

Dhinaharan Nagamalai et al. (Eds) : CSEIT, NCS, SPM, NeTCoM - 2018
pp. 01–14, 2018. © CS & IT-CSCP 2018 DOI : 10.5121/csit.2018.81801

ANDROID UNTRUSTED DETECTION

WITH PERMISSION BASED SCORING

ANALYSIS

JACKELOU SULAPAS MAPA

College of Information Technology
Saint Joseph Institute of Technology, Montilla

Boulevard, Butuan City, Philippines

ABSTRACT

Android smart phone is one of the fast growing mobile phones and because of these it the one of

the most preferred target of malware developer. Malware apps can penetrate the device and

gain privileges in which it can perform malicious activities such reading user contact, misusing

of private information such as sending SMS and can harm user by exploiting the users private

data which is stored in the device. The study is about detecting untrusted on android

applications, which would be the basis of all future development regarding malware detection.

The smartphone users worldwide are not aware of the permissions as the basis of all malicious

activities that could possibly operate in an android system and may steal personal and private

information. Android operating system is an open system in which users are allowed to install

application from any unsafe sites. However permission mechanism of and android system is not

enough to guarantee the invulnerability of the application that can harm the user. In this paper,

the permission scoring-based analysis that will scrutinized the installed permission and allows

user to increase the efficiency of Android permission to inform user about the risk of the

installed Android application, in this paper, the framework that would classify the level of

sensitivity of the permission access by the application. The framework uses a formula that will

calculate the sensitivity level of the permission and determine if the installed application is

untrusted or not. Our result show that, in a collection of 26 untrusted application, the

framework is able to correct and determine the application's behavior consistently and

efficiently.

KEYWORDS

Permission, permission scoring-based, malware Android phone, Security, Internet, malware.

1. INTRODUCTION

Nowadays, the advancement of technology is rapid. The new product is being introduced to the
market and in a week, month later a new one surfaces with a better functionality against its
predecessor. Mobile phones are not exempted in the advancement of technology. From call and
text only functionality, mobile phones became smartphones (Android) that serves as pocket
computers. It is informing the entire user about the risk while using the application. In order to
install the application from device you need the permissions that the application request. Some of

2 Computer Science & Information Technology (CS & IT)

the users are not paying attention or do not fully comprehend the requested permission. In
addition, these permissions permit the malware to penetrate or exploit private data stored on
device and perform malicious activities such as reading users private information, track user
location, log-in credentials, and web browser history. Example of this permission is the
INTERNET; many of the application communicate over the internet and malware developer
advantage the use of this permission and combine with other permission [19].

In 2010, some of the Android developer Hans they just simply use it just to make sure that their
application works properly. Therefore, a combination and unprofessional use of permission can
take the advantage of stealing users’ private data [10]. The existing security permission model of
android has flaws that cannot protect the users’ private data effectively. Several researchers,
questioned the Android security model, and stated that the current permission model [11].

In (2015). The problems encountered by smartphone users in manipulating and maintaining the
android malware security are the Absence of efficient Malware detector in Android Phones and
Due to increasing numbers of Android Malware applications, a fast and reliable malware detector
is necessary [13]. This proposal will conduct a study to detect the behavior of the malicious apps
that can manipulate information on android devices. As a solution we present a permission-based
scoring detection, which will evaluate the permission of the application and identify the
application if its malicious or not The researcher achieve the process of detecting the malicious
applications and develop an android application that can detect Malware applications in Android
Phone, extract permissions of all installed android applications and evaluate the permissions that
are extracted and determine malware application by the use of malware score formula.

2. REVIEW OF RELATED LITERATURE

A. PERMISSION ANALYSIS FOR ANDROID MALWARE (2015)

Detection. If the smart phones are infected with malware, users may face the following risks: the
disclosure of personal information, sent messages and read communications without permission,
exploited the data with malicious intent. So the researchers PAMP, Permission Analysis for
Android Malware Detection, which analyzes the Manifest file by understanding the Android
Permission and by investigating malicious characteristics [1].

B. PERMISSION-BASED MALWARE DETECTION SYSTEM (2014)

PMDS System A cloud requested permissions as the main feature for detecting suspicious
activities. PMDS applies a machine learning approach to categorize and determine automatically
the harmful previously unseen application based on combination of permission required. In their
study, they offer some discussion identifying the degree of android malware that can be detect
and the prevention of malware by focusing on the permission they request. To understand the
focus of the study, the set of permissions asked by the application corresponds to the behavior as
either begin or malicious [4].

