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ABSTRACT 

 
This paper proposes radial basis function network (RBFN) models to estimate the head of 

gaseous petroleum fluids (GPFs) in electrical submersible pumps (ESPs) as an alternative to 

widely used empirical models. Both exact and efficient RBFN modelling approaches were 

employed. RBFN modelling essentially tend to minimise the modelling error, the discrepancy of 

estimated and real outputs within the modelling data. This may lead to overfitting and lack of 

model generality for operating conditions not reflected in modelling data. This critical matter 

was addressed in RBFN design process, and highly accurate RBFNs were developed and cross 

validated. 
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1. INTRODUCTION 

 
ESPs are widely used to lift large volume of fluid from downhole at different well conditions [1, 
2]. As a vital task, size of these pumps should be chosen correctly as over- or under-sizing leads 
to premature equipment failure or low petroleum fluid recovery. In order to facilitate size 
selection, manufacturers normally provide curves depicting generated head versus liquid 
volumetric flow rate for each ESP size, the size of ESPs is selected based on manufacturer curves.  
 
However, the aforementioned curves are not valid for gaseous fluids; where, ESPs are utilised to 
pump two-phase fluid with high gas content [1].The solution is to develop models to estimate the 
generated head by ESPs on GPFs. This paper focuses on head estimating models and exclude 
other types of models developed for GFPs in ESPs, e.g.  the ones which estimate surging or 
stability border [3], gas bubble size [4] or in-situ gas volume fraction [5]. 
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Head-estimating models have been developed and investigated for decades using analytical, 
numerical and empirical approaches [6]. Analytical models have been derived based on mass and 
momentum balances [7, 8]. Use of unrealistic assumptions and oversimplification of complex 
physics of two-phase fluids have weaken the reliability of analytical models. Numerical models 
are not trusted too as they are normally formulated based on one-dimensional two-fluid 
conservations of mass and momentum along streamlines and require the prediction of surging 
initiation in ESPs [9]. On the contrary, empirical models of GFPs in ESPs are widely trusted and 
used in practice [10, 11]. 
 

2. EMPIRICAL MODELS 

 
In this section, homogenous model and a number of empirical head-estimating models of GPFs in 
ESPs are briefly introduced. The parameters of the presented empirical models have been 
identified using the data collected from experiments on diesel fuel/carbon dioxide mixtures, 
reported in [12]. Aforementioned mixtures are similar to petroleum fluids [13]. A number of other 
empirical models have been also reported in the literature in which their parameters have been 
identified based on the data of experiments on air/water mixtures [14-16]. These models have 
been excluded from this paper due to dissimilarity of the tested fluids and GPFs. 
 
2.1. Model 1 

The hoariest model is the homogenous model. This model is in fact a brief analytical model rather 
than an empirical model, based on oversimplification of two-phase physics of GPFs. 
Homogenous model receives an input from the curve provided by the manufacturer: the generated 
head by ESP if pure liquid was pumped instead of GPF (Hl ) [17]. This head is modified with 
assumption that the fluid motion is homogenous i.e. liquid and gas have equal speeds: 

( )ˆ (1 ) ,m l g lH Hα ρ αρ= − +                                                                                                          (1)  

where ρ , H and indices l , g and m stand for density, head, liquid, gas, and mixture, respectively. 
α is gas void fraction. ^ shows the head is estimated (not experimentally measured).  

2.2. Model 2 

The second model was developed by Turpin et al in 1986 [18]: 

    

                                                                      (2)    

where ql and qg are liquid and gas volumetric flow rates in gallons per minutes (gpm) , pin is 
intake pressure in psi.  

