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ABSTRACT 

 
The large number of geo referenced data sets provided by Open Data portals, social media 

networks and created by volunteers within citizen science projects (Volunteered Geographical 

Information) is pushing analysts to define and develop novel frameworks for analysing these 

multisource heterogeneous data sets in order to derive new data sets that generate social value. 

For analysts, such an activity is becoming a common practice for studying, predicting and 

planning social dynamics. The convergence of various technologies related with data 

representation formats, database management and GIS (Geographical Information Systems) 

can enable analysts to perform such complex integration and transformation processes. JSON 

has become the de-facto standard for representing (possibly geo-referenced) data sets to share; 

NoSQL databases (and MongoDB in particular) are able to natively deal with collections of 

JSON objects; the GIS community has defined the GeoJSON standard, a JSON format for 

representing georeferenced information layers, and has extended GIS software to support it. 

 

However, all these technologies have been separately developed, consequently, there is actually 

a gap that shall be filled to easily manipulate GeoJSON objects by performing spatial 

operations. In this paper, we pursue the objective of defining both a unifying view of several 

NoSQL databases and a query language that is independent of specific database platforms to 

easily integrate and transform collections of GeoJSON objects. In the paper, we motivate the 

need for such a framework, named J-CO, able to execute novel high-level queries, written in the 

J-CO-QL language, for JSON objects and will show its possible use for generating open data 

sets by integrating various collections of geo-referenced JSON objects stored in different 

databases.  
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1. INTRODUCTION 
 

Geo-referenced information from Open Data portals, Volunteered Geographic Information (VGI), 
and crowdsourced information from social networks are recognized as a potential driver for social 
changes: companies are relying on such information to enhance their existing services or to derive 
knowledge from its analysis to create social value [3]. As described in the European Commission 
report on the reuse of open data, the European Data Portal has more than doubled the amount of 
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data it references. In general, a large number of sources are now available to get information 
about territories, including corpora managed by private companies like Google and Facebook, 
that collect and integrate official information, VGI and crowd-sourced information about any kind 
of place. 
 
In order to turn such geo-referenced information into social value, the so-called data-value chain 
process must be carried out: once geo-referenced data (geo-data for short) are created, they have 
to be validated, for example through filtering, normalization and quality assessment, and shared 
by means of a Web geo-portal, after which they can be analysed. From integrating different geo-
data sets, new data can be created, which can lead to new data services or products. It can be seen 
that, in order for a geo-data analyst to perform such tasks in an easy way, a framework is needed 
so as he/she can perform several manipulation operations on geo-data, which are heterogeneous, 
as far as their source, structure, format and semantics are concerned. 
 
In effect, performing integration and transformation processes asks for the convergence of various 
technologies, originally developed separately, that now all together contribute to this ambitious 
goal.  In particular, we consider data representation formats, database management and GIS 
(Geographical Information System) technology. 
 
Let us start with the area of data representation formats. After the introduction of XML 
(eXtensible Mark-up Language) at the end of the 1990s, that had to become “the language” for 
information interchange on the Internet, currently we are observing the rapid diffusion of JSON 
(JavaScript Object Notation) as a de-facto standard for data interchange, in particular through API 
interfaces and Web Services. JSON is a flexible format to encode semi-structured compact 
information. Often, data sets provided by Open Data portals as well as by Web Service APIs 
contain geo-referenced information, i.e., data are tagged with positions on the Earth Globe (in 
terms of longitude and latitude), since they describe data concerning territories. 
 
As far as the area of Database Management is concerned, the last decade is characterized by the 
development of so-called NoSQL databases, i.e., DBMSs (Data Base Management Systems) 
which are not based on the relational data model and, consequently, abandon SQL as query 
language. In particular, value-store, column-store and document-store are different models of 
NoSQL DBMS, where document stores are able to manage collections of JSON objects in a 
native way. The most famous representative of this category is MongoDB designed to manage 
large amounts of (relatively small) JSON objects, even though it provides spatial indexes that 
enable to efficiently perform some types of spatial queries. 
 
As far as GIS Technology is concerned, GIS tools are now even more important than in the recent 
past: in fact, the availability of geo-data sets asks for visualizing such data on maps in the form of 
information layers, possibly integrating data from distinct data sets. In this respect, it was 
essential to introduce a standard format for describing information layers: the GIS community has 
defined the GeoJSON format, i.e., a standard format for describing geographical information 
layers that relies on JSON as syntactic framework. 
 
Apparently, the above-mentioned convergence should be mature, but this is not true. In fact, the 
different perspectives that have driven the diverse developments make actually difficult to easily 
and effectively transform and integrate JSON data sets and/or GeoJSON layers, in particular 
when they are collected within databases managed by MongoDB (or, worse, in simple files). A 
unifying framework that provides analysists with the capability of effectively integrating and 
transforming JSON data sets and GeoJSON layers is essential. 
 
