

Natarajan Meghanathan et al. (Eds) : SOFE, ADCOM, ITCSS - 2018
pp. 41–60, 2018. © CS & IT-CSCP 2018 DOI : 10.5121/csit.2018.81304

WHY WE NEED A NOVEL FRAMEWORK TO

INTEGRATE AND TRANSFORM

HETEROGENEOUS MULTI-SOURCE GEO-

REFERENCED INFORMATION: THE J-CO

PROPOSAL

Gloria Bordogna1 and Giuseppe Psaila2

1CNR IREA - Via Bassini 15 - 20133 Milano - Italy

2University of Bergamo - Viale Marconi 5 – 24044 Dalmine (BG) - Italy

ABSTRACT

The large number of geo referenced data sets provided by Open Data portals, social media

networks and created by volunteers within citizen science projects (Volunteered Geographical

Information) is pushing analysts to define and develop novel frameworks for analysing these

multisource heterogeneous data sets in order to derive new data sets that generate social value.

For analysts, such an activity is becoming a common practice for studying, predicting and

planning social dynamics. The convergence of various technologies related with data

representation formats, database management and GIS (Geographical Information Systems)

can enable analysts to perform such complex integration and transformation processes. JSON

has become the de-facto standard for representing (possibly geo-referenced) data sets to share;

NoSQL databases (and MongoDB in particular) are able to natively deal with collections of

JSON objects; the GIS community has defined the GeoJSON standard, a JSON format for

representing georeferenced information layers, and has extended GIS software to support it.

However, all these technologies have been separately developed, consequently, there is actually

a gap that shall be filled to easily manipulate GeoJSON objects by performing spatial

operations. In this paper, we pursue the objective of defining both a unifying view of several

NoSQL databases and a query language that is independent of specific database platforms to

easily integrate and transform collections of GeoJSON objects. In the paper, we motivate the

need for such a framework, named J-CO, able to execute novel high-level queries, written in the

J-CO-QL language, for JSON objects and will show its possible use for generating open data

sets by integrating various collections of geo-referenced JSON objects stored in different

databases.

KEYWORDS

Collections of JSON objects, Geo-tagged data sets, Query Language for geographical analysis,

Powerful spatial operators

1. INTRODUCTION

Geo-referenced information from Open Data portals, Volunteered Geographic Information (VGI),
and crowdsourced information from social networks are recognized as a potential driver for social
changes: companies are relying on such information to enhance their existing services or to derive
knowledge from its analysis to create social value [3]. As described in the European Commission
report on the reuse of open data, the European Data Portal has more than doubled the amount of

42 Computer Science & Information Technology (CS & IT)

data it references. In general, a large number of sources are now available to get information
about territories, including corpora managed by private companies like Google and Facebook,
that collect and integrate official information, VGI and crowd-sourced information about any kind
of place.

In order to turn such geo-referenced information into social value, the so-called data-value chain
process must be carried out: once geo-referenced data (geo-data for short) are created, they have
to be validated, for example through filtering, normalization and quality assessment, and shared
by means of a Web geo-portal, after which they can be analysed. From integrating different geo-
data sets, new data can be created, which can lead to new data services or products. It can be seen
that, in order for a geo-data analyst to perform such tasks in an easy way, a framework is needed
so as he/she can perform several manipulation operations on geo-data, which are heterogeneous,
as far as their source, structure, format and semantics are concerned.

In effect, performing integration and transformation processes asks for the convergence of various
technologies, originally developed separately, that now all together contribute to this ambitious
goal. In particular, we consider data representation formats, database management and GIS
(Geographical Information System) technology.

Let us start with the area of data representation formats. After the introduction of XML
(eXtensible Mark-up Language) at the end of the 1990s, that had to become “the language” for
information interchange on the Internet, currently we are observing the rapid diffusion of JSON
(JavaScript Object Notation) as a de-facto standard for data interchange, in particular through API
interfaces and Web Services. JSON is a flexible format to encode semi-structured compact
information. Often, data sets provided by Open Data portals as well as by Web Service APIs
contain geo-referenced information, i.e., data are tagged with positions on the Earth Globe (in
terms of longitude and latitude), since they describe data concerning territories.

As far as the area of Database Management is concerned, the last decade is characterized by the
development of so-called NoSQL databases, i.e., DBMSs (Data Base Management Systems)
which are not based on the relational data model and, consequently, abandon SQL as query
language. In particular, value-store, column-store and document-store are different models of
NoSQL DBMS, where document stores are able to manage collections of JSON objects in a
native way. The most famous representative of this category is MongoDB designed to manage
large amounts of (relatively small) JSON objects, even though it provides spatial indexes that
enable to efficiently perform some types of spatial queries.

As far as GIS Technology is concerned, GIS tools are now even more important than in the recent
past: in fact, the availability of geo-data sets asks for visualizing such data on maps in the form of
information layers, possibly integrating data from distinct data sets. In this respect, it was
essential to introduce a standard format for describing information layers: the GIS community has
defined the GeoJSON format, i.e., a standard format for describing geographical information
layers that relies on JSON as syntactic framework.

Apparently, the above-mentioned convergence should be mature, but this is not true. In fact, the
different perspectives that have driven the diverse developments make actually difficult to easily
and effectively transform and integrate JSON data sets and/or GeoJSON layers, in particular
when they are collected within databases managed by MongoDB (or, worse, in simple files). A
unifying framework that provides analysists with the capability of effectively integrating and
transforming JSON data sets and GeoJSON layers is essential.

These are the main reasons that motivated us to conceive a new framework, named J-CO. The
goal of the framework is twofold: it has to provide the capability of working on different

Computer Science & Information Technology (CS & IT) 43

MongoDB databases at the same time, allowing analysts to easily integrate data sets stored in
different databases; it has to provide a query language, named J-CO-QL, for manipulating
collections of JSON and GeoJSON objects, natively supporting spatial operations and
representations. The paper will describe, through a study case example, how the defined query
language can be used to integrate and transform JSON data sets to create GeoJSON layers:
specifically, we consider quartiers and pharmacies of Milan (city in the northern Italy) and we
will generate two GeoJSON layers describing quartiers with less than two pharmacies and
quartiers with at least two pharmacies. We hope this way the paper will clarify how the J-CO
framework can implement the convergence of the above-mentioned technology.

