query. 

 

Inverse query: select course_id,semester,year from section where semester='Fall' and 

year=2009 and course_id in (select course_id from section where semester='Spring' and 

year=2010) or course_id in ( select course_id from teaches where semester='Fall' and 

year=2009) and course_id not in (select course_id from takes where semester='Fall' and 

year=2010) (see figure 9). 

 

 
 

 Figure 9. Output of above intersect inverse query. 



Computer Science & Information Technology (CS & IT)                                   27 

 

Query: select cust_first_name,sum(order_total),sum(quantity) from demo_customers 

natural join demo_orders natural join demo_order_items group by cust_first_name (see 

figure 10). 

 

 
 

Figure 10. Output of above join query. 

 

Inverse Query: select cust_first_name,order_total,quantity from demo_customers natural 

join demo_orders natural join demo_order_items where cust_first_name in(select 

cust_first_name from demo_customers natural join demo_orders natural join 

demo_order_items group by cust_first_name) (see figure 11). 

 

 
Figure 11. Output of above join inverse query. 

 
Finally, we have become able to find the data provenance (see figure 2, 7, 8, 9, 10, 11) using our 

inverse query. Now if any user gets an abnormal or unexpected value, or they want to check 

behind their query, which tuples work, they can easily check by creating an inverse query. 

 

4.1. Performance Evaluation: 
 
To check performance of our new algorithm all experiments are performed on Intel core i3 

machine with 4 GB ram and the size of our test database 10MB, 100MB and 500MB. For testing 

we have used three types of SQL query such as normal (Q1), complex (Q2) and multiple 

relationship (Q3) of four tables. To get execution time for each query we wrote “set statistics time 



28 Computer Science & Information Technology (CS & IT) 

 

on” before our query and at the end of our query we also added “set statistics time off”. We 

evaluated execution time of each query for aggregation function (see table 1), join operation (see 

table 2) and set operation (see table 3). Analyzing the experimental results of aggregation 

function (see table 1), we can see that in most of cases there is a little time execution difference 

between the main query and the inverse one. If we compare small (10MB) and large (500MB) 

datasets, the execution time of our inverse queries is not increasing too much. 

 
Table 1. The Execution time for each query of Aggregation function. 

 

Query           10MB            100MB          500MB 

Query Inverse query Query Inverse 

query 

Query Inverse query 

Q1 35 ms   36 ms 69 ms 76 ms 77 ms 94 ms 

Q2 66 ms   69 ms 149 ms 157 ms 158 ms 169 ms 

Q3 19 ms   321 ms 29 ms 575 ms 31 ms 581 ms 

 
Table 2. The Execution time for each query of Join operation. 

 

Query           10MB            100MB          500MB 

Query Inverse query Query Inverse 

query 

Query Inverse query 

Q1 49 ms  70559 ms 69 ms 109513 ms 77 ms 250124 ms 

Q2 52 ms   88015 ms 81 ms 191092 ms 98 ms 398029 ms 

Q3 55 ms   90939 ms 92 ms 220306 ms 123 ms 502196 ms 

 
Table 3. The Execution time for each query of Set operation. 

 

Query           10MB            100MB          500MB 

Query Inverse query Query Inverse 

query 

Query Inverse query 

Q1 3 ms   9598 ms 8 ms 15598 ms 11 ms 18400 ms 

Q2 2 ms   8598 ms 9 ms 15101 ms 12 ms 18139 ms 

Q3 3 ms   9321 ms 14 ms 17004 ms 19 ms 21409 ms 

 

Execution time changes rather high from main query to inverse query for join and set operations. 

And if we compare the execution time of our inverse query for small (10MB) and large (500MB) 

datasets, the difference will be higher due to in this case a processor needs to process a huge 

dataset to provide the results. 

 

5. CONCLUSION AND FUTURE WORK 
 

Nowadays, provenance of data products is a widely-studied topic that attracts much attention of 

researchers. In this paper the main focus was to provide a guideline to find data provenance for 

unexpected values. To solve this problem we used an inverse query mechanism. Therefore, we 

showed that can easily find data provenance with the use of inverse queries. We proposed the 



Computer Science & Information Technology (CS & IT)                                   29 

 

generalized forms that work for all types of normal, complex and multiple relationship queries 

except nested query. We presented also the execution times of our inverse queries for small and 

large datasets. Finally, we found that the execution time is not high for large datasets comparing 

to small datasets, and in most of the cases our solution is rather fast. Thus this technique can be 

used in different applications. For example, we generate business reports using different 

applications. If we suspect any errors in these reports, we have to check the related source 

datasets manually. Now this problem has been solved by using the proposed technique, as we can 

easily find the possible error in rather efficient way. 