These are the main reasons that motivated us to conceive a new framework, named J-CO. The 
goal of the framework is twofold: it has to provide the capability of working on different 
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MongoDB databases at the same time, allowing analysts to easily integrate data sets stored in 
different databases; it has to provide a query language, named J-CO-QL, for manipulating 
collections of JSON and GeoJSON objects, natively supporting spatial operations and 
representations. The paper will describe, through a study case example, how the defined query 
language can be used to integrate and transform JSON data sets to create GeoJSON layers: 
specifically, we consider quartiers and pharmacies of Milan (city in the northern Italy) and we 
will generate two GeoJSON layers describing quartiers with less than two pharmacies and 
quartiers with at least two pharmacies. We hope this way the paper will clarify how the J-CO 
framework can implement the convergence of the above-mentioned technology. 
 
The paper is organized as follows. Section 2 presents the background of our project and related 
work. Section 3 introduces the J-CO framework, detailing the main features of the J-CO-QL 
language. Section 4 shows the example and how the J-CO-QL language can be used to perform 
complex transformations on collections of JSON data. Finally, Section 5 draws the conclusions. 
 

2. RELATED WORKS 
 

2.1. Motivation of the Proposal  
 

Our seminal idea of developing a framework for integrating and transforming collections of 
JSON objects originated in the Urban Nexus Project [12]. The goal of this project is to gather 
information from several distinct open data repositories on the Web, authoritative and statistical 
sources, social media and so on, to study how city users live their city and territory. The idea is 
that geographical studies should take advantage of Big Data, in the sense of large variety of data 
sets coming from diverse data sources. In such a context, analysts are not programmers and need 
an integrated framework for performing their analyses. Nevertheless, since data come from many 
sources as JSON or GeoJSON data sets, it was necessary to develop a novel query language for 
this purpose. These considerations motivated the development of the J-CO framework. 
 
In [5, 18, 19], we tackled the objective of exploiting social media to trace movements of social 
media users. We named this project FollowMe, because we traced (and we are still tracing) 
travellers that post geo-located messages on Twitter, detecting them in a pool of 30 airports 
potentially connected with the airport of Bergamo (northern Italy). Next [7], we integrated the 
FollowMe project within a framework for analysing trips of Twitter users, furthermore [8], we 
experimented a clustering technique for identifying common paths followed by users during their 
trips. That was a preliminary work of the Urban Nexus project, in which huge numbers of trips of 
Twitter users represented as JSON objects have to be analysed on the basis of multi-paradigmatic 
approach (see [12]). While facing this analysis task, we experienced the limitations of current 
query languages for heterogeneous geo-data in the form of JSON objects. 
 

2.2. Manipulating Heterogeneous Big Geo-Data    
 

The first attempt to abandon the relational data model in favour of more flexibility on the 
structure of data dates back to the late 1990s with the advent of XML (eXtendible Mark-up 
Language) as the universal data format for exchanging data over the Internet that stimulated the 
idea of developing database technology for storing and querying XML documents. Many 
proposals for XML databases and related query languages were proposed. The reader can refer to 
[22, 24,27] for some surveys. Obviously, speaking about convergence of technologies, the 
research area of data mining met the research area of XML-native databases, in order to perform 
data mining and knowledge discovery directly on XML documents stored within XML databases 
[30,33]. The idea is that the ability of XML to represent semi-structured and complex data 
enables to store, within the same XML database, both the mined data and the mined patterns.  
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However, the potentiality of XML to become “the representation format” met several practical 
obstacles that have limited its diffusion and favoured the emergence of JSON, namely its extreme 
verbosity and difficulty of importing data described by XML documents within programs and 
information systems. 
 
The adoption of JSON and NoSQL databases are motivated by the need for both flexibility and 
compactness as far as data structures are concerned; an interesting survey on NoSQL databases 
can be found in [12], where several systems are catalogued and classified. In particular, a DBMS 
like MongoDB falls into the category of document databases, because collections of JSON 
objects are generically considered as documents [26]. The query language provided by such 
systems does not allow complex and multi-collection transformations. Readers interested in 
NoSQL DBMSs evaluation can refer to [37] and to [15]. 
 
As far as query language for JSON objects are concerned, several proposal were made. However, 
none of them is explicitly designed to provide geographical data analysis capabilities, natively 
integrated in a high level query language, as for J-CO-QL [5]. Anyway, it is worth mentioning 
them. 
 
Jaql (see [34]) was designed to help Hadoop (see [40]) programmers writing complex 
transformations, avoiding low-level programming, to perform in a cloud and parallel 
environment. Flexibility and physical independence are the main goals of Jaql: in particular, its 
execution model is similar to our execution model, since it explicitly relies on the concept of pipe; 
in fact, the pipe operator is explicitly used in Jaql queries. However, it is still oriented to 
programmers; its constructs are difficult to understand for non programmer users. 
 