2.3. Model 3 

This model was proposed by Sachdeva et al, in 1992 [19]: 

                      

                                                                                                           (3)  

where g stands for gravity acceleration. The values of E1, E2 and E3 and K1 are listed in [10] for 
multiple stages of electrical submersible pumps. As an example, for 8 stages of I-42B radial ESP, 
K1=1.1545620, E1=0.943308, E2=-1.175596 and E3=-1.300093. Similar to Model 2, (3) is 

2

ˆ exp 346430 410 ,g g

m l

in l in l

q q
H H

p q p q

    
 = −        

1 2 31ˆ .E E E

m in l

m

K
H p q

g
α

ρ
=



Computer Science & Information Technology (CS & IT)                                   83 

 

convertible to a linear equation through taking algorithm. Parameters of a linear equation can be 
often identified straightforwardly using least square of error algorithm [20] 

2.4. Model 4 

This model was presented by Zhou and Sachdeva in 2010 [10]: 

                                   

                                                                          (4) 

where K2 is a unit-less coefficient, C is pressure unit factor, e.g. 1, 1000 or 0.145 for psi, ksi or 
kPa. Hmax and qmax are nominal maximum head and flow rate of the ESP; qm is mixture or GPF 
flow rate where qm=ql+qg = qg /α.  

Mathematical structure of this model seems more meaningful than Model 3; as if gas void 
fraction and flow rate equal zero, estimated head is definitely Hmax. According to [10], for 8 stages 
of I-42B radial ESP, K2=1.971988, E4=1.987838, E5=9.659664 and E6=0.905908.  

 2.5. Summary and Limits of Empirical Models  

 

All presented models have three input variables amongst pin , ρl, ρg, ql, qg,, qm or α. Two other 
potential input variables, pump rotational speed and temperature are missing in all empirical 
models of GPFs in ESPs. In fact, the parameters of the presented models have been identified 
based on the data collected at a fixed rotational speed of 3500 rpm; thus, the models are valid 
merely at this speed. The estimated head can be adapted for other rotational speeds using ‘affinity 
laws’ detailed in [2, 10]. 
 

3. MODEL DEVELOPMENT 

 
In this research, a radial basis function network (RBFN) was developed to estimate the head of 
mixtures of carbon dioxide/ diesel fuel pumped by eight stages of an I-42B radial ESP. The 
reason to choose an RBFN as the head-estimating model is the fact that RBFNs are universal 
approximators with significant mathematically proven modelling capabilities [21]. Inspired by 
existing empirical models, a single output of Hm and triple inputs of pin, qm and α were opted for 
the RBFN model. The same experimental data, which were used to identify the parameters of 
empirical models 1-4, were utilised to develop and test the RBFN. Thus, the proposed model and 
presented empirical models are comparable. The experimental data cover a wide range of gas 
void fractions [0 0.5], intake pressures [50 to 400] psi and heads [1 55] ft. 110 sets of input/output 
data are available, in this research, 93 were used for modelling and 17 sets for testing the RBFN. 
 
An RBFN has two layers, the first layer receives inputs array (U) and produces the ‘layer output’ 
(O).The second layer receives O and produces the ‘network output’ (Y). In this problem, with 
three inputs and one output, the input and output arrays are U3×Q and Y1×Q. Q is the number of 
data sets which are fed to the RBFN at once. For instance, if the inputs of the modelling data are 
fed into the model altogether, then Q=93.  
 
The first layer has an array of weights (WR×3) and a scalar namely Spread (S). The components of 
layer output, OR×Q, are calculated as following:  
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The second layer has an array of weights (X1×R) as well as an array of biases (B1×Q). The output 
array is calculated as following: 

Y1×Q = X1×R ×OR×Q+B1×Q ,                                                                                                             (6) 

Combination of (5) and (6) is the structure of the RBFN; the next task is to identify its unknown 
parameters R, W, S, X and B using the modelling data including input and output vectors of U3×93  

and Y1×93 . 

From (5), it is clear that the range of O components is [0 1]; also, if ith row of W and kth column of 
U are identical, Oik will be at its maximum, 1;or simply, maximum values of O components 
happen if the rows of W are same as the columns of U. From (6), it can be seen larger 
components of O are more influential on the network output. As a result, in order to maximise the 
effect of the modelling data on parameter selection, it has been suggested to set W=U

T, 
consequently R=Q. Then, O can be calculated with U3×93 of the modelling data and an S according 
to (5). 

B and X can also be found from linear equation of (6). In practice, Eq. (6) in the form of (7) was 
solved to find B and X :  

[ ]1 93 1 186
186 93

× ×

×

 
=  

 

O
Y X B

I
   ,                                                                                                       (7) 

where I is a unique matrix with size of 93×93.  