Computer Science & Information Technology (CS & IT) 3

C. DREBIN:EFFECTIVE AND EXPLAINABLE DETECTION OF ANDROID

MALWARE IN (2014).

“Malicious applications pose a threat to the security of Android malware.” Researchers proposed
DREBIN, method for detecting malware that enables identifying malicious application in
Android by gathering as many features of an application as possible

D. THE POSSIBILITIES OF DETECTING MALICIOUS APPLICATIONS IN

ANDROIDS PERMISSION (2013)

Study attempts to explore Collected relative large number of benign, malicious applications and
conducted experiments and collected information based on the sample [3].

E.PUMA: PERMISSION USAGE TO DETECT MALWARE IN ANDROID (2013)

The presence of mobile devices has increased in our lives offering almost the same functionality
as a personal computer. Android devices have appeared lately and, since then, the number of
applications available for this operating system has increased exponentially. Google already has
its Android Market where applications are offered and, as happens with every popular media, is
prone to misuse. In fact, malware writers insert malicious applications into this market, but also
among other alternative markets.” Researchers presented PUMA (Permission Usage to Detect
Malware in Android), method for detecting malicious Android applications by analyzing the
extracted permissions from the application itself.

F. CREATING USER AWARENESS OF APPLICATION PERMISSIONS IN MOBILE

SYSTEMS.

Classifies the applications based on a set of custom rules if a rule is applied by the application it
will mark as suspicious. Permission Watcher provides a home screen widget that aware users for
potentially harmful applications. The methodology in this context relies on the comparison of the
Android security permission of each application with a set of reference models for an application
that manages sensitive data. The present researchers apply the idea of permission-based analysis
to analyze the applications in order to know if the android app is malicious or benign.

G. PERMISSION WATCHER (2012)

The set of custom rules provides a home screen widget those aware users for potentially harmful
application; the present researcher applies the idea of permission-based to track the behavior of
the applications to know if the android app is malicious or benign [5]. Permission Flow tool that
can easily identified. The system classified the application as benign.

H. DROIDMAT: ANDROID MALWARE DETECTION THROUGH MANIFEST AND

API CALLS TRACING (2012)

The threat of Android malware is spreading rapidly, especially those repackaged Android
malwares.” Presented Droid Mat, a static feature-based mechanism to provide a static analyst
paradigm for detecting the Android malware by extracting the information (Intents, permissions,

4 Computer Science & Information Technology (CS & IT)

etc.) from the application’s manifest and regards components (Activity, Receiver, Service) as
points drilling down for tracing API Calls related to permissions.

3. METHODOLOGY AND DESIGN

Fig. 1 Malcure Conceptual Design

This section will present the overview of the Malcure framework and the description of each
phase. System frameworks illustrate the flow of each phase in working out to analyze the
application during the scanning.

3.1 MALCURE

Will scan for the apps that may contain malwares that could leak sensitive information. Just after
the scan button was tapped, each of the apps will processed, so that each of the app’s permissions
will be directly extracted, and therefore will undergo permission based scoring. The permission
scoring analysis will be performed to check if the permission score has exceeded the malicious
standard score or not. If yes, the application will be advised for uninstallation.

3.2 GET ALL APPLICATIONS

The process where all the applications will be process to be prepared for extraction of the
permissions.

3.3 GET PERMISSIONS

The app’s permissions are directly extract from the application, and there is no need for DE
compilation of the base file.

3.4 EVALUATION

This is where all the permissions are evaluated based on the scores set on the sensitivity of a
permission ranging from 1 to 6, making 1 as the Neutral permission, and 2 to 6 are the sensitive
permissions, and all are processed base on a formula.