An interesting proposal is SQL++,defined to query both JSON native stores and SQL databases. 
The SQL++ semi-structured data model is a superset of both JSON and the SQL data model [35]. 
Yet, SQL ++ is SQL backwards compatible and is generalized towards JSON by introducing only 
a small number of query language extensions to [35]. In SQL++ the classical SELECT statement 
of SQL is adapted and extended to perform queries on collections of JSON objects. In our 
opinion, this is a clean proposal, if compared with others, that tries to work at a higher abstraction 
level. However, it does not deal explicitly with heterogeneity of objects, i.e., it does not provide 
constructs similar to the WHERE branches provided by J-CO-QL. Furthermore, complex 
transformations that require several queries sequentially would executed need to explicitly save 
intermediate results into the persistent database (although in [35] nothing is said about data 
manipulation operators such as INSERT). In contrast, the execution model on which J-COQL 
relies clearly separate persistent databases and temporary databases, by means of the temporary 
collection and the intermediate result database IR. 
 
The industry is looking at the extension of SQL to query JSON objects. An example is N1QLyy 
that is a declarative language extending SQL for JSON objects stored in NoSQL databases, 
specifically implemented for Couchbase 4.0, in order to handle semi-structured, nested data. It 
enables querying JSON documents without any limitations sort, filter, transform, group, and 
combine data with a single query from multiple documents with a JOIN. Nevertheless it does not 
provide operators to manipulate GeoJSON objects. Finally, other declarative languages for JSON 
objects have been defined as extensions of structured languages for semi-structured documents, 
such as JSONiq, that borrowed a large numbers of ideas from XQuery, like the functional aspect 
of the language, the semantics of comparisons in the face of data heterogeneity, the declarative 
snapshot-based updates. However, unlike XQuery, JSONiq is not concerned with the peculiarities 
of XML, like mixed content, ordered children, or the complexities of XML Schema, and so on. 
Nevertheless, like XQuery it can be hardly used by unexperienced users. 
 
Although these languages are declarative, they are still oriented to a programmer vision.  
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Other approaches to manipulate heterogeneous big data recognize the importance of a declarative 
query language to guarantee the data independence principle [20, 26]. For example, SparkSQL 
[1], was developed with an SQL interface to query heterogeneous big data sets managed within 
the Spark distributed processing infrastructure. It introduces a new data abstraction called 
SchemaRDD, which provides support for structured and semi-structured data. Nevertheless, it 
does not support spatial operators.  
 
GeoSPARQL [2] is a Geographic Query Language for RDF Data proposed as standard by the 
OGC consortium for querying geospatial data on the Semantic Web. GeoSPARQL is designed to 
accommodate systems based on qualitative spatial reasoning and systems based on quantitative 
spatial computations to ease data analysis. 
 
Also our proposal is oriented to data analysts, which need to manage heterogeneous collections of 
real world entities, namely collection in both JSON and GeoJSON.  
 
It is somehow related to the world of PolyStore DBMS, i.e., database management systems that 
deal with several DBMS at the same time, each of them possibly providing a different logical 
model, such as relational, graph, JSON, pure-text, images, videos. An interesting work on this 
topic is BigDAWG. 
 
Our proposal moves from our previous work on the problem of querying heterogeneous 
collections of complex spatial data (see [11, 36]). In that works, we proposed a database model 
capable to deal with heterogeneous collections of possibly nested spatial objects, based on the 
composition of primitive spatial objects; at the same time, an algebra to query complex spatial 
data is provided, inspired by classical relational algebra. W.r.t. those previous works, J-CO-QL 
relies on the JSON standard, thus we do not define an ad-hoc data model; furthermore, J-CO-QL 
abandons the typical relational algebra syntax, because it relies on a more flexible and intuitive 
execution model. Nevertheless, the experience made in [28] helped us, where we defined a 
language for manipulating clusters of web searches performed through a mobile device. 
 

3. A FRAMEWORK FOR GEOREFERENCED DATA TRANSFORMATIONS 

The framework we conceived for integrating and transforming multisource geo-referenced JSON 
data is named J-CO (JSON COllections) and comprehends several components depicted in Figure 
1. 

• One or more NoSQL databases managed by MongoDB (and, in the future, by other 
systems like ElastichSearch). This feature resembles a distributed federated database 
architecture [28]. 

• The J-CO-QL Engine that executes queries directly operating on data stored in MongoDB 
databases. It receives queries through a Web Service interface. This feature is typical of 
distributed databases querying [31].  

• A GIS application, like, e.g., QGIS [23], the open source GIS software, that can be used 
as environment to query and to show GeoJSON layers. 

• A (future) User Interface. Through this interface, the analysis will be able to carry on the 
transformation process dynamically. This interface can be developed as a plug-in of a 
GIS application. 
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• Any kind of publishing tool for geo-data stored within MongoDB-managed databases, 
such as Open Data geo portals, Web Map services and Web Feature Services [32], etc.  

Note that the ability of the J-O-QL Engine of connecting with several databases during the same 
transformation process is a key feature: in fact, this feature allows analysts to easily integrate data 
sets, by taking them from the servers that store them. This way, it is possible to avoid a large 
amount of efforts for transferring data from one server to another, in accordance with 
optimization techniques in  loosely coupled federated databases [13]. In them, a unique schema 
for queries does not exists but a uniform query language is made available ,which abstracts from 
the query languages of the components, and hides technical and language heterogeneity. Thus, 
every user is responsible for handling logical heterogeneity in the components.  
 