 

Since the proposed technique does not work for sub-queries, but only works for normal, complex 

and multiple relationship functions, the sub-queries go in focus of future research. Thus we plan 

to solve the sub-queries problem by improving the technique and develop a web prototype so that 

any user could generate the inverse query related his or her main query. 

 

ACKNOWLEDGEMENTS 
 
We would like to thank all the colleagues at the School of Software Engineering of NRU HSE for 

their feedback and useful recommendations that contributed to bringing this paper to its final 

form. 

 

REFERENCES 

 

[1] P. Buneman, S. Khanna, and W. C. Tan. Why and where: A characterization of data provenance. In 

Proceedings of the International Conference on Database Theory, pages 316–330, 2001. (Cited on 

pages 2 and 21.) 

 

[2] D. P. Lanter. Design of a lineage-based meta-data base for GIS.Cartography and Geographic 

Information Scence, 18(4):255–261, 1991.(Cited on pages 2 and 29.) 

 

[3] Ian T. Foster, Jens-S. V¨ockler, Michael Wilde, and Yong Zhao. Chimera: A Vir-tual Data System for 

Representing, Querying, and Automating Data Derivation. In SSDBM’02: Proceedings of the 14th 

International Conference on Scientific and Statistical Database Management, pages 37–46, 

Washington, DC, USA, 2002. IEEE Computer Society. 

 

[4] Laura Chiticariu, Wang-Chiew Tan, and Gaurav Vijayvargiya. DBNotes: a post-it system for 

relational databases based on provenance. In SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD 

international conference on Management of data, pages 942–944, New York, NY, USA, 2005. ACM 

Press. 

 

[5] O. Benjelloun, A. D. Sarma, A. Halevy, and J. Widom. ULDBs: Databases with uncertainty and 

lineage. In Proceedings of the International Conference on Very Large Data Bases, pages 953–964, 

2006. (Cited on page 22.) 

 

[6] P. Agrawal, O. Benjelloun, A. D. Sarma, C. Hayworth, S. Nabar,T. Sugihara, and J. Widom. Trio: A 

system for data, uncertainty, and lineage. In Proceedings of the International Conference on Very 

Large DataBases, pages 1151–1154, 2006. (Cited on page 22.) 

 

[7] M. K. Anand, S. Bowers, T. McPhillips, and B. Ludäscher. Efficient provenance storage over nested 

data collections. In Proceedings of the International Confe-rence on Extending Database Technology: 

Advances in Database Technology, pages 958–969. ACM, 2009. (Cited on page 20.) 

 

[8] S. Davidson, , S. C. Boulakia, A. Eyal, B. Ludäscher, T. M. McPhillips, S. Bowers, M. K. Anand, and 

J. Freire. Provenance in scientific workflow systems. IEEE Data Engineering Bulletin, 30(4):44–50, 

2007.(Cited on pages 15 and 17.) 



30 Computer Science & Information Technology (CS & IT) 

 

[9] U. Park and J. Heidemann. Provenance in sensornet republishing. In Provenance and Annotation of 

Data and Processes, volume 5272 of LNCS, pages 280–292. Springer, 2008. (Cited on pages 26, 28, 

37, 38, 111, 122,and 264.) 

 

[10] M. R. Huq, P. M. G. Apers, and A. Wombacher. An Inference-based Framework to Manage Data 

Provenance in Geoscience Applications. Accepted in IEEE Transactions on Geoscience and Remote 

Sensing, Earlyaccess article DOI: 10.1109/TGRS.2013.2247769, IEEE Geoscience and Remote 

Sensing Society, 2013. 

 

[11] C. Beeri, A. Eyal, S. Kamenkovich, and T. Milo. Querying business processes. In VLDB, 2006. 

 

[12] O. Benjelloun, A. D. Sarma, A. Y. Halevy, and J. Widom. ULDBs: Databases with uncertainty and 

lineage. In VLDB, 2006. 

 

[13] Grigoris Karvounarakis, Zachary G. Ives and Val Tannen: Querying Data Prove-nance. SIGMOD’10, 

June 6–11, 2010, Indianapolis, Indiana, USA. 