Computer Science & Information Technology (CS & IT) 5

3.5 IDENTIFICATION

The overall malicious score is determined in this phase, and therefore will be advice for un
installation if the score exceeds the malicious standard score.
3.6 ADVICE FOR UNINSTALLATION

When a particular application is judge as malicious, Malcure will open a window, where the app
is advised for uninstallation

3.7 APP SCANNING FRAMEWORK

The process of Malcure scanning mechanism, at the start of this function, there will be scanning
performed in a loop of user-defined and system applications that directly extracts each of the
application permissions to be evaluated and process with the Permission Score Analysis and the
Formula to determine the Malicious Score of a particular application. Once an application has
exceeded that malicious standard score, its advice for uninstallation

Fig.2 Malcure App Scanning Framework

In this section, we will briefly discuss the permissions and their sensitivity and malicious scores
that will determine the capability of an app in stealing sensitive information. In addition, the table
that represents the sensitive permissions and their malicious scores of a particular application.
Once an application has exceeded that malicious standard score, it is then advised for
uninstallation.

3.8 PERMISSIONS SENSITIVITY AND THEIR MALICIOUS SCORE

Table 1 Permission Sensitivity and their Malicious Score

6 Computer Science & Information Technology (CS & IT)

The figure shows the formula where R, is the Overall Malicious Score. M, which is the total
scores of the sensitive permissions. C is the number of Neutral or Benign Permissions

3.9 UNTRUSTED SCORING FORMULA

Figure 3. Untrusted Scoring Formula

The figure shows the formula where R, is the Overall Malicious Score. M, which is the total

scores of the sensitive permissions. C is the number of Neutral or Benign Permissions.

3.10 UNTRUSTED SCORE EVALUATION

Table2. Sample Application with Permissions

Figure 4. Sample Result

Shows a sample application with the following permissions. Now, using the formula we will get:
Figure 4. Sample Result

Figure shows the result from Table 2, which is considered to be an untrusted because of the fact
that it exceeded the untrusted standard score which 0.70.

3.1.1 UNTRUSTED STANDARD SCORE

Come up with 0.70 untrusted app standard score, based on multiple mock up tests and
analyzations on multiple untrusted applications, and discovered that even on applications that has
only two permissions. The other is neutral and the other permission is sensitive with 2 points, it
will be considered an untrusted, which is an appropriate action for anti-malware application. Any

Computer Science & Information Technology (CS & IT) 7

application with overall untrusted score equal or more than to 0.70 will be considered an
untrusted.

The Untrusted Standard Score Basis

DeviceModelwith Highest Score Package Name

Built in Apps only
Cherry Mobile Flare 0.69 Com.cherryplay
Acer Liquid z160 0.66 Com.backuptester
Samsung Duos 0.69 Com.hangouts
Myphone Rio 0.67 Com.facebook.orca
Sony Erikkson Curve 0.68 Com.backuptester

Total = 3.39 / 5 Average = 0.68 rounded up to 0.70

Table3. Untrusted Standard Score Basis

Table shows the basis of the untrusted detector Standard Score is by sampling some smartphones

with different brands, stored with only built only applications and we’ve calculated the highest
scores of each smartphones and get there average. Because of the fact that smartphone
manufacturers do not develop built in applications with malwares, every time a user application
exceeds that score, it also exceeds the basis of the manufacturer in developing clean applications.
Failure to do so will result to disclosure of the license to produce Smartphones with Android OS.
This standard is our basis that every time an application exceeds that standard, our study and
developed system will consider it a Malware.

4. RESULTS AND DISCUSS ION

4.1 PERMISSION EXTRACTIO N

Our way of extracting the permissions of every application was successful because of the fact that
Android has a predefined class of directly extracting every permission without de compiling the
APK base file.

Figure 5. Permission Extraction

The above line of codes represents the extraction of all the permissions that comes from the
application, whether it is from the system or the user.

4.2 UNTRUSTED DETECTION

This is the process which shows on how a Malware is detected, through Evaluating the
permissions extracted based on the thirteen sensitive permissions, then using the malicious
scoring formula, which then states if the application is advisable for uninstallation or not.

8 Computer Science & Information Technology (CS & IT)

4.3 PERMISSION VALIDATION

By comparing all of the permissions of a particular application to the sensitive per mission stated
in Table 2, we were able to come up with the malicious score that are necessary for coming up
with the overall malicious score. Once a permission matches with the sensitive permissions. The
score matching the sensitivity of the permission is incremented, and all remaining permissions
which did not match, will be considered as neutral permissions.