Nevertheless, the possibility of visualising data and results of the analysis through a GIS software 
can greatly help analysts formulate queries and perform a visual analysis of results. This can be 
done by generating GeoJSON layers during the transformation process performed by means of 
the J-CO-QL Engine. 

On the same line, it is important to be able to publish results anywhere, for example in Open Data 
Portals. These portals often provide geo-referenced data as GeoJSON layers, but this is not 
mandatory. Often, when data are not geo-referenced, simple JSON collections are published. In 
this scenario, the J-CO framework is designed to play a central role, towards the simplification of 
tasks that, without it, could be very tedious and much more time consuming than necessary. 

 

 

3.1. J-CO-QL Main Features 

The query language named J-COQL is defined to work with collections of  JSON objects. JSON 
is a serialized representation for objects. Fields (object properties) can be simple (numbers or 
strings), complex (i.e., nested objects) and vectors (of numbers, strings and objects).  

JSON does not consider geo-references. An official proposal in this sense is the GeoJSON 
standard [14, 17]. Defined by the GIS community, it provides an excellent format for defining 
geometries of geo-referenced data. Fields describing geometries are named, in the GeoJSON 

standard, geometry. In J-CO-QL, we rely on the same standard for representing geometries, but 

the name of the field considered by the J-CO-QL language to handle geometries is ~geometry: 

this way, J-CO-QL is able to handle GeoJSON layers in a seamless way. 

 

Figure 1.  Application Scenario for the J-CO Framework 
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When the ~geometry field is absent in an object processed by J-CO-QL, this means that no 

geo-reference is present in the object and no spatial operations can be performed on it. 

Specifically, the ~geometry field (when present) is based on the GeometryCollection 

type for the GeoJSON standard.  

Figure 2, reports sample objects of JSON objects with ~geometry field. The reader can see 

objects describing quartiers of Milan, as well as objects describing pharmacies in Milan. 
Coordinates (longitude and latitude) are expressed based on the (World Geodetic System) 84, our 
default CRS (Coordinate Reference System). 

In a NoSQL environment such as MongoDB, a Database is viewed as a set of collections, while a 
Collection has a name and its instance is viewed as a vector of JSON objects. To manipulate 
JSON collections and to store their results into new collections, in a transparent way w.r.t. to the 
databases from which to get collections and to which to store collections, we need operators that 
meet the closure property, that is, they get collections and generate collections. This is a first 
design requirement for the J-CO-QL language [38]. Other key features of the language are 
reported hereafter. 

• J-CO-QL provides operators specifically designed to deal with objects with different 
structure within the same operation. 

• Operators provided by J-CO-QL are high-level operators, which allow analysts to think 
directly to objects structure; they do not have to write low-level procedures. 

• Finally, but not less important, J-CO-QL directly deals with geo-reference possibly 
contained in JSON objects, because the data model explicitly deals with them through the 

~geometry field. 

Queries are sequences of operators applied to collections [16, 29]. The execution process of 
queries is based on the concept of state of the query process, that is a pair s = (tc; IR), where tc is 
a collection named Temporary Collection, while IR is a database named Intermediate Results 

database. 

Each operator starts from a given query process state and generates a new query process state. 
During the process, the J-CO-QL Engine, can be asked (by a suitable operator) to store tc (the 
Temporary Collection) into IR (the Intermediate Results database), that could be taken as input 
by a subsequent operation. Obviously, J-CO-QL provides an operator to store the temporary 
collection into a persistent database, (a database managed by MongoDB) as well as an operator to 
get a collection from IR or from a persistent database as new temporary collection. In fact, the 
idea is that an operator takes the temporary collection as input and generates a new instance of the 
temporary collection as output. The reader can see an execution trace in Figure 6, depicting the 
execution process of the query presented in Section 4.1. 

The J-CO-QL Engine executes each query process in isolation: several users can use the engine at 
the same time. Thus, the goal of the IR database, one for each query process, is twofold. First of 
all, it permits to temporarily store intermediate results of the process, that do not have to be stored 
in persistent database (since they are intermediate). Second, it ensures isolation of query process 
execution as far as intermediate results are concerned. 
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4. GENERATING OPEN DATA CONCERNING GEO-REFERENCED CONTENTS 

In this section, we practically show the effectiveness of our framework. We consider real data sets 

coming from the Open Data portal (url: https://dati.comune.milano.it/) of Milan 

(Italy) City Council. 

Suppose we own an information system having three MongoDB servers, whose toy IP addresses 
are 10.0.0.11, 10.0.0.12 and 10.0.0.13. The first one, with address 10.0.0.11, has a database 

named Boundaries, that contains collections concerning some cities; we say that collection 

Milan_Quartiers contains JSON objects describing quartiers in Milan. The upper part of 

Figure 2 shows a few objects describing quartiers. 