By this point, it has been shown how to find all unknowns of (5) and (6) except for S. The 
developed model is called an ‘exact’ RBFN. Such a model evidently provides exact estimation for 
the modelling data; however, a serious concern about exact RBFNs is inaccuracy of estimation 
outside the operating points where the modelling data have been collected from. A large spread 
(S) ( S >>1 in (5)) can smoothen the model output and generalise the network [22]. 

Here is a pseudo-algorithm of exact RBFN modelling (to find R, W, X, B and S using the input 
and out arrays of the modelling data, U3×93  and Y1×93) 

1. Set W93×3 = U
T

93×3  

2. Choose a large S to generalise the developed RBFN 

3. Calculate O93×93 from (5) with U3×93 (from the modelling data), W93×3 and S defined at 
steps 1 and 2. 

4. Form (7) with Y1×93 (from the modelling data) and O calculated at step 3. 

5. Solve (7) to find X1×93 and B1×93 

A straightforward non-iterative parameter identification algorithm is an advantage of exact 
RBFNs; however, this method creates models with too many parameters: 466 in this research. 
While, only 93 modelling data sets, in total 372 pieces of input/output data, are available. 
Excessive number of parameters and focus of the algorithm on exact fitting of the model to the 
modelling data increases the risk of ‘overfitting’ or lack of generality (see [23, 24]). Spread as the 
only tool to generalise the algorithm has shown to be insufficient for this purpose [23]. 
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An alternative is to use efficient RBFNs which may have much fewer parameters than exact 
RBFNs. In exact RBFNs, all columns of input data, U, are transposed and used as the rows of 
weight array, W. In efficient RBFNs, some columns of U are selected and transposed to form W. 

Thus, W array is smaller. In order to select U columns to be used as W rows, first, every single 
column is transposed and tried as a single-row W. The column of U which leads to the smallest 
modelling error (see the second appendix of [25] about the modelling error) is selected, 
transposed and used as the first row of W. At the next iteration, another column of U in which the 
merger of its transpose to W leads to the largest drop in the modelling error is chosen and added 
to W. This continues till the number of W rows (R) reaches its pre-defined maximum (Rmax) or 
the modelling error reaches its predefined target (Et). It should be noted that if a too small 
modelling error (e.g. 0) is targeted, overfitting is more likely to happen.  

Here is a pseudo-algorithm of efficient RBFN modelling: 

1. W=null, Urem=U, Uopt=null, E=1000 (a large number) 

2. Choose a large S to generalise the developed RBFN 

3. Choose Rmax and target modelling error, Et 

4. Set R=1 

5. Set k=1 

6. Add transpose of kth column of Urem as the Rth row of W 

7. Calculate O from (5) with U3×93 (from the modelling data), WR×3 and S defined at steps 6 
and 2. 

8. Solve [ ]
( )

( )

1 93 1 93
93 93

R

R

× × +

+ ×

 
=  

 

O
Y X B

I
to find X1×R and B1×R (Y and O are available from 

the modelling data and step 7) 

9. Find the Modelling Error (ME) from comparison of Ymodel (calculated from (5) and (6)) 
and Y 

10. if ME<E, then E=ME and Uopt=Uk 

11. k=k+1 

12. if k ≤ 93-R then go to 6  

13. Remove Uopt from Urem 

14. R=R+1 

15. if R≤ Rmax and E>Et then go to 5  

 

4. RESULTS AND DISCUSSION 

Both exact and efficient RBFN modelling methods were employed to develop models for GPFs 
pumped by eight stages of an I-42B radial ESP, using 93 sets of experimental data as detailed in 
the previous section. Accuracy of the models were tested with 17 data sets not used for 
modelling, ‘test data’.  Test data include an input array of T

U3×17 and an output vector of T
Y17×1. 

Upper left index of T refers to ‘test’. The estimated outputs of a model with inputs of T
U3×17 is 

named T
17 1

ˆ
×Y . The ‘test error’ or TE, as defined in (8), was used to assess the accuracy of models. 
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                                                                                                                (8) 

A model should lead to an acceptably low TE to be cross-validated [25, 26]. Exact RBFN, with 
466 parameters, provides a fairly good TE, 2.7683 ft, at a very high value of spread, S=125. At 
lower values of S, the modelling error may be misleadingly small. For instance, at S=1, if the 
modelling data are used in (8), the resultant error is 0.0645 ft where the generalisation [26] or test 
error is 44.8621 ft, an obvious case of overfitting to the modelling data. 