The paper is organized as follows. Section 2 presents the background of our project and related
work. Section 3 introduces the J-CO framework, detailing the main features of the J-CO-QL
language. Section 4 shows the example and how the J-CO-QL language can be used to perform
complex transformations on collections of JSON data. Finally, Section 5 draws the conclusions.

2. RELATED WORKS

2.1. Motivation of the Proposal

Our seminal idea of developing a framework for integrating and transforming collections of
JSON objects originated in the Urban Nexus Project [12]. The goal of this project is to gather
information from several distinct open data repositories on the Web, authoritative and statistical
sources, social media and so on, to study how city users live their city and territory. The idea is
that geographical studies should take advantage of Big Data, in the sense of large variety of data
sets coming from diverse data sources. In such a context, analysts are not programmers and need
an integrated framework for performing their analyses. Nevertheless, since data come from many
sources as JSON or GeoJSON data sets, it was necessary to develop a novel query language for
this purpose. These considerations motivated the development of the J-CO framework.

In [5, 18, 19], we tackled the objective of exploiting social media to trace movements of social
media users. We named this project FollowMe, because we traced (and we are still tracing)
travellers that post geo-located messages on Twitter, detecting them in a pool of 30 airports
potentially connected with the airport of Bergamo (northern Italy). Next [7], we integrated the
FollowMe project within a framework for analysing trips of Twitter users, furthermore [8], we
experimented a clustering technique for identifying common paths followed by users during their
trips. That was a preliminary work of the Urban Nexus project, in which huge numbers of trips of
Twitter users represented as JSON objects have to be analysed on the basis of multi-paradigmatic
approach (see [12]). While facing this analysis task, we experienced the limitations of current
query languages for heterogeneous geo-data in the form of JSON objects.

2.2. Manipulating Heterogeneous Big Geo-Data

The first attempt to abandon the relational data model in favour of more flexibility on the
structure of data dates back to the late 1990s with the advent of XML (eXtendible Mark-up
Language) as the universal data format for exchanging data over the Internet that stimulated the
idea of developing database technology for storing and querying XML documents. Many
proposals for XML databases and related query languages were proposed. The reader can refer to
[22, 24,27] for some surveys. Obviously, speaking about convergence of technologies, the
research area of data mining met the research area of XML-native databases, in order to perform
data mining and knowledge discovery directly on XML documents stored within XML databases
[30,33]. The idea is that the ability of XML to represent semi-structured and complex data
enables to store, within the same XML database, both the mined data and the mined patterns.

44 Computer Science & Information Technology (CS & IT)

However, the potentiality of XML to become “the representation format” met several practical
obstacles that have limited its diffusion and favoured the emergence of JSON, namely its extreme
verbosity and difficulty of importing data described by XML documents within programs and
information systems.

The adoption of JSON and NoSQL databases are motivated by the need for both flexibility and
compactness as far as data structures are concerned; an interesting survey on NoSQL databases
can be found in [12], where several systems are catalogued and classified. In particular, a DBMS
like MongoDB falls into the category of document databases, because collections of JSON
objects are generically considered as documents [26]. The query language provided by such
systems does not allow complex and multi-collection transformations. Readers interested in
NoSQL DBMSs evaluation can refer to [37] and to [15].

As far as query language for JSON objects are concerned, several proposal were made. However,
none of them is explicitly designed to provide geographical data analysis capabilities, natively
integrated in a high level query language, as for J-CO-QL [5]. Anyway, it is worth mentioning
them.

Jaql (see [34]) was designed to help Hadoop (see [40]) programmers writing complex
transformations, avoiding low-level programming, to perform in a cloud and parallel
environment. Flexibility and physical independence are the main goals of Jaql: in particular, its
execution model is similar to our execution model, since it explicitly relies on the concept of pipe;
in fact, the pipe operator is explicitly used in Jaql queries. However, it is still oriented to
programmers; its constructs are difficult to understand for non programmer users.

An interesting proposal is SQL++,defined to query both JSON native stores and SQL databases.
The SQL++ semi-structured data model is a superset of both JSON and the SQL data model [35].
Yet, SQL ++ is SQL backwards compatible and is generalized towards JSON by introducing only
a small number of query language extensions to [35]. In SQL++ the classical SELECT statement
of SQL is adapted and extended to perform queries on collections of JSON objects. In our
opinion, this is a clean proposal, if compared with others, that tries to work at a higher abstraction
level. However, it does not deal explicitly with heterogeneity of objects, i.e., it does not provide
constructs similar to the WHERE branches provided by J-CO-QL. Furthermore, complex
transformations that require several queries sequentially would executed need to explicitly save
intermediate results into the persistent database (although in [35] nothing is said about data
manipulation operators such as INSERT). In contrast, the execution model on which J-COQL
relies clearly separate persistent databases and temporary databases, by means of the temporary
collection and the intermediate result database IR.

The industry is looking at the extension of SQL to query JSON objects. An example is N1QLyy
that is a declarative language extending SQL for JSON objects stored in NoSQL databases,
specifically implemented for Couchbase 4.0, in order to handle semi-structured, nested data. It
enables querying JSON documents without any limitations sort, filter, transform, group, and
combine data with a single query from multiple documents with a JOIN. Nevertheless it does not
provide operators to manipulate GeoJSON objects. Finally, other declarative languages for JSON
objects have been defined as extensions of structured languages for semi-structured documents,
such as JSONiq, that borrowed a large numbers of ideas from XQuery, like the functional aspect
of the language, the semantics of comparisons in the face of data heterogeneity, the declarative
snapshot-based updates. However, unlike XQuery, JSONiq is not concerned with the peculiarities
of XML, like mixed content, ordered children, or the complexities of XML Schema, and so on.
Nevertheless, like XQuery it can be hardly used by unexperienced users.