Collection Quartiers: [ 

{"ID ": 74, "Name": "SACCO",  

 "~geometry": {"type": "MultiPolygon",  

               "coordinates": [ [ [ [ 9.121949242919204, 

45.516020899111012 ], ,…, [ 9.121949242919204, 

45.516020899111012 ] ] ] ] } }, 

{"ID ": 82, "Name": "COMASINA",  

 "~geometry": {"type": "MultiPolygon",  

               "coordinates": [ [ [ [ 9.168870308198338, 

45.523965029425476 ], …, [ 9.168870308198338, 

45.523965029425476 ] ] ] ] } }, 

…] 

 

Collection Pharmacies:[ 

{"Address": "Via ANGELONI LUIGI",  

 "Name": "COMUNALE N.33",  

 "~geometry": {"type": "Point",  

               "coordinates": [ 9.17529749573575,  

                                45.527028643302899 ] } }, 

{"Address": "Via CASARSA 130",   

  "Name": "CASARSA",   

   "~geometry": {"type": "Point",  

                 "coordinates": [ 9.174392445342329,  

                                 45.524802296955897 ]} }, 

…] 

 

Figure 2.  Excerpt of collection Quartiers and collection Pharmacies 
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Server with address 10.0.0.12 manages a database named MilanInfo: it contains collections 

related with territory. As an example, consider collection Pharmacies, that describes 

pharmacies in Milan. We report a few objects in collection Pharmacies in the lower part of 

Figure 2. 
 

Finally, server 10.0.0.13 manages the database named dbToPublish that has to store 

collections containing GeoJSON layers to publish as open data.  
 
The sample process we show in the rest of this section has the following goals: 
 

• Count, for each quartier, the number of pharmacies in the quartier. 

• Create two GeoJSON layers to save into a collection named 

NilanQuartiersAndPharmacies and store it in database dbToPublish: one 

layer is named "Few Pharmacies" and describes quartiers having less than 2 

pharmacies; the other layer is named "Many Pharmacies" and describes all other 

quartiers. 

Figures 3 and 7 graphically illustrate the process. We start from the descriptions of quartiers 
(brown-filled polygons) and pharmacies (grey points). We want to obtain the two layers jointly 
depicted in Figure 7: red-filled polygons are quartiers with less than 2 pharmacies; green-filled 
polygons are quartiers with at least 2 pharmacies. The two main steps of the process are described 
in Sections 4.1 and 4.2, where J-CO-QL queries able to perform the process are presented. 

4.1. Counting Pharmacies 

The J-CO-QL query for performing the first task, i.e., counting pharmacies in each quartier, is 
reported hereafter. Afterwards, we will describe single operators and the full process. 

 

 

 

Figure 3.  Quartiers and Pharmacies in Milan (Italy)  
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USE DB Boundaries 

ON SERVER MONGODB "http://10.0.0.11:2707"; 

USE DB MilanInfo 

ON SERVER MONGODB "http://10.0.0.12:2707"; 

USE DB dbToPublish 

On SERVER MONGODB "http://10.0.0.13:2707"; 
 

SPATIAL JOIN OF COLLECTIONS  

   Milan_Quartiers@Boundaries AS Q, Pharmacies@MilanInfo AS P 

ON INCLUDED(RIGHT) 

SET GEOMETRY LEFT 

CASE 

WHERE WITH Q.QID, P.Name 

GENERATE {.QID: .Q.QID, .Name: .Q.Name, .PharmacyName: .P.Name} 

KEEPING GEOMETRY 

DROP OTHERS; 
 

GROUP 

PARTITION WITH .QID, .PharmacyName 

BY .QID, .Name, .~geometry INTO .Pharmacies 

DROP OTHERS; 
 

FILTER 

CASE WHEN WITH .QID, .Pharmacies 

GENERATE {.QID, .Name, .NumOfPharmacies: COUNT(.Pharmacies)} 

   KEEPING GEOMETRY 
 

SET INTERMEDIATE AS QuartiersWithPharmacies; 
 

FILTER 

CASE WHERE WITH .QID, .Name 

 GENERATE {.ID,.Name} KEEPING GEOMETRY 

DROP OTHERS; 
 

SUBTRACT COLLECTIONS Milan_Quartiers, TEMPORARY; 
 

FILTER 

CASE WHERE WITH .QID, .Name 

 GENERATE {.ID,.Name, .NumOfPharmacies: 0} 

   KEEPING GEOMETRY 
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DROP OTHERS; 

MERGE COLLECTIONS TEMPORARY, QuartiersWithPharmacies; 

SET INTERMEDIATE AS QuartiersWithPharmaciesCount; 

We now describe the query. Notice that the execution trace is depicted in Figure 6. 

First of all, it is necessary to specify to which databases to connect. The first three USE DB 

operators do this work. Notice that the ON clause specifies the connection string necessary to 

connect to the desired MongoDB server. 

