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ABSTRACT 

 

The recognition of human actions based on three-dimensional depth data has become a very 

active research field in computer vision. In this paper, we study the fusion at the feature and 

decision levels for depth data captured by a Kinect camera to improve action recognition. More 

precisely, from each depth video sequence, we compute Depth Motion Maps (DMM) from three 

projection views: front, side and top. Then shape and texture features are extracted from the 

obtained DMMs. These features are based essentially on Histogram of Oriented Gradients 

(HOG) and Local Binary Patterns (LBP) descriptors. We propose to use two fusion levels. The 

first is a feature fusion level and is based on the concatenation of HOG and LBP descriptors. 

The second, a score fusion level, based on the naive-Bayes combination approach, aggregates 

the scores of three classifiers: a collaborative representation classifier, a sparse representation 

classifier and a kernel based extreme learning machine classifier. The experimental results 

conducted on two public datasets, Kinect v2 and UTD-MHAD, show that our approach achieves 

a high recognition accuracy and outperforms several existing methods. 
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1. INTRODUCTION 

 
The field of action recognition has been considered as an active challenging domain in computer 

vision research for more than two decades. It is necessary for several applications such as 

intelligent video surveillance, robot control, video understanding, healthcare, etc. In the past few 

years, further investigations [1–4] have been initially focused on recognizing actions from RGB 

video sequences recorded by traditional 2D cameras. Recently, the emergence of low-cost RGB-

D cameras, such as Microsoft Kinect v2, has gained much attention in computer vision thanks to 

its excellent accuracy in action recognition. Kinect v2 provides RGB and depth data modalities. It 

has been used to improve the performance of human action recognition systems. The rapid 

development of such cameras has opened the door to a rich representative work [5–10] in 

learning and recognizing actions based on depth video sequences. Depth maps have various 
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advantages compared to traditional color videos. First, they are insensitive to change in lighting 

conditions. Second, they provide a three-Dimensional (3D) structure and shape information that 

improves the distinguish ability of different poses. These innovations have been behind producing 

a lot of multimodal datasets dedicated to human action recognition systems. [11] described most 

RGB-D datasets currently exploited in recognizing actions. Three levels of information fusion 

have shown an improvement in accuracy: (i) data level, where data from several sensors can be 

integrated to supply new data; (ii) feature level, where the different feature sets extracted from a 

data source are fused to create a new fused feature vector; and (iii) decision level, where the 

fusion of multiple classifiers is used to make the final classification decision. 

 

This paper addresses how to enhance recognition accuracy using feature and score fusion levels. 

First, three Depth Motion Maps (DMMs) [7] are computed in order to represent each action video 

sequence. Next, the description of the obtained DMMs is performed on the basis of Histogram of 

Oriented Gradients (HOG) [12] and Local Binary Patterns (LBP) [13] descriptors that encode 

contour and texture depth features. The HOG-LBP feature fusion approach is applied to carry out 

a compact DMM representation. To get action prediction outputs from the feature variables, we 

train three classifiers: Collaborative Representation Classifier (CRC) [10, 14], Sparse 

Representation Classifier (SRC) [15, 16] and Kernel based Extreme Learning Machine (KELM) 

[17]. These techniques are among the most widely used methods in the literature 

[9,10,14,15,18,19], as they have shown good performances for activity recognition systems, but 

as far we know, this is the first time that these three classifiers are fused together to classify 

action. Finally, we consider a Naive-Bayes approach to combine the classification scores, that 

shows an improvement in the accuracy of human action recognition when tested on publicly 

available datasets [14] [20]. The naive Bayesian approach is a commonly known methodology for 

classifier output fusion, is proposed in various works as [21–23]. Our experimental results 

substantiated that our proposed human action recognition approach performs better than various 

state-of-the-art methods. 

 

The rest of the paper is organized as follows. In section 2, a state of the art of human action 

recognition methods is presented. Section 3 describes the DMM as well as our proposed fusion 

and classification approaches. The experimental results are presented in section 4. Section 5 

includes a conclusion and perspectives. 