Although these languages are declarative, they are still oriented to a programmer vision.

Computer Science & Information Technology (CS & IT) 45

Other approaches to manipulate heterogeneous big data recognize the importance of a declarative
query language to guarantee the data independence principle [20, 26]. For example, SparkSQL
[1], was developed with an SQL interface to query heterogeneous big data sets managed within
the Spark distributed processing infrastructure. It introduces a new data abstraction called
SchemaRDD, which provides support for structured and semi-structured data. Nevertheless, it
does not support spatial operators.

GeoSPARQL [2] is a Geographic Query Language for RDF Data proposed as standard by the
OGC consortium for querying geospatial data on the Semantic Web. GeoSPARQL is designed to
accommodate systems based on qualitative spatial reasoning and systems based on quantitative
spatial computations to ease data analysis.

Also our proposal is oriented to data analysts, which need to manage heterogeneous collections of
real world entities, namely collection in both JSON and GeoJSON.

It is somehow related to the world of PolyStore DBMS, i.e., database management systems that
deal with several DBMS at the same time, each of them possibly providing a different logical
model, such as relational, graph, JSON, pure-text, images, videos. An interesting work on this
topic is BigDAWG.

Our proposal moves from our previous work on the problem of querying heterogeneous
collections of complex spatial data (see [11, 36]). In that works, we proposed a database model
capable to deal with heterogeneous collections of possibly nested spatial objects, based on the
composition of primitive spatial objects; at the same time, an algebra to query complex spatial
data is provided, inspired by classical relational algebra. W.r.t. those previous works, J-CO-QL
relies on the JSON standard, thus we do not define an ad-hoc data model; furthermore, J-CO-QL
abandons the typical relational algebra syntax, because it relies on a more flexible and intuitive
execution model. Nevertheless, the experience made in [28] helped us, where we defined a
language for manipulating clusters of web searches performed through a mobile device.

3. A FRAMEWORK FOR GEOREFERENCED DATA TRANSFORMATIONS

The framework we conceived for integrating and transforming multisource geo-referenced JSON
data is named J-CO (JSON COllections) and comprehends several components depicted in Figure
1.

• One or more NoSQL databases managed by MongoDB (and, in the future, by other
systems like ElastichSearch). This feature resembles a distributed federated database
architecture [28].

• The J-CO-QL Engine that executes queries directly operating on data stored in MongoDB
databases. It receives queries through a Web Service interface. This feature is typical of
distributed databases querying [31].

• A GIS application, like, e.g., QGIS [23], the open source GIS software, that can be used
as environment to query and to show GeoJSON layers.

• A (future) User Interface. Through this interface, the analysis will be able to carry on the
transformation process dynamically. This interface can be developed as a plug-in of a
GIS application.

46 Computer Science & Information Technology (CS & IT)

• Any kind of publishing tool for geo-data stored within MongoDB-managed databases,
such as Open Data geo portals, Web Map services and Web Feature Services [32], etc.

Note that the ability of the J-O-QL Engine of connecting with several databases during the same
transformation process is a key feature: in fact, this feature allows analysts to easily integrate data
sets, by taking them from the servers that store them. This way, it is possible to avoid a large
amount of efforts for transferring data from one server to another, in accordance with
optimization techniques in loosely coupled federated databases [13]. In them, a unique schema
for queries does not exists but a uniform query language is made available ,which abstracts from
the query languages of the components, and hides technical and language heterogeneity. Thus,
every user is responsible for handling logical heterogeneity in the components.

Nevertheless, the possibility of visualising data and results of the analysis through a GIS software
can greatly help analysts formulate queries and perform a visual analysis of results. This can be
done by generating GeoJSON layers during the transformation process performed by means of
the J-CO-QL Engine.

On the same line, it is important to be able to publish results anywhere, for example in Open Data
Portals. These portals often provide geo-referenced data as GeoJSON layers, but this is not
mandatory. Often, when data are not geo-referenced, simple JSON collections are published. In
this scenario, the J-CO framework is designed to play a central role, towards the simplification of
tasks that, without it, could be very tedious and much more time consuming than necessary.

3.1. J-CO-QL Main Features

The query language named J-COQL is defined to work with collections of JSON objects. JSON
is a serialized representation for objects. Fields (object properties) can be simple (numbers or
strings), complex (i.e., nested objects) and vectors (of numbers, strings and objects).

JSON does not consider geo-references. An official proposal in this sense is the GeoJSON
standard [14, 17]. Defined by the GIS community, it provides an excellent format for defining
geometries of geo-referenced data. Fields describing geometries are named, in the GeoJSON

standard, geometry. In J-CO-QL, we rely on the same standard for representing geometries, but

the name of the field considered by the J-CO-QL language to handle geometries is ~geometry:

this way, J-CO-QL is able to handle GeoJSON layers in a seamless way.

Figure 1. Application Scenario for the J-CO Framework

Computer Science & Information Technology (CS & IT) 47

When the ~geometry field is absent in an object processed by J-CO-QL, this means that no

geo-reference is present in the object and no spatial operations can be performed on it.

Specifically, the ~geometry field (when present) is based on the GeometryCollection

type for the GeoJSON standard.

Figure 2, reports sample objects of JSON objects with ~geometry field. The reader can see

objects describing quartiers of Milan, as well as objects describing pharmacies in Milan.
Coordinates (longitude and latitude) are expressed based on the (World Geodetic System) 84, our
default CRS (Coordinate Reference System).

In a NoSQL environment such as MongoDB, a Database is viewed as a set of collections, while a
Collection has a name and its instance is viewed as a vector of JSON objects. To manipulate
JSON collections and to store their results into new collections, in a transparent way w.r.t. to the
databases from which to get collections and to which to store collections, we need operators that
meet the closure property, that is, they get collections and generate collections. This is a first
design requirement for the J-CO-QL language [38]. Other key features of the language are
reported hereafter.

• J-CO-QL provides operators specifically designed to deal with objects with different
structure within the same operation.

• Operators provided by J-CO-QL are high-level operators, which allow analysts to think
directly to objects structure; they do not have to write low-level procedures.