The real procedure starts with the SPATIAL JOIN operator. This is the key operator provided 

by J-CO-QL, in order to perform complex transformations concerned with geo-referenced data. 

Recall that collection Milan_Quartiers describes quartiers in Milan: each object in the 

collection contains a field named ~geometry, that describes the boundary of the quartier as a 

polygon. This collection is aliased as Q in the operator. On the other side, collection 

Pharmacies contains objects whose field ~geometry denotes the point where the pharmacy 

is located. This collection is aliased as P in the operator.  

The SPATIAL JOIN operator computes pairs of objects in the two collections, such that the 

spatial join condition specified in the ON clause is satisfied. Specifically, a pair of objects is built 

if the geometry of the right object (in this case, coming from collection Pharmacies) is 

included in the geometry of the left objects (in this case, coming from collections 

Milan_Quartiers). The SET GEOMTERY clause specifies the geometry to assign to the 

object obtained by pairing the two original ones: we specify that we want to maintain the 
geometry of the left object, i.e., the boundary of the quartier. The upper part of Figure 4 reports an 
excerpt of the objects resulting from the generation of pairs satisfying the spatial join condition. 

Notice field Q that contains the original object coming from collection aliased ass Q, field P that 

contains the original object coming from the collection aliased as P and the ~geometry field 

resulting from the join (in this case, it coincides with the left geometry, as specified in the 
operator).   
  

The subsequent CASE WHERE clause is necessary to restructure the objects, removing nesting. 

The WHERE selection condition uses the WITH predicate, that selects objects having the desired 

fields; then, the GENERATE sub-clause specify how to restructure each object that satisfies the 

condition; note that we want to maintain the geometry (KEEPING GEOMTRY option). The lower 

part of Figure 4 reports an excerpt of the temporary collection t1 (as reported in Figure 6) 

resulting from the SPATIAL JOIN; notice how the CASE WHERE block restructured the output 

objects. 
 

At this point, it is necessary to group together objects resulting from the SPATIAL JOIN in 

order to count the number of pharmacies in each quartier.  
 

The GROUP operator is, intuitively, similar to the GROUP BY clause of SQL. However, it is 

specifically designed to work with collections of heterogeneous objects. Thus, the goal of the 

PARTITION clause is to select objects (from the temporary collection produced by the previous 

operator) that have some common fields or characteristics. In the query, we select objects having 

fields QID (quartier identifier) and PharmacyName (in other words, we define a partition of the 

full set of objects); objects in the partition are then grouped on the basis of fields QID, Name 

and ~geometry field, as specified by the BY clause. For each identified group of objects, a new 
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object is put into the output collection, such that all common fields are reported and a new field, 

an array of grouped objects named Pharmacies (as specified by the INTO clause) is added. 

 

              

Within SPATIAL JOIN: and Before CASE WHERE [ 
{"Q": {"QID": 83,  

       "Name": "BRUZZANO",  

       "~geometry": {"type": "MultiPolygon",  

                     "coordinates": […] } }, 

 "P": {"Address": "Via ANGELONI LUIGI",  

       "Name": "COMUNALE N.33",  

       "~geometry": {"type": "Point",  

                     "coordinates": [ … ] } }, 

 "~geometry": {"type": "MultiPolygon",  

               "coordinates": […]} 

}, 

{"Q": { "QID": 83,  

        "Name": "BRUZZANO",  

        "~geometry": {"type": "MultiPolygon", 

                       "coordinates": […] } }, 

"P": {"Address": "Via CASARSA 130",   

      "Name": "CASARSA",   

      "~geometry": {"type": "Point",  

                 "coordinates": […]} }, 

"~geometry": {"type": "MultiPolygon", 

                        "coordinates": […] } 

…] 

 

At the end of SPATIAL JOIN, t1 : [ 
{"QID": 83, "Name": "BRUZZANO", 

 "pharmacyName": "COMUNALE N.33", 

"~geometry": {"type": "MultiPolygon", 

              "coordinates": […] }},  

{"QID": 83, "Name": "BRUZZANO", 

 "PharmacyName": "BRUZZANO", 

 "~geometry": {"type": "MultiPolygon", 

               "coordinates": […] }}, 

…] 

 

Figure 4.  Excerpt of objects generated by SPATIAL JOIN 
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Note the presence of the ~geometry field in the BY clause: this is necessary to avoid the loss of 

geometry of quartiers during grouping (the geometry is implied by the quartier identifier). An 
excerpt of the temporary collection t2, as numbered in Figure 6, is reported in the upper part of 
Figure 5. 
 
At this point, it is necessary to add a field witch counts how many elements are present in array 

Pharmacies. The FILTER operator selects the desired objects and restructures them by adding 

the field named NumOfPharmacies. The lower part of Figure 5 reports the temporary 

collection t3, as numbered in Figure 6, resulting from the FILTER operator. 