 

2. STATE OF THE ART 
 

Several recent action recognition approaches have been presented recently [24–26]. Earlier, 

action recognition data was provided from an RGB camera. However, human activity recognition 

from color video sequences has many difficulties such as illumination changes and variations in 

human appearance. 

 

Recently, by the appearance of depth cameras like Microsoft Kinect, several RGB-D-based 

human action recognition methods have been developed, as reviewed in [27–29]. The Kinect 

sensor captures data as color and depth information. In the literature, these provided RGB-D data 

in addition to skeleton joints have been well explored to improve human action recognition. 

 

In [5], the authors define Space-Time Occupancy Patterns (STOP) to represent 3D depth maps. 

Both space and time axes are divided into several segments to present a 4D grid. An occupancy 

feature, calculated in each grid cell, represented the number of occupied space-time points. The 
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occupancy values of all cells formed STOP feature vectors. A nearest neighbor classifier was 

used to recognize human actions. 

 

Wang and Lie [6] extracted the Random Occupancy Pattern (ROP) from depth sequences by 

considering a 3D depth sequence as a 4D shape. ROP features were calculated by applying a 

weighted sampling scheme founded on rejection sampling. An elastic-net regularized model was 

utilized to choose the most discriminative features to train red a Support Vector Machine (SVM) 

classifier for action recognition. 

 

In [7], the authors proposed shape and motion-action representations. Each 3D depth frame was 

projected into three 2D maps and then the difference between two consecutive maps yielded a 

motion energy. The concatenation of all these motion energies over the video give out the DMM. 

The HOG was computed from front, side and top DMM maps as a distribution of local intensity 

gradients. The DMM-HOG features were matched by an SVM classifier for action recognition. 

 

Oreifej and Liu [8] introduced the histogram of oriented 4D normals which was the extension of 

histograms of oriented 3D normals [30] by appending the time derivative. The depth, time and 

spatial coordinates of a 4D space were quantified by a regular polychoron, and then each human 

action was modeled as a distribution of the normal surface orientations. 

 

Moreover, Chen [9] presented a DMM based on an LBP descriptor for human action. The DMM 

was presented from three projection views to characterize the 3D local motion. The LBP features 

were extracted from the depth maps to measure the local image texture by encoding each pixel 

with decimal numbers. All the extracted LBP features from each projected DMM were 

concatenated to give a single feature vector, used to train a KELM classifier. 

 

Farhad and Jiang in [10] developed a new descriptor that computed HOG features from DMMs 

based on contourlet sub-bands. A Contourlet Transform (CT) combined the Laplacien pyramid 

and the directional filter bank technique to decompose the DMMs into low-frequency and high-

frequency sub-bands. This method was used to decrease the noise and clearly present the depth 

shape information at several scales and directions. Afterwards, HOG features were extracted from 

these DMM contourlet sub-bands. The combination of the histograms obtained from the three 

depth views provided the final DMM-CT-HOG feature vector, trained by the CRC to classify 

human action. 

 

The work of [31, 32] was inspired by the success of deep learning in human action recognition. A 

new deep learning based action recognition framework using depth and skeleton data was defined 

in [32]. The deep convolutional neural network was used to extract the spatio-temporal features 

from depth sequences. A jointVector feature was obtained by computing the angle and position 

between skeleton joint information. A SVM classifier matched high-level and jointVector 

features separately to get class probability vectors. The fusion of these two kinds of weighted 

vectors gives final action recognition. 

 

Ivan in [33] introduced an approach of body-pose estimation based on RGB-D video sequences to 

recognize complex human activities. Two geometric and motion descriptors were applied to each 

RGB-D datum to encode respectively the spatial configuration and dynamic features of every 

body-pose. A hierarchy of three levels was modeled to produce the global activities prediction. At 

the first level, each activity was decomposed into atomic actions. The intermediate level 
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represented the atomic human action with sparse composition. At a higher level, the complex 

human activities were described based on spatio-temporal compositions of atomic actions. 