• Finally, but not less important, J-CO-QL directly deals with geo-reference possibly
contained in JSON objects, because the data model explicitly deals with them through the

~geometry field.

Queries are sequences of operators applied to collections [16, 29]. The execution process of
queries is based on the concept of state of the query process, that is a pair s = (tc; IR), where tc is
a collection named Temporary Collection, while IR is a database named Intermediate Results

database.

Each operator starts from a given query process state and generates a new query process state.
During the process, the J-CO-QL Engine, can be asked (by a suitable operator) to store tc (the
Temporary Collection) into IR (the Intermediate Results database), that could be taken as input
by a subsequent operation. Obviously, J-CO-QL provides an operator to store the temporary
collection into a persistent database, (a database managed by MongoDB) as well as an operator to
get a collection from IR or from a persistent database as new temporary collection. In fact, the
idea is that an operator takes the temporary collection as input and generates a new instance of the
temporary collection as output. The reader can see an execution trace in Figure 6, depicting the
execution process of the query presented in Section 4.1.

The J-CO-QL Engine executes each query process in isolation: several users can use the engine at
the same time. Thus, the goal of the IR database, one for each query process, is twofold. First of
all, it permits to temporarily store intermediate results of the process, that do not have to be stored
in persistent database (since they are intermediate). Second, it ensures isolation of query process
execution as far as intermediate results are concerned.

48 Computer Science & Information Technology (CS & IT)

4. GENERATING OPEN DATA CONCERNING GEO-REFERENCED CONTENTS

In this section, we practically show the effectiveness of our framework. We consider real data sets

coming from the Open Data portal (url: https://dati.comune.milano.it/) of Milan

(Italy) City Council.

Suppose we own an information system having three MongoDB servers, whose toy IP addresses
are 10.0.0.11, 10.0.0.12 and 10.0.0.13. The first one, with address 10.0.0.11, has a database

named Boundaries, that contains collections concerning some cities; we say that collection

Milan_Quartiers contains JSON objects describing quartiers in Milan. The upper part of

Figure 2 shows a few objects describing quartiers.

Collection Quartiers: [

{"ID ": 74, "Name": "SACCO",

 "~geometry": {"type": "MultiPolygon",

 "coordinates": [[[[9.121949242919204,

45.516020899111012], ,…, [9.121949242919204,

45.516020899111012]]]] } },

{"ID ": 82, "Name": "COMASINA",

 "~geometry": {"type": "MultiPolygon",

 "coordinates": [[[[9.168870308198338,

45.523965029425476], …, [9.168870308198338,

45.523965029425476]]]] } },

…]

Collection Pharmacies:[

{"Address": "Via ANGELONI LUIGI",

 "Name": "COMUNALE N.33",

 "~geometry": {"type": "Point",

 "coordinates": [9.17529749573575,

 45.527028643302899] } },

{"Address": "Via CASARSA 130",

 "Name": "CASARSA",

 "~geometry": {"type": "Point",

 "coordinates": [9.174392445342329,

 45.524802296955897]} },

…]

Figure 2. Excerpt of collection Quartiers and collection Pharmacies

Computer Science & Information Technology (CS & IT) 49

Server with address 10.0.0.12 manages a database named MilanInfo: it contains collections

related with territory. As an example, consider collection Pharmacies, that describes

pharmacies in Milan. We report a few objects in collection Pharmacies in the lower part of

Figure 2.

Finally, server 10.0.0.13 manages the database named dbToPublish that has to store

collections containing GeoJSON layers to publish as open data.

The sample process we show in the rest of this section has the following goals:

• Count, for each quartier, the number of pharmacies in the quartier.

• Create two GeoJSON layers to save into a collection named

NilanQuartiersAndPharmacies and store it in database dbToPublish: one

layer is named "Few Pharmacies" and describes quartiers having less than 2

pharmacies; the other layer is named "Many Pharmacies" and describes all other

quartiers.

Figures 3 and 7 graphically illustrate the process. We start from the descriptions of quartiers
(brown-filled polygons) and pharmacies (grey points). We want to obtain the two layers jointly
depicted in Figure 7: red-filled polygons are quartiers with less than 2 pharmacies; green-filled
polygons are quartiers with at least 2 pharmacies. The two main steps of the process are described
in Sections 4.1 and 4.2, where J-CO-QL queries able to perform the process are presented.

4.1. Counting Pharmacies

The J-CO-QL query for performing the first task, i.e., counting pharmacies in each quartier, is
reported hereafter. Afterwards, we will describe single operators and the full process.

Figure 3. Quartiers and Pharmacies in Milan (Italy)

50 Computer Science & Information Technology (CS & IT)

USE DB Boundaries

ON SERVER MONGODB "http://10.0.0.11:2707";

USE DB MilanInfo

ON SERVER MONGODB "http://10.0.0.12:2707";

USE DB dbToPublish

On SERVER MONGODB "http://10.0.0.13:2707";

SPATIAL JOIN OF COLLECTIONS

 Milan_Quartiers@Boundaries AS Q, Pharmacies@MilanInfo AS P

ON INCLUDED(RIGHT)

SET GEOMETRY LEFT

CASE

WHERE WITH Q.QID, P.Name

GENERATE {.QID: .Q.QID, .Name: .Q.Name, .PharmacyName: .P.Name}

KEEPING GEOMETRY

DROP OTHERS;

GROUP

PARTITION WITH .QID, .PharmacyName

BY .QID, .Name, .~geometry INTO .Pharmacies

DROP OTHERS;

FILTER

CASE WHEN WITH .QID, .Pharmacies

GENERATE {.QID, .Name, .NumOfPharmacies: COUNT(.Pharmacies)}

 KEEPING GEOMETRY

SET INTERMEDIATE AS QuartiersWithPharmacies;

FILTER

CASE WHERE WITH .QID, .Name

 GENERATE {.ID,.Name} KEEPING GEOMETRY

DROP OTHERS;

SUBTRACT COLLECTIONS Milan_Quartiers, TEMPORARY;

FILTER

CASE WHERE WITH .QID, .Name

 GENERATE {.ID,.Name, .NumOfPharmacies: 0}

 KEEPING GEOMETRY

Computer Science & Information Technology (CS & IT) 51

DROP OTHERS;

MERGE COLLECTIONS TEMPORARY, QuartiersWithPharmacies;

SET INTERMEDIATE AS QuartiersWithPharmaciesCount;

We now describe the query. Notice that the execution trace is depicted in Figure 6.