4.4 MALWARE SCORING FORMULA/UNTRUSTED DETECTION

Come up with untrusted scoring formula that was based on a study that we slightly modified, due
to reasons that the researcher want untrusted to be fast and efficient, because on its original study,
it included process and third party resource s that causes the overall process to be slow, and
comprise large memory. The malware standard score on the other hand was the result of multiple
mock up tests and analyzations on multiple malware applications, and discovered that even on
applications that has only 2 permissions. The other is neutral and the other permission is sensitive
with 2 points, it will be considered a malware, which is an appropriate action for anti-malware
application. Any application with overall malware score equal or more than to 0.70 will be
considered a malware.

Figure 6. Untrusted Scoring Formula/Untrusted Detection

Shows the Untrusted Scoring Formula and Untrusted Standard Score.

4.5 UNINSTALL RECOMMENDATION

After the processing of all the scores of the matched sensitive permissions, a fin al and overall
malicious score is generated using the formula, then a condition is formulated that when the
overall malware score is equal or more than the malware standard score, that particular
application will be advised for u uninstallation with the consent of the user.

Figure 7. Uninstall Recommendation

Computer Science & Information Technology (CS & IT) 9

4.6 GRAPHICAL USER INTERFACE

This represents the interaction between the user and Untrusted and how the user can manipulate
untrusted, from scanning to determining if the application is a malware or not, with its following
process:

Figure 8. Tap to Scan

Whenever the user taps the shield icon, Untrusted immediately starts its scanning from the
applications from the user and the system, and therefore starts the process from validation,
evaluation, identification and ad vice for uninstallation.

Figure 9. No Malware Detected

Figure 10. Untrusted Detected

Shows when the malware score is equal or more than the malware standard score, and therefore
detects a malware, a dialog box appears advising the user to uninstall the particular application,
and then after that another dialog box appears clarifying the user’s decision. The researcher do

10 Computer Science & Information Technology (CS & IT)

Oustandin

g

80%

Very

Sati sfied

20%

Performance

Oustanding Very Satisfied Satisfied Fair

this, because we observe the full right of the user to keep the application if the user wanted to.
But when the user accepts, the application is uninstalled immediately. There are multiple
applications detected as malware, the event that will happen is that after the first app has been
take cared for, a next dialog box pertaining to the next malware detected will appear.

4.7 UNTRUSTED VS. 360 ANTIVIRUS SECURITY FIRST VERSION

Table 3. Untrusted vs. Other Permission Based Malware Detector

Shows that the researcher have taken 10 updated sample malwares that are likely used to attack
smartphone devices and steal personal information. Out of 10 sample malware tested, 360
antivirus just detected 4, while Untrusted perfectly detected all of them. So, therefore the
researcher conclude that Untrusted is more reliable than the first version of the 360 security, and
with more improvement and development, it will be a remarkable malware detector for Android
Operating system, with the main feature of fast, memory friendly and reliability.

SURVEYS

Disguised 10 malicious software and invited 10 individuals to try Untrusted and compare it with
the first version of 360 Antivirus, with the disguised software installed, and ask their opinions and
statements about the differences between the malware detector, and which is faster and more
reliable for them in detecting malwares.

SURVEY RESULT

Based on the data collected from 10 participants, comprised of average users, techy geeks and
researcher, come up with this graphical representation that helps us conclude on the performance,
reliability, memory friendliness and usage preferability of Untrusted.

CHART PRESENTATION

 Figure 11. Performance Survey Result

Computer Science & Information Technology (CS & IT) 11

Figure 12. Reliability survey Result

 Figure 13. Memory Friendliness Survey Result

 Figure 14. Usage Preferability

SURVEY CONCLUSION

Based on the survey that conducted on 10 Smartphone users, we’re able to collect data that helps
us prove that Untrusted is fast, reliable, memory friendly and users are going to use it. With 95%
on approval on Performance, 75% percent on Reliability, 95% on Memory Friendliness and 80%
percent on Usage Preferability, our study and all of its methodology are proven base on the user’s
experience on the developed system.

5. SUMMARY AND CONCLUSION

SUMMARY

Android Untrusted is considered as one of the problem that many android users encountered. The
proposed untrusted detection for android phones that will identify the malicious application that is
installed on the device. Based on the experiment that the researcher conducted it shows that
untrusted is effective in detecting malicious application. Untrusted detection was effective and
efficient in extracting the permission without decompiling the apk. To get the following
permission use getPackageManer().getPackageInfo() to extract the permission. The researcher
observed that by using the package manager it’s achieve the process of extracting the permission

12 Computer Science & Information Technology (CS & IT)

much faster. It’s also see that permission-scoring formula is effective for evaluating the level of
permissions in order to decide if the application is malicious or benign.