 

The temporary collection is saved with name QuartiersWithPharmacies into the 

Intermediate Results Database. It will be used a few operators later. Notice in Figure 6 that the 

temporary collection in the state produced by SET INTERMEDIATE operator does not change 

(it is still labelled as t3). In contrast, the IR database, depicted with empty braces in previous 
states, now contains the new saved collection. 
 
Some quartiers may have not been produced by the spatial join, i.e., those quartiers without 
pharmacies. To restore them, we subtract quartiers with pharmacies from the full set of quartiers. 
Preliminarily, it is necessary to make the structure of objects in the temporary collection 

homogeneous with that of objects in collection Milan_Quartiers, with a FILTER operator 

that removes field NumOfPharmacies. 

  

Then, the SUBTRACT operator performs the set-oriented difference between objects in collection 

Milan_Quartiers and the temporary collection (that actually contains quartiers with at least 

one pharmacy). Since only quartiers without pharmacies survive the difference, the next FILTER 

operator adds the missing NumOfPharmarcies field (set to 0). Finally, the MERGE operator 

unites the objects in the temporary collection and in collection QuartiersWithPharmacies, 

previously saved into the Intermediate Results database. 
 

At the end of GROUP, t2: [ 
{"QID": 83, "Name": "BRUZZANO", 

 "Pharmacies": [ 

{"QID": 83, "pharmacyName": "COMUNALE N.33", 

 "~geometry": {"type": "MultiPolygon", 

                        "coordinates": […] }},  

{"QID": 83, "PharmacyName": "BRUZZANO", 

 "~geometry": {"type": "MultiPolygon", 

                        "coordinates": […] }}], 

"~geometry": {"type": "MultiPolygon", 

                        "coordinates": […] }}, }, 

…] 

 

Temporary collection t3 and Intermediate Collection QuartiersWithPharmacies: [ 
{"QID": 83, "Name": "BRUZZANO", 

 "NumOfPharmacies": 2}, 

…] 

Figure 5.  Excerpt of objects generated by the objectys generated by the first GROUP operator and in 

collection saved into the QuartiersWithPharmacies IR database. 
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The first part of the process end ssaving the temporary collection into the Intermediate Results 

database with name QuartiersWithPharmaciesCount. 

 
 

4.2. Generating GeoJSON Layers 
 

The J-CO-QL query for performing the second task, i.e., generating the desired GeoJSON layers, 
is reported hereafter. 
 

GET COLLECTION QuartiersWithPharmaciesCount; 
 

FILTER 

CASE WHERE WITH ..QID, .Name, .NumOfPharmacies AND 

           .NumOfPharmacies < 2 

  GENERATE {.ID, .Name, .LayerName: "Few Pharmacies"} 

            KEEPING GEOMETRY 

 WHERE WITH ..QID, .Name, .NumOfPharmacies AND 

      .NumOfPharmacies >= 2 

  GENERATE {.ID, .Name, .LayerName: "Many Pharmacies"} 

            KEEPING GEOMETRY 

DROP OTHERS; 
 

FILTER  

CASE WHEN WITH .ID, .Name, ..NumOfPharmacies, LayerName, 

  GENERATE {.type: "Feature",  

            .properties:{.QID, .Name,  

 

Figure 6.  Execution trace for the query performing the first task 
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                         .NumOfPharmacies,  

                         .LayerName},  

                         .geometry: .~geometry }  

    DROPPING GEOMETRY 

DROP OTHERS; 
 

GROUP 

PARTITION WITH .type, .properties, .geometry,  

               .Properties.LayerName 

BY .Properties.LayerName INTO .features 

DROP OTHERS; 
 

FILTER 

CASE WHERE WITH .LayerName, .features 

  GENERATE {.tye:"FeatureCollection",  

            .name: .LayerName,  

            .features} 

DROP OTHERS; 
 

SAVE AS MilanQuartiersAndPharmaciesdbBToPublish; 

In order to generate two GeoJSON layers from objects stored in the intermediate collection 

QuartiersWithPharmaciesCount, we have to perform a sequence of transformations. 

First of all, the operator GET COLLECTION retrieves the desired collection from the Intermediate 

Results database and makes it the temporary collection. 

The subsequent FILTER operator adds a new field to objects, named LayerName. Notice the 

two WHERE conditions: if an object satisfies the first one, the new field has value "Few 

Pharmacies"; if an object satisfies the second condition, the new field has value "Many 

Pharmacies". These are the names of the two layers we are going to generate, The second 

FILTER operator is necessary to restructure objects, in order to comply with the structure of 

GeoJSON features.  In particular, notice the field specification .geometry: .~geometry, 

that is necessary to rename the ~geometry field (required specified by the J-CO-Ql data model) 

into geometry, as required by the GeoJSON format. 

At this point, it is possible to generate a layer by aggregating all objects having the same value for 

field LayerName. This is easily performed by the GROUP operator, which groups the objects 

based on the value of field LayerName nested within field properties. 
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The last FILTER operator is necessary to add the missing field type at the external level and 

rename field LayerName as name. 