First of all, it is necessary to specify to which databases to connect. The first three USE DB

operators do this work. Notice that the ON clause specifies the connection string necessary to

connect to the desired MongoDB server.

The real procedure starts with the SPATIAL JOIN operator. This is the key operator provided

by J-CO-QL, in order to perform complex transformations concerned with geo-referenced data.

Recall that collection Milan_Quartiers describes quartiers in Milan: each object in the

collection contains a field named ~geometry, that describes the boundary of the quartier as a

polygon. This collection is aliased as Q in the operator. On the other side, collection

Pharmacies contains objects whose field ~geometry denotes the point where the pharmacy

is located. This collection is aliased as P in the operator.

The SPATIAL JOIN operator computes pairs of objects in the two collections, such that the

spatial join condition specified in the ON clause is satisfied. Specifically, a pair of objects is built

if the geometry of the right object (in this case, coming from collection Pharmacies) is

included in the geometry of the left objects (in this case, coming from collections

Milan_Quartiers). The SET GEOMTERY clause specifies the geometry to assign to the

object obtained by pairing the two original ones: we specify that we want to maintain the
geometry of the left object, i.e., the boundary of the quartier. The upper part of Figure 4 reports an
excerpt of the objects resulting from the generation of pairs satisfying the spatial join condition.

Notice field Q that contains the original object coming from collection aliased ass Q, field P that

contains the original object coming from the collection aliased as P and the ~geometry field

resulting from the join (in this case, it coincides with the left geometry, as specified in the
operator).

The subsequent CASE WHERE clause is necessary to restructure the objects, removing nesting.

The WHERE selection condition uses the WITH predicate, that selects objects having the desired

fields; then, the GENERATE sub-clause specify how to restructure each object that satisfies the

condition; note that we want to maintain the geometry (KEEPING GEOMTRY option). The lower

part of Figure 4 reports an excerpt of the temporary collection t1 (as reported in Figure 6)

resulting from the SPATIAL JOIN; notice how the CASE WHERE block restructured the output

objects.

At this point, it is necessary to group together objects resulting from the SPATIAL JOIN in

order to count the number of pharmacies in each quartier.

The GROUP operator is, intuitively, similar to the GROUP BY clause of SQL. However, it is

specifically designed to work with collections of heterogeneous objects. Thus, the goal of the

PARTITION clause is to select objects (from the temporary collection produced by the previous

operator) that have some common fields or characteristics. In the query, we select objects having

fields QID (quartier identifier) and PharmacyName (in other words, we define a partition of the

full set of objects); objects in the partition are then grouped on the basis of fields QID, Name

and ~geometry field, as specified by the BY clause. For each identified group of objects, a new

52 Computer Science & Information Technology (CS & IT)

object is put into the output collection, such that all common fields are reported and a new field,

an array of grouped objects named Pharmacies (as specified by the INTO clause) is added.

Within SPATIAL JOIN: and Before CASE WHERE [
{"Q": {"QID": 83,

 "Name": "BRUZZANO",

 "~geometry": {"type": "MultiPolygon",

 "coordinates": […] } },

 "P": {"Address": "Via ANGELONI LUIGI",

 "Name": "COMUNALE N.33",

 "~geometry": {"type": "Point",

 "coordinates": […] } },

 "~geometry": {"type": "MultiPolygon",

 "coordinates": […]}

},

{"Q": { "QID": 83,

 "Name": "BRUZZANO",

 "~geometry": {"type": "MultiPolygon",

 "coordinates": […] } },

"P": {"Address": "Via CASARSA 130",

 "Name": "CASARSA",

 "~geometry": {"type": "Point",

 "coordinates": […]} },

"~geometry": {"type": "MultiPolygon",

 "coordinates": […] }

…]

At the end of SPATIAL JOIN, t1 : [
{"QID": 83, "Name": "BRUZZANO",

 "pharmacyName": "COMUNALE N.33",

"~geometry": {"type": "MultiPolygon",

 "coordinates": […] }},

{"QID": 83, "Name": "BRUZZANO",

 "PharmacyName": "BRUZZANO",

 "~geometry": {"type": "MultiPolygon",

 "coordinates": […] }},

…]

Figure 4. Excerpt of objects generated by SPATIAL JOIN

Computer Science & Information Technology (CS & IT) 53

Note the presence of the ~geometry field in the BY clause: this is necessary to avoid the loss of

geometry of quartiers during grouping (the geometry is implied by the quartier identifier). An
excerpt of the temporary collection t2, as numbered in Figure 6, is reported in the upper part of
Figure 5.

At this point, it is necessary to add a field witch counts how many elements are present in array

Pharmacies. The FILTER operator selects the desired objects and restructures them by adding

the field named NumOfPharmacies. The lower part of Figure 5 reports the temporary

collection t3, as numbered in Figure 6, resulting from the FILTER operator.

The temporary collection is saved with name QuartiersWithPharmacies into the

Intermediate Results Database. It will be used a few operators later. Notice in Figure 6 that the

temporary collection in the state produced by SET INTERMEDIATE operator does not change

(it is still labelled as t3). In contrast, the IR database, depicted with empty braces in previous
states, now contains the new saved collection.

Some quartiers may have not been produced by the spatial join, i.e., those quartiers without
pharmacies. To restore them, we subtract quartiers with pharmacies from the full set of quartiers.
Preliminarily, it is necessary to make the structure of objects in the temporary collection

homogeneous with that of objects in collection Milan_Quartiers, with a FILTER operator

that removes field NumOfPharmacies.