 

[14] Boris Glavic, Klaus Dittrich: Data Provenance: A Categorization of Existing Ap-proaches. SNF Swiss 

National Science Foundation: NFS SESAM 

 

[15] Qi Yang. Computation of chain queries in distributed database systems.In Proc. of the ACM 

SIGMOD Conf. on Management of Data, pages 348-355 

 

[16] �L. Becker and R. H. G uting. Rule-based optimization and query processing in an extensible 

geometric database system. ACM Trans. on Database Systems (to appear) 

 

[17] P. Bernstein, E. Wong, C. Reeve, and J. Rothnie. Query processing in a system for distributed 

databases (sdd-1). ACM Trans. on Database Systems, 6(4):603-625 

 

[18] Parag Agrawal, Omar Benjelloun, Anish Das Sarma, Chris Hayworth, Shubha Nabar, Tomoe 

Sugihara, and JenniferWidom. An Introduction to ULDBs and the Trio System. IEEE Data 

Engineering Bulletin, 29(1):5–16, 2006. 

 

[19] Yingwei Cui, Jennifer Widom, and Janet L. Wiener. Tracing the lineage of view data in a 

warehousing environment. ACM Trans. Database Syst., 25(2):179–227, 2000. 

 

[20] Yogesh L. Simmhan, Beth Plale, and Dennis Gannon. A survey of data prove-nance in e-science. 

SIGMOD Rec., 34(3):31–36, 2005. 

 

[21] Paul Groth, Sheng Jiang, Simon Miles, Steve Munroe, Victor Tan, Sofia Tsasa-kou, and Luc Moreau. 

An Architecture for Provenance Systems — Executive Summary.Technical report, University of 

Southampton, February 2006. 

 

[22] Ian T. Foster, Jens-S. V¨ockler, Michael Wilde, and Yong Zhao. Chimera: A Vir-tual Data System for 

Representing, Querying, and Automating Data Derivation. In SSDBM ’02: Proceedings of the 14th 

International Conference on Scientific and Statistical Database Management, pages 37–46, 

Washington, DC, USA, 2002. IEEE Computer Society. 

 

[23] Dennis P. Groth. Information Provenance and the Knowledge Rediscovery Prob-lem. In IV, pages 

345–351. IEEE Computer Society, 2004. 

 

[24] P. Yue, Z. Sun, J. Gong, L. Di, and X. Lu. A provenance framework for web geo-processing 

workflows. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, 

pages 3811–3814. IEEE, 2011. (Cited on page 29.) 

 

[25] M. R. Huq, A. Wombacher, A. Mileo. Data Provenance Inference in Logic Pro-gramming: Reducing 

Effort of Instance-driven Debugging.Technical Report TR-CTIT-13-11, Centre for Telematics and 

Information Technology, University of Twente, 2013. 



Computer Science & Information Technology (CS & IT)                                   31 

 

[26] Bhagwat, L. Chiticariu, W. C. Tan, and G.Vijayvargiya, "An Annotation Management System for 

Relational Databases," in VLDB, 2004, pp. 900-911. 

 

[27] Y. Cui, J. Widom, and J. Wiener. Tracing the Lineage of View Data in a Warehousing Environment. 

ACM Transactions on Database Systems (TODS), 25(2):179–227, 2000. 

 

[28] Perm: Processing Provenance and Data on the same Data Model through Query Rewriting –Boris 

Glavic, Gustavo Alonso — 2009 — In ICDE ’09: Proceedings of the 25th International Conference 

on Data Engineering 

 

AUTHORS 

 
Md Salah Uddin is Master’s student of the program “System and Software Engineering” at NRU HSE, 

Moscow, Russian Federation. 

Research interests: Cloud Computing and Security, Big Data, Solid State Drivers, Databases and Neural 

networks. 

 

Dmitry V. Alexandrov is Professor of the School of Software Engineering at NRU HSE, Moscow, 

Russian Federation; Professor of the Chair of Innovative Entrepreneurship at Bauman MSTU, Moscow, 

Russian Federation. 

Research interests: Artificial Intelligence, Multi Agent Systems, Data Analysis, Databases, Mobile 

Applications Development 

 

Armanur Rahman is Junior Software Engineer at BJIT Limited, Dhaka, Bangladesh. He has awarded his 

bachelor degree at East West University, Bangladesh. 

Research interests: Data Mining, Databases and Neural networks. 

 

 

 

 