The efficient RBFN, however, provides better results with fewer parameters and a lower spread. 
A spread of 20 and target modelling error (Et) of 1.2 ft result in an efficient RBFN with R=74, 
total number of parameters of 390 and an excellent test error of 1.8648 ft , i.e. 3.45% of head 
range. As a result, this model is cross-validated too. 

Table 1 compares the test error (TE) and number of parameters in empirical models 1-4 (M1-M4) 
and developed exact and efficient RBFNs.  

 
Table 1. Test error (TE) in ft and total number of parameters for different models 

 M1 M2 M3 M4 Exact RBFN Efficient RBFN 

Test Error 8.85 7.36 12.13 5.16 2.77 1.87 

Number of Parameters 1 3 4 5 466 390 

 

Figures 1-3 compare estimated heads of different models with the real head at three different 
operating areas. In this paper, an operating area is the collection of operations at a fixed intake 
pressure and a fixed gas void ratio, e.g. Pin=100 psi and α=0.2. Table 2 shows the mean of 
absolute estimation error for different operating areas. The results presented in Table 2 and 
Figs.1-3 have been calculated for the entire available experimental data in each operating area, 
not only the tests data. 

 

Figure 1. Real and estimated head (by six models) for a mixture of carbon dioxide and diesel fuel pumped 
by eight stages of an I-42B radial ESP; intake pressure is 50 psi and gas void fraction is 0.2 
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Figure 2. Real and estimated head (by six models) for a mixture of carbon dioxide and diesel fuel pumped 
by eight stages of an I-42B radial ESP; intake pressure is 100 psi and gas void fraction is 0.1 

 

 

Figure 3. Real and estimated head (by six models) for a mixture of carbon dioxide and diesel fuel pumped 
by eight stages of an I-42B radial ESP; intake pressure is 400 psi and gas void fraction is 0.5 

 
As to Table 2, in 13 operating areas covered by experiments, the efficient and exact RBFN 
models outperform all comparable empirical models, M1-M4, in 12 and 11 operating areas 
respectively. Only in one operating area, Model 3 presents a lower error than RBFNs, at pressure 
of 50 psi and gas void ratio of 0.4. In this operating area only 2 sets of experimental data are 
available. In both Table 2 and Figs. 1-3, it is observed that different empirical models may 
perform better in specific operating areas; thus, so called critical models [6] have been proposed 
to define the validity area of some empirical models. As an advantage, RBFN models are valid 
for the whole operating areas where the modelling and test data have been collected from. 
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Table 2. Mean of absolute head estimation error in ft for different models at various operating areas. 

Pin α M1 M2 M3 M4 Exact RBFN Efficient RBFN 

50 0.10 4.66 14.7 24.1 5.00 1.42 0.33 

50 0.15 12.1 12.0 11.5 7.32 4.62 1.85 

50 0.20 15.8 8.63 6.85 8.63 1.32 0.71 

50 0.30 16.4 6.63 5.06 4.34 4.97 1.68 

50 0.40 17.1 3.00 1.39 2.44 2.31 1.81 

100 0.10 5.66 3.21 22.5 4.24 2.29 0.90 

100 0.15 6.28 4.61 13.3 5.94 1.98 1.06 

100 0.20 8.25 4.96 10.4 6.68 1.29 1.30 

100 0.30 10.1 10.3 7.76 4.65 3.00 1.00 

100 0.40 11.7 6.40 3.81 2.89 1.33 0.43 

400 0.30 5.47 3.73 9.92 5.84 0.80 1.09 

400 0.40 4.45 2.95 8.27 4.30 0.57 0.52 

400 0.50 5.69 9.04 7.51 5.79 0.39 1.18 

 

5. CONCLUSION 

 
This paper first presented existing empirical models, which estimate the head of gaseous 
petroleum fluids in ESPs. These include a simple analytical model (the homogenous model) and 
three empirical models.  
 