Then, the SUBTRACT operator performs the set-oriented difference between objects in collection

Milan_Quartiers and the temporary collection (that actually contains quartiers with at least

one pharmacy). Since only quartiers without pharmacies survive the difference, the next FILTER

operator adds the missing NumOfPharmarcies field (set to 0). Finally, the MERGE operator

unites the objects in the temporary collection and in collection QuartiersWithPharmacies,

previously saved into the Intermediate Results database.

At the end of GROUP, t2: [
{"QID": 83, "Name": "BRUZZANO",

 "Pharmacies": [

{"QID": 83, "pharmacyName": "COMUNALE N.33",

 "~geometry": {"type": "MultiPolygon",

 "coordinates": […] }},

{"QID": 83, "PharmacyName": "BRUZZANO",

 "~geometry": {"type": "MultiPolygon",

 "coordinates": […] }}],

"~geometry": {"type": "MultiPolygon",

 "coordinates": […] }}, },

…]

Temporary collection t3 and Intermediate Collection QuartiersWithPharmacies: [
{"QID": 83, "Name": "BRUZZANO",

 "NumOfPharmacies": 2},

…]

Figure 5. Excerpt of objects generated by the objectys generated by the first GROUP operator and in

collection saved into the QuartiersWithPharmacies IR database.

54 Computer Science & Information Technology (CS & IT)

The first part of the process end ssaving the temporary collection into the Intermediate Results

database with name QuartiersWithPharmaciesCount.

4.2. Generating GeoJSON Layers

The J-CO-QL query for performing the second task, i.e., generating the desired GeoJSON layers,
is reported hereafter.

GET COLLECTION QuartiersWithPharmaciesCount;

FILTER

CASE WHERE WITH ..QID, .Name, .NumOfPharmacies AND

 .NumOfPharmacies < 2

 GENERATE {.ID, .Name, .LayerName: "Few Pharmacies"}

 KEEPING GEOMETRY

 WHERE WITH ..QID, .Name, .NumOfPharmacies AND

 .NumOfPharmacies >= 2

 GENERATE {.ID, .Name, .LayerName: "Many Pharmacies"}

 KEEPING GEOMETRY

DROP OTHERS;

FILTER

CASE WHEN WITH .ID, .Name, ..NumOfPharmacies, LayerName,

 GENERATE {.type: "Feature",

 .properties:{.QID, .Name,

Figure 6. Execution trace for the query performing the first task

Computer Science & Information Technology (CS & IT) 55

 .NumOfPharmacies,

 .LayerName},

 .geometry: .~geometry }

 DROPPING GEOMETRY

DROP OTHERS;

GROUP

PARTITION WITH .type, .properties, .geometry,

 .Properties.LayerName

BY .Properties.LayerName INTO .features

DROP OTHERS;

FILTER

CASE WHERE WITH .LayerName, .features

 GENERATE {.tye:"FeatureCollection",

 .name: .LayerName,

 .features}

DROP OTHERS;

SAVE AS MilanQuartiersAndPharmaciesdbBToPublish;

In order to generate two GeoJSON layers from objects stored in the intermediate collection

QuartiersWithPharmaciesCount, we have to perform a sequence of transformations.

First of all, the operator GET COLLECTION retrieves the desired collection from the Intermediate

Results database and makes it the temporary collection.

The subsequent FILTER operator adds a new field to objects, named LayerName. Notice the

two WHERE conditions: if an object satisfies the first one, the new field has value "Few

Pharmacies"; if an object satisfies the second condition, the new field has value "Many

Pharmacies". These are the names of the two layers we are going to generate, The second

FILTER operator is necessary to restructure objects, in order to comply with the structure of

GeoJSON features. In particular, notice the field specification .geometry: .~geometry,

that is necessary to rename the ~geometry field (required specified by the J-CO-Ql data model)

into geometry, as required by the GeoJSON format.

At this point, it is possible to generate a layer by aggregating all objects having the same value for

field LayerName. This is easily performed by the GROUP operator, which groups the objects

based on the value of field LayerName nested within field properties.

56 Computer Science & Information Technology (CS & IT)

The last FILTER operator is necessary to add the missing field type at the external level and

rename field LayerName as name.

The obtained collection is saved into the dbToPublish database, that is managed by server

with IP address 10.0.0.13. Hereafter, we report an excerpt of layer "Few Pharmacies", that is

depicted in red in Figure 7. Layer "Many Pharmacies" is identical, apart from the described

quartiers and the name of the layer.

{"type": "FeatureCollection",

 "name": "Few Pharmacies",

 "features": [

 {"type": "Feature",

 "properties": {"QID ": 74, "Name": "SACCO",

 "LayerName": "Few Pharmacies"},

 "geometry": {"type": "MultiPolygon", "coordinates": […] }

 },

 {"type": "Feature",

 "properties": {"QID": 75, "Name": "STEPHENSON",

 "LayerName": "Few Pharmacies"},

 "geometry": {"type": "MultiPolygon", "coordinates": […]}

 },

…] }

At the end of this section, we want to point out the major results we obtained with J-CO-QL.

• A J-CO-QL query is certainly a procedural specification, but it is not a procedural
program, in the sense of classical procedural programming languages.

Figure 7. Layers "Few Pharmacies" (in red) and "Many Pharmacies" (in green)

Computer Science & Information Technology (CS & IT) 57

• The syntax of operators is English-like, inspired by the same approach adopted for SQL.
This way, a certain degree of semantics of operators implicitly is expressed by the syntax.

• We are aware that operators need training to be properly used, but it is more intuitive for
non programmers that other languages for JSON objects. For example, the same
operations performed with the native query language of MongoDB could result a little bit
hard to perform (probably exploiting JavaScript in many case, thus again a programming
language).

• JSON collections are heterogeneous, i.e., they can contain objects with different
structure. J-CO-QL natively deals with such a situation.

• The language natively deals with spatial operations on geometries. This is an essential
feature of the language, very useful for managing data with associated geometries, a more
and more frequent situation in the Open Data world.

As far as the J-CO framework is concerned, we think that this section has shown some of the
reasons why we decided to devise it.