 

Various publications have appeared in the recent years demonstrating the importance of fusion 

methods in improving the accuracy of action recognition systems. One of the examples for 

decision-level fusion was presented in [14]. The authors extracted feature vectors from depth, 

skeleton and inertial data. Next, they matched three CRC classifiers separately to get the video 

label. Finally, a Logarithmic Opinion Pool (LOGP) was carried out for decision-level fusion. 

Imran and Kumar in [34] suggested a new human action recognition method based on 

classification fusion. Four deep convolutional neural networks were utilized to classify the 

Motion History Image (MHI) vector descriptors from RGB data and three DMM vectors from 

depth sequences. The fusion of the output scores of these four networks was done using average 

and product rule approaches. The Dempster-Shafer (DS) method was put forward in [35] for 

decision level fusion. In the latter work, both depth and inertial data were exploited to extract 

feature vectors. The authors used the DS technique to fuse the decision outputs of two CRC 

classifiers. The authors in [18] described three DMMs by CT-HOG, LBP and Edge Oriented 

Histograms (EOH) feature descriptors. Then, they used three KELM classifiers to make a 

decision for each feature vector. The LOGP and majority voting methods were proposed to 

combine the outputs of classifiers in order to improve activity recognition accuracy. A 

probabilistic classification fusion approach utilizing a Bayes formalism was performed in [23]. 

Multiple Hidden Markov Models (HMM) classifiers were matched given the features from 

accelerometer sensors placed on the body. The naive Bayesian fusion technique was executed to 

concatenate the classification output vectors from all HMMs. 

 

3. PROPOSED APPROACH 
 

In this section, we present our approach which is broadly described in Figure 1. In order to 

identify the action of a person in the depth video sequence, we firstly extract the shape and 

texture features using HOG and LBP descriptors. The key idea of our method is to fuse these two 

kinds of feature vectors before classification. A dimensionality reduction is secondly performed 

based on the Principal Component Analysis (PCA) technique. Thirdly, the training is done by 

applying CRC, SRC and KELM classifiers to get different classification score outputs. Finally, 

we fuse the probabilistic information sources via a Naive-Bayes technique to output the label of 

the sequence. 

 

4. FEATURE EXTRACTION 

 
Two features are extracted to describe the DMM images : 1) HOG and 2) LBP. 

 

4.1 Depth Motion Map 

 
The DMM [7] is used to characterize the 3D structure and shape information from depth maps. A 

depth video sequence contains M frames, where each frame is projected over three orthogonal 

Cartesian planes to build DMMf , DMMs and DMMt images from front, side and top views, 

respectively. The computation of motion energy is performed by subtracting the consecutive 

maps from each projected DMM. The sum of motion energy over the video sequence yields the 

DMMf,s,t as follows: 
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where f,s,t are the front, side and top views and  2 is a threshold. For each projected map, the 

entire sequence frames are not used but just their extracted regions of interest. These extracted 

foreground DMMs are normalized to generate the final DMM features. Figure2 shows an 

example of three projected maps of a right hand high wave depth sequence. 

 
Figure 1. Flowchart of our approach 

 

 

 
 

Figure 2. DMM views: DMMf , DMMs and DMMt 

 



58 Computer Science & Information Technology (CS & IT)  

4.2 Histogram of Oriented Gradients 
 

The HOG was introduced in [12] and was used to encode the local appearance and shape on 

DMM maps [7] with the distribution of local intensity gradients or edge directions. After finding 

the object using depth information, the idea is to calculate the occurrences of discretized gradient 

orientations in the depth local region to represent the body shape and motion information. We 

divide every projected depth map into 8x8 non overlapping cells, where each cell has nine 

orientation bins. The pixels of these cells throw a weighted vote for an orientation histogram 

based on the value of the gradient magnitude to yield a histogram of nine gradient directions. It 

results in three HOG vectors that describe map features from front, side and top DMMs. These 

vectors are concatenated to produce a 6,588 dimensional final DMM-HOG descriptor