Afterwards, the same data used to identify the parameters of aforementioned empirical models 
were used to develop and test the exact and efficient RBFN models to serve the same function as 
the empirical models. The developed models outperformed existing models, and the efficient 
RBFN particularly estimated head highly accurately with a test error equivalent to 3.45% of head 
range. 
 
It was also shown that if some popular values were opted for RBFN design factors, e.g. spread of 
1 and target modelling error of 0, the developed model would fail to fulfil cross-validation 
requirements due to overfitting. In the exact RBFN, a very large spread, 125, was shown to be 
able to reduce overfitting; this purpose was served with use of a large spread, 20, and a fairly 
large target modelling error for the efficient RBFN. 
 
REFERENCES 
 
[1] Y. Bai and Q. Bai, Subsea engineering handbook: Gulf Professional Publishing, 2012. 
 
[2] M. Mohammadzaheri, R. Tafreshi, Z. Khan, M. Franchek, and K. Grigoriadis, "An intelligent 

approach to optimize multiphase subsea oil fields lifted by electrical submersible pumps," Journal of 
Computational Science, vol. 15, pp. 50-59, 2016. 

 
[3] L. Barrios and M. G. Prado, "Modeling Two-Phase Flow Inside an Electrical Submersible Pump 

Stage," Journal of Energy Resources Technology, vol. 133, p. 042902, 2011. 
[4] J. Zhu and H.-Q. Zhang, "Numerical Study on Electrical-Submersible-Pump Two-Phase Performance 

and Bubble-Size Modeling," SPE Production & Operations, 2017. 



Computer Science & Information Technology (CS & IT)                                   89 

 

[5] J. Zhu and H.-Q. Zhang, "Mechanistic modeling and numerical simulation of in-situ gas void fraction 
inside ESP impeller," Journal of Natural Gas Science and Engineering, vol. 36, pp. 144-154, 2016. 

 
[6] M. Mohammadzaheri, R. Tafreshi, Z. Khan, M. Franchek, and K. Grigoriadis, "Modelling of 

Petroleum Multiphase fluids in ESPs, an Intelliegnt Approach," presented at the Offshore 
Mediternean Conference, Ravenna, Italy, 2015. 

 
[7] R. Sachdeva, "Two-phase flow through electric submersible pumps," University of Tulsa, 1988. 
 
[8] D. Sun and M. Prado, "Modeling gas-liquid head performance of electrical submersible pumps," 

Journal of Pressure Vessel Technology, vol. 127, pp. 31-38, 2005. 
 
[9] J. Zhu, X. Guo, F. Liang, and H.-Q. Zhang, "Experimental study and mechanistic modeling of 

pressure surging in electrical submersible pump," Journal of Natural Gas Science and Engineering, 
2017. 

 
[10] D. Zhou and R. Sachdeva, "Simple model of electric submersible pump in gassy well," Journal of 

Petroleum Science and Engineering, vol. 70, pp. 204-213, 2010. 
 
[11] L. R. Pineda, A. L. Serpa, J. L. Biazussi, and N. A. Sassim, "Operational Control of an Electrical 

Submersible Pump Working with Gas-Liquid Flow Using Artificial Neural Network " presented at the 
IASTED International Conference on Intelligent Systems and Control Campinas, Brazil, 2016. 

 
[12] J. F. Lea and J. Bearden, "Effect of gaseous fluids on submersible pump performance," Journal of 

Petroleum Technology, vol. 34, pp. 922-930, 1982. 
 
[13] M. Ghodsi, N. Hosseinzadeh, A. Özer, H. R. Dizaj, Y. Hojjat, N. G. Varzeghani, et al., "Development 

of Gasoline Direct Injector using giant magnetostrictive materials," IEEE Transactions on Industry 
Applications, vol. 53, pp. 521-529, 2017. 

 
[14] M. Romero, "An evaluation of an electrical submersible pumping system for high GOR wells," 

University of Tulsa, 1999. 
 
[15] R. Cirilo, "Air-water flow through electric submersible pumps," University of Tulsa, Department of 

Petroleum Engineering, 1998. 
 
[16] J. Duran and M. Prado, "ESP Stages Air-Water Two-Phase Performance-Modeling and Experimental 

Data," 2003. 
 