• The J-CO framework is able to provide a unique environment to integrate data coming
from different databases managed by different servers. This feature is essential to
integrate data in a seamless way. Given this characteristics it could be a suitable
framework towards querying distributed NoSQL databases in a distributed processing
infrastructure such as Hadoop or Spark.

• Consequently, the J-CO framework can be considered a milestone toward a flexible
framework for building polystore database systems for data science applications.

5. CONCLUSIONS

In this paper, we proposed an innovative framework, named J-CO, for integrating and
transforming heterogeneous data sets in the form of collections of possibly geo-tagged JSON
objects. The idea is to provide both analysts and geographers with a powerful tool that makes
possible to perform complex analysis processes without writing procedural programs, but
specifying transformation processes in a high-level way. The framework is founded on a high-
level query language, named J-CO-QL, specifically devised to query heterogeneous collections of
(possibly) geo-tagged JSON objects. Furthermore, the framework and the query language have
been designed to retrieve input collections and to store output collections to several NoSQL
databases in a seamless way, allowing analysts to easily integrate collections stored in different
databases.

An example is illustrated. We show how it is possible to integrate geo-referenced information
concerning quartiers and pharmacies of a city (we considered Milan, Italy) to create two new
GeoJSON layers, one reporting quartiers with less than 2 pharmacies and one reporting quartiers
with at least two pharmacies. Through the example, we introduced many J-CO-QL operators,
briefly describing them. For a more detailed presentation, the reader can refer to [5].

The development of the J-CO framework is ongoing.

An important issue is to develop a suitable user interface that allows users to write query
processes step by step, possibly inspecting the temporary collection and the intermediate results
database and, if necessary, backtracking the query. Such a user interface is currently under
development.

58 Computer Science & Information Technology (CS & IT)

More ambitiously, we want J-CO-QL to meet the data independence principle by defining a shell
layer framework of operators for easing the transformation of JSON objects transparently to the
user. This is inspired by the concept of mediators, lightweight integration components, deemed to
access sources on demand [39]. As defined in [39] “A mediator is a software module that exploits
encoded knowledge about certain sets or subsets of data to create information for a higher layer of
applications”: sources are encapsulated by wrappers (which access their data sources in a
transparent way to mediators) to present data in the form needed by a mediator.

A weakness of the current proposed operators is that users need to be aware of the structure of
JSON objects, thus violating the independence of the language from data and forcing to user to be
aware of the structure of the data. In our next evolution of the language, we aim at defining two
layers of operators: the user-layer consisting of operators directly invoked by users; the hidden
layer, consisting of operators automatically invoked by the user–layer operators, whenever it is
necessary through the mediators to transform a JSON object to allow its comparison/join with
another JSON objects having a different structure.

The final goal of the project is to define a powerful language suitable for integrating and
transforming big data concerning territorial and geographical data sets, coming from
heterogeneous sources with the less effort as possible to the final user, possibly supporting novel
applications such as location-based queries [9, 10].

REFERENCES

[1] M. Armbrust, R.S. Xin, C. Lian, Y. Huai, D. Liu, J.K. Bradley and M. Zaharia, “Spark sql: Relational
data processing in spark”. In Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data (pp. 1383-1394). ACM. 2015.

[2] R. Battle and D. Kolas, “Geosparql: enabling a geospatial semantic web”. Semantic Web Journal,
3(4), 355-370. 2011.

[3] F. Benitez-Paez, A. Degbelo, S. Trilles and J. Huerta, “Roadblocks hindering the reuse of open
geodata in Colombia and Spain: a data user’s perspective. ISPRS International Journal of Geo-
Information, 7(1), 6. 2017.

[4] G. Bordogna, A. Campi, G. Psaila and S. Ronchi, “An interaction framework for mobile web search”.
In Proceedings of the 6th International Conference on Advances in Mobile Computing and
Multimedia (pp. 183-191). ACM.2008.

[5] G. Bordogna, S. Capelli, D.E. Ciriello, and G. Psaila, , “A cross-analysis framework for multi-source
volunteered, crowdsourced, and authoritative geographic information: the case study of volunteered
personal traces analysis against transport network data”. Geo-spatial Information Science, 2017.

[6] G. Bordogna, S. Capelli, and G. Psaila, “A big geo-data query framework to correlate open data with
social network geotagged posts,” Proceedings in AGILE 2017 international conference, 2017.

[7] G. Bordogna, A. Cuzzocrea, L. Frigerio, G. Psaila and M. Toccu, “An interoperable open data
framework for discovering popular tours based on geo-tagged tweets. International”, Journal of
Intelligent Information and Database Systems, 10(3-4), 246-268, 2017.

[8] G. Bordogna, L. Frigerio, A. Cuzzocrea and G. Psaila, “Clustering geo-tagged tweets for advanced
big data analytics”. In Big Data (BigData Congress), 2016 IEEE International Congress on (pp. 42-
51). IEEE. 2016.

[9] G. Bordogna, M. Pagani, G. Pasi and G. Psaila, “Evaluating uncertain location-based spatial queries”.
In Proceedings of the 2008 ACM symposium on Applied computing (pp. 1095-1100). ACM. 2008.

[10] G. Bordogna, M. Pagani, G. Pasi and G. Psaila, “Managing uncertainty in location-based queries”.
Fuzzy sets and systems, 160(15), 2241-2252. 2009.

[11] G. Bordogna, M. Pagani, and G. Psaila, “Database model and algebra for complex and heterogeneous
spatial entities,” in Progress in Spatial Data Handling, pp.79–97, Springer, 2006.

[12] F. Burini, N. Cortesi, K. Gotti, and G. Psaila, “The Urban Nexus Approach for Analyzing Mobility in
the Smart City: Towards the Identification of City Users Networking”. Mobile Information Systems,
2018.

Computer Science & Information Technology (CS & IT) 59

[13] S. Busse, R.D. Kutsche, U. Leser and H. Weber, “Federated Information Systems: Concepts,
Terminology and Architectures”, Forschungsberichte des Fachbereichs Informatik Bericht Nr. 99-9,
Technische Universität Berlin, seen at

 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.71.8618&rep=rep1&type=pdf the 01-09-
2018. 2018.