Based on the experiment and survey that the researcher conducted it shows that untrusted is
effective in capturing the malware application. It shows that the untrusted application that
installed on the android device was captured by the untrusted detection.

6. CONCLUSION

The UN system is effective in providing a solution by detecting the malicious application that can
penetrate the android device. The researcher presented a methodology and architecture for
measuring the permission accessed by the application using permission-scoring formula, which
will identify if the application was manifested with malicious permission. Using the permission
scoring detection, and it’s satisfies the Untrusted Detection objectives to capture the malware
application. Using this anti-malware application, android user will be aware of the applications
and its true behaviors.

REFERENCES

[1] NguyenVietD.etal (2015)“Permission Analysis for Android Malware Detection”. Retrieved from

https://www.researchgate.net/profile/Pham_Giang4/publication/296704790_Permission_Analysis_for
_AndroidMalware_Detection/links/ 56d9bce708aee1aa5f8291f4.pdf

[2] Isohara, T., Takemori, et. al. (2011).“Kernel-based Behavior Analysis for Android Malware

Detection”. Retrieved from http://ieeexplore.ieee.org/abstract/document/6128277

[3] Huang, C. Ts ai, et. al. (2013). “Performance Evaluation on Permission- Based Detection for Android

Malware”. Retrieved fromhttps://www.link.springer.comchapter10.1007/978-3-642-35473-112

[4] Rovelli, P., & Vigfússon, Ý . (2014).PMDS:“Permission-Based Malware Detection System”.

Retrieved from https://www.link.springer.com/chapter10.1007/978-3-319-13841-1_19

[5] Struse, E., Seifert, J., Üllenbeck, S.,Rukzio, E., & Wolf, (2012). “Permission Watcher: “Creating User

Awareness of Application Permissions in Mobile Systems”. Retrieved from
 https://www.link.springer.com/chapter10.1007/978-3-642-34898-3_5

[6] Sbirlea, D. Burke, ET. Al (2013). “Automatic Detection of Inter-Application Permission Leaks in

Android applications”. Retrieved from http://www.ieeexplore.ieee.org/abstract/document/6665098/

[7] Wu,D.et.al.,(2012). “DroidMat: API Calls Tracing”. Retrieved from

 http://www.ieeexplore.ieee.org/abstract/document6298136

[8] Sanz, B., Santos, et. al. (2013). “PUMA: Permission Usage to Detect Malware in Android”. Retrieved
 from https://link.springer.com/chapter/10.1007/978-3-642-33018-6_30

[9] Arp, D., et. al. (2014). Drebin: “Effective and Explainable Detection of Android Malware in Your

Pocket” Retrieved from
https://www.researchgate.netprofile/264785935_DREBIN_Effective_and_Explainable_Detection_of_
Android_Malware_in_Your_Pocket /links/53efd0020cf 26b9b7dcdf395.pdf

Computer Science & Information Technology (CS & IT) 13

[10] Barrera, D., Kayacik, et. al., (2010). “Methodology for empirical analysis of permission-based
security models and its application to android categories and subject description. In processing of
17th ACm conference on computer and communication security New York” NY, USA ACM 2010. P
73-74 http://dx.doi.org/10.1145/1866307.18663317

[11] Enck W.Gilbert, et.al., (2014).“TaintDroid: An Information-Flow Tracking System for Realtime

Privacy Monitoring on Smart phones”, Retrieved from http://www.dl.acm.org/citation.cfmid2619091

[12] K.Mathur et.al., “A Survey on Techniques in Detection and Analyzing Malware Executables, Int.

Journal of Advanced Research in Computer Science and Software Engg.”, India, vol. 3, issue 4, pp.
422- 428, 2013.

[13] R.Sato, et.al. “Detecting Android Malware by Analyzing Manifest Files”, pp. 2331, 2013.Android

Permissions Demystified. [Online] Available: https://www.truststc.org/pubs/848.html. [Accessed: 06-
Nov-2015].