[17] A. Qallaf and M. Mohammadzaheri, "A Fuzzy Model to Estimate Head of Gaseous Petroleum Fluids 

Driven by Electrical Submersible Pumps," presented at the Engineering and Technology, Computer, 
Basic and Applied Sciences, Sydney, Australia, 2017. 

 
[18] J. L. Turpin, J. F. Lea, and J. L. Bearden, "Gas-Liquid Flow Through Centrifugal Pumps—Correlation 

of Data," presented at the The Third International Pump Symposium, College Station, Texas, USA, 
1986. 

 
[19] R. Sachdeva, D. Doty, and Z. Schmidt, "Performance of Axial Electric Submersible Pumps in a Gassy 

Well," in SPE Rocky Mountain Regional Meeting, 1992. 
 
[20] M. Mohammadzaheri, L. Chen, A. Ghaffari, and J. Willison, "A combination of linear and nonlinear 

activation functions in neural networks for modeling a de-superheater," Simulation Modelling 
Practice and Theory, vol. 17, pp. 398-407, 2009. 

 
[21] M. Mohammadzaheri, L. Chen, and S. Grainger, "A critical review of the most popular types of neuro 

control," Asian Journal of Control, vol. 16, pp. 1-11, 2012. 
 



90 Computer Science & Information Technology (CS & IT)  

 

[22] M. Beale, M. Hagan, and H. Demuth. (2017). Neural Network Toolbox™ User's Guide. Available: 
https://www.mathworks.com/ 

 
[23] G. C. Cawley and N. L. Talbot, "On over-fitting in model selection and subsequent selection bias in 

performance evaluation," Journal of Machine Learning Research, vol. 11, pp. 2079-2107, 2010. 
 
[24] M. Mohammadzaheri, A. Mirsepahi, O. Asef-afshar, and H. Koohi, "Neuro-fuzzy modeling of 

superheating system of a steam power plant," Applied Math. Sci, vol. 1, pp. 2091-2099, 2007. 
 
[25] M. Mohammadzaheri, A. Firoozfar, D. Mehrabi, and M. Emadi, "A Virtual Temperature Sensor for 

an Infrared Dryer," presented at the 9th IEEE-GCC Conference and Exhibition, Manama, Bahrain, 
2017. 

 
[26] A. Lendasse, V. Wertz, and M. Verleysen, "Model selection with cross-validations and bootstraps—

application to time series prediction with RBFN models," Artificial Neural Networks and Neural 
Information Processing—ICANN/ICONIP 2003, pp. 174-174, 2003. 
 

AUTHORS  
 
Morteza Mohammadzaheri received his PhD from School of Mechanical 
Engineering, University of Adelaide, Australia in 2011. He has published/presented 
more than 90 peer-reviewed articles in technical journals and conferences. He is now 
an Assistant Professor of Dynamic Systems and Control at the Department of 
Mechanical and Industrial Engineering of Sultan Qaboos University, Oman. 
 
 

 

Mojtaba Ghodsi received his B.Sc. degree in Mechanical Engineering from Isfahan 
University of Technology in 1999, the M.Sc. degree in Applied Mechanics from 
Tehran Polytechnic in 2001 and continued his research as Ph.D. (2007) and JSPS 
postdoctoral fellow (2009) in Precision Engineering Department of the University of 
Tokyo, Japan. Currently, he is pursuing his career at Sultan Qaboos University, Oman 
in department of Mechanical and Industrial Engineering.  His main research interests 
include Smart Materials for Actuators, Sensors and Energy Harvesting, NDT and 
development of Mechatronic systems and devices. Dr. Ghodsi is a Member of IEEE 
and International Society of Optics and Photonics (SPIE).  
 
Abdullah AlQallaf is an Assistant Professor with the Department of Electrical 
Engineering, Kuwait University. He received his Ph.D. degree in Electrical 
Engineering from the University of Minnesota—twin cities, St. Paul, MN, in 2009. 
Alqallaf’s research interests are Microwave Imaging Techniques, Multimedia Signal 
Processing, Communication, Bioinformatics and Medical Image Analysis. Alqallaf is 
an IEEE Senior Member and an IEEE Board Member-Educational and Professional 
Activities-Kuwait section. 
 