The obtained collection is saved into the dbToPublish database, that is managed by server 

with IP address 10.0.0.13. Hereafter, we report an excerpt of layer "Few Pharmacies", that is 

depicted in red in Figure 7. Layer "Many Pharmacies" is identical, apart from the described 

quartiers and the name of the layer. 

{"type": "FeatureCollection", 

 "name": "Few Pharmacies", 

 "features": [ 

   {"type": "Feature",  

    "properties": {"QID ": 74, "Name": "SACCO", 

                   "LayerName": "Few Pharmacies"},  

    "geometry": {"type": "MultiPolygon", "coordinates": [ … ] }     

   }, 

   {"type": "Feature",  

    "properties": {"QID": 75, "Name": "STEPHENSON", 

                   "LayerName": "Few Pharmacies"},  

    "geometry": {"type": "MultiPolygon", "coordinates":  [… ]}  

   }, 

…] } 

At the end of this section, we want to point out the major results we obtained with J-CO-QL. 

• A J-CO-QL query is certainly a procedural specification, but it is not a procedural 
program, in the sense of classical procedural programming languages.  

 

Figure 7.  Layers "Few Pharmacies" (in red) and "Many Pharmacies" (in green)  
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• The syntax of operators is English-like, inspired by the same approach adopted for SQL. 
This way, a certain degree of semantics of operators implicitly is expressed by the syntax. 

• We are aware that operators need training to be properly used, but it is more intuitive for 
non programmers that other languages for JSON objects. For example, the same 
operations performed with the native query language of MongoDB could result a little bit 
hard to perform (probably exploiting JavaScript in many case, thus again a programming 
language). 

• JSON collections are heterogeneous, i.e., they can contain objects with different 
structure. J-CO-QL natively deals with such a situation. 

• The language natively deals with spatial operations on geometries. This is an essential 
feature of the language, very useful for managing data with associated geometries, a more 
and more frequent situation in the Open Data world. 

As far as the J-CO framework is concerned, we think that this section has shown some of the 
reasons why we decided to devise it. 

• The J-CO framework is able to provide a unique environment to integrate data coming 
from different databases managed by different servers. This feature is essential to 
integrate data in a seamless way. Given this characteristics it could be a suitable 
framework towards querying  distributed NoSQL databases in a distributed processing 
infrastructure such as Hadoop or Spark.   

• Consequently, the J-CO framework can be considered a milestone toward a flexible 
framework for building polystore database systems for data science applications. 

5. CONCLUSIONS 

In this paper, we proposed an innovative framework, named J-CO, for integrating and 
transforming heterogeneous data sets in the form of collections of possibly geo-tagged JSON 
objects. The idea is to provide both analysts and geographers with a powerful tool that makes 
possible to perform complex analysis processes without writing procedural programs, but 
specifying transformation processes in a high-level way. The framework is founded on a high-
level query language, named J-CO-QL, specifically devised to query heterogeneous collections of 
(possibly) geo-tagged JSON objects. Furthermore, the framework and the query language have 
been designed to retrieve input collections and to store output collections to several NoSQL 
databases in a seamless way, allowing analysts to easily integrate collections stored in different 
databases. 

An example is illustrated. We show how it is possible to integrate geo-referenced information 
concerning quartiers and pharmacies of a city (we considered Milan, Italy) to create two new 
GeoJSON layers, one reporting quartiers with less than 2 pharmacies and one reporting quartiers 
with at least two pharmacies. Through the example, we introduced many J-CO-QL operators, 
briefly describing them. For a more detailed presentation, the reader can refer to [5]. 

The development of the J-CO framework is ongoing. 

An important issue is to develop a suitable user interface that allows users to write query 
processes step by step, possibly inspecting the temporary collection and the intermediate results 
database and, if necessary, backtracking the query. Such a user interface is currently under 
development. 
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More ambitiously, we want J-CO-QL to meet the data independence principle by defining a shell 
layer framework of operators for easing the transformation of JSON objects transparently to the 
user. This is inspired by the concept of mediators, lightweight integration components, deemed to 
access sources on demand [39]. As defined in [39] “A mediator is a software module that exploits 
encoded knowledge about certain sets or subsets of data to create information for a higher layer of 
applications”: sources are encapsulated by wrappers (which access their data sources in a 
transparent way to mediators) to present data in the form needed by a mediator.  
 
A weakness of the current proposed operators is that users need to be aware of the structure of 
JSON objects, thus violating the independence of the language from data and forcing to user to be 
aware of the structure of the data. In our next evolution of the language, we aim at defining two 
layers of operators: the user-layer consisting of operators directly invoked by users; the hidden 
layer, consisting of  operators automatically invoked by the user–layer operators, whenever it is 
necessary through the mediators to transform a JSON object to allow its comparison/join with 
another JSON objects having a different structure.  
 
The final goal of the project is to define a powerful language suitable for integrating and 
transforming big data concerning territorial and geographical data sets, coming from 
heterogeneous sources with the less effort as possible to the final user, possibly supporting novel 
applications such as location-based queries [9, 10].  
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