[14] P.Faruki, V.Ganmoor, V. Laxmi, M. S. Gaur, and A. Bharmal, Andro Similar: “Robust Statistical

Feature Signature for Android Malware Detection, Proc. 6th Int. Conf. Secur. Inf. Networks”, pp. 152
159, 2013

[15] Mengyu Qiao, et. al., ”Merging Permission and API Features for Android Malware Detection”, vol.

00, no., pp. 566-571, 2016, doi:10.1109/IIAI-AAI.2016.237

[16] K.Xu, Y. Li, and R. Deng, ICC Detector: “ICC-Based Malware Detection 4 on Android, in Proc. of

IEEE Transaction in Information Forensics and security”, vol. 11, no. 6, June 06, 2016

[17] R. Raveendranath, V. Rajamani, A. J. Babu, and S. K. Datta, “Android malware attacks and

countermeasures: Current and future directions, 2014 Int. Conf. Control. Instrumentation Commune.
Compute”. Technol., pp. 137143, 2014

[18] R. Johnson, C. Gagnon, Z. Wang, and A. Stavrou, “Analysis of Android Appss Permissions, in Proc.

of 6th IEEE Int. Conference of Software Security and Reliability Companion, Maryland”, pp. 45-46,
2012

[19] “Android applications ... and more (ninja!) - Google Project Hosting”[Online].Available:

https://code.google.com/p/androguard/. [Accessed: 01- Dec 2015].

[20] L.Wenjia, D. Guqian, ““An SVM Based approach”, in Proc. of IEEE 2nd Int. Conference on Cyber

Security and Cloud Computing”, 2015.

[21] Android developer guide permission 9 (WWW document).Google. URL,

http;//developer.android.com/guide/topics/manifest/permission-element.html#package; 2014[accessed
2512.14]

[22] Wu D J, Mao C H, Wei T E, et al. Droidmat: Android malware detection through manifest and API

calls tracing. In: Proceedings of the 7th Asia Joint Conference on Information Security (Asia JCIS).
Piscataway: IEEE Press, 2012. 62–69

[23] Zhou Y J, Wang Z, Zhou W, et al. Hey, you, get off of my market: detecting malicious apps in

official and alternative android markets. In: Proceedings of the Network and Distributed System
Security Symposium (NDSS), San Diego, 2012. 25: 50–52

14 Computer Science & Information Technology (CS & IT)

[24] Bläsing T, Batyuk L, Schmidt A D, et al. An android application sandbox system for suspicious
software detection. In: Proceedings of the 5th International Conference on Malicious and Unwanted
Software (MALWARE). Piscataway: IEEE Press, 2010. 55–62

[25] Stevens R, Ganz J, Filkov V, et al. Asking for (and about) permissions used by android apps. In:

Proceedings of the 10th Working Conference on Mining Software Repositories. Piscataway: IEEE
Press, 2013. 31–40

[26] Karim M Y, Kagdi H, Di Penta M. Mining android apps to recommend permissions. In: Proceedings

of the 23th IEEE/ACM International Conference on Software Analysis, Evolution, and
Reengineering. Piscataway: IEEE Press, 2016. 427–437

[27] M. Grace, Y. Zhou, Z. Wang, and X. Jiang. Systematic detection of capability leaks in stock Android

smart phones. In Proceedings of the 19th Network and Distributed System Security Symposium
(NDSS), Feb. 2012.

[28] Kim, J. I. Cho, H. W. Myeong, and D. H. Lee. A study on static analysis model of mobile application

for privacy protection. In J. J. (Jong Hyuk) Park, H.-C. Chao, M. S. Obaidat, and J. Kim, editors,
Computer Science and Convergence, volume 114 of Lecture Notes in Electrical Engineering, pages
529-540. Springer Netherlands, 2012. 10.1007/978-94-007-2792-2 50.

[29] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android permissions demystified. In

Proceedings of the 18th ACM conference on Computer and communications security, CCS '11, pages
627-638, New York, NY, USA, 2011. ACM.

[30] Sina science and technology, http://tech.sina.com.cn/it/20130510/07478325514.shtml[EB/OL].May

2013.

[31] DoNews.http://www.donews.com/net/201305/1495781. shtm[EB/OL]. May 2013.

AUTHOR

Engr. Jackelou S. Mapa, MIT
Information Technology Education Program Head
Saint Joseph Institute of Technology,
Montilla Boulevard, 8600 Butuan City, Philippines