[14] H. Butler, M. Daly, A. Doyle, S. Gillies, S. Hagen, and T. Schaub, “The GeoJSON format,” tech. rep.,
2016.

[15] R. Cattell, “Scalable SQL and NoSQL data stores,” SIGMOD Record, vol.39 (4), pp.12–27, 2011.
[16] D. Chamberlin, J. Robie, D. Florescu, “Quilt: an XML query language for heterogeneous data

sources”, e Int. Workshop on the Web and Data Bases (WebDB), 53-62, 2000.
[17] T.E. Chow, “Geography 2.0: A mashup perspective, “Advances in web-based GIS, mapping services

and applications”, pp.15–36, 2011.
[18] A. Cuzzocrea, G. Psaila and M. Toccu, “Knowledge discovery from geo-located tweets for supporting

advanced big data analytics: A real-life experience”. In Proceedings of MEDI-2015 Int. Conf. on
Model and Data Engineering (pp. 285-294). Springer, 2015.

[19] A. Cuzzocrea, G. Psaila, and M. Toccu, “An innovative framework for effectively and efficiently
supporting big data analytics over geo-located mobile social media,” Proceedings of the 20th
International Database Engineering & Applications Symposium, pp.62–69, ACM, 2016.

[20] C. Doulkeridis and K. Nørvåg, “A survey of large -scale analytical query processing in MapReduce”,
The VLDB Journal, 1-26, 2013 .

[21] J. Duggan, A.J. Elmore, M. Stonebraker, M. Balazinska, B. Howe, J. Kepner and S. Zdonik, “The
BIGDAWG polystore system”. ACM Sigmod Record, 44(2), 11-16. 2015.

[22] J. H. Feng, Q. Qian, Y.G. Liao, G.L. Li, N. Ta and L.Z. Zhou, “Survey of Research on Native XML
Databases”, Application Research of Computers, 6, 1-7. 2006.

[23] U. Gandhi, “QGIS tutorial and Tips”, Last updated on Apr 30, 2018. seen the 01-09-2018 at
https://www.qgistutorials.com/en/index.html#. 2018.

[24] G. Gou and R. Chirkova, “Efficiently querying large XML data repositories: A survey”. IEEE
Transactions on Knowledge and Data Engineering, 19(10).2007.

[25] V. Goyal and D. Soni, “Survey paper on Big Data Analytics using Hadoop Technologies”, Int. J. of
Current Engineering and Scientific Research (IJCESR) ISSN (PRINT): 2393-8374, (ONLINE): 3(7),
2394-0697. 2016.

[26] J. Han, E. Haihong, G. Le, and J. Du, “Survey on NoSQL database”, Pervasive computing and
applications (ICPCA), 2011 6th international conference on, pp.363–366, IEEE, 2011.

[27] S.C. Haw and C.S. Lee, “Data storage practices and query processing in XML databases: A survey”.
Knowledge-Based Systems, 24(8), 1317-1340. 2011.

[28] D. Heimbigner and D. McLeod, “A federated architecture for information management”. ACM
Transactions on Information Systems (TOIS), 3(3), 253-278. (1985).

[29] G. Hubert, G. Cabanac, C. Sallaberry, and D. Palacio, Query Operators Shown Beneficial for
Improving Search Results, in TPDL’11: Proceedings of the 1st International Conference on Theory
and Practice of Digital Libraries . Sous la dir. de S.Gradmann, F. Borri, C. Meghini and H.Schuldt .T.
6966. LNCS., p. 118-129. Springer, 2011.

[30] L.A. Kurgan and P. Musilek, “A survey of Knowledge Discovery and Data Mining process models”.
The Knowledge Engineering Review, 21(1), 1-24. 2006.

[31] W. Litwin, L Mark and N. Roussopoulos, “Interoperability of multiple autonomous databases”. ACM
Computing Surveys (CSUR), 22(3): 267 –293. 1990.

[32] M. Lupp, OGC Web Services, Encyclopedia of GIS 2008 Edition, Editors: Shashi Shekhar, Hui
Xiong . 2008.

[33] R. Meo and G. Psaila, “An XML-based database for knowledge discovery”. In International
Conference on Extending Database Technology (pp. 814-828). Springer, Berlin, Heidelberg. 2006.

[34] A. Nayak, A. Poriya, and D. Poojary, “Type of nosql databases and its comparison with relational
databases,” International Journal of Applied Information Systems, vol.5, no.4, pp.16–19, 2013.

[35] K.W. Ong, Y. Papakonstantinou, and R. Vernoux, “The sql++ unifying semi-structured query
language, and an expressiveness benchmark of sql-on-hadoop, nosql and newsql databases,” CoRR,
abs/1405.3631, 2014.

[36] G. Psaila, “A database model for heterogeneous spatial collections: Definition and algebra,” Data and
Knowledge Engineering (ICDKE), 2011 International Conference on, pp.30–35, IEEE, 2011.

[37] H. Robin and S. Jablonski, “Nosql evaluation: A us case oriented survey,” CSC-2011 International
Conference on Cloud and Service Computing, Hong Kong, China, pp.336–341, December 2011.

60 Computer Science & Information Technology (CS & IT)

[38] M.Y Vardi, M. Y., “A theory of regular queries”. In Proceedings of the 35th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems (pp. 1-9). ACM. 2016.

[39] G. Wiederhold, “Mediators in the architecture of future information systems”. Computer, 25(3), 38-
49. 1992.

[40] T. White, “Hadoop: The definitive guide”, O’Reilly Media, Inc.", 2012.

AUTHORS

Gloria Bordogna is researcher at CNR-IREA (Italy). Her research activity mainly
concerns the representation and management of imprecision and uncertainty within
information retrieval systems (IRSs) database management systems (DBMSs) and
Geographic Information Systems (GIS), soft computing.

Giuseppe Psaila is researcher and professor at University of Bergamo (Italy). He works
on many topics concerning data management, such as data mining, XML processing,
query languages and soft computing, information retrieval, Big Data and Open Data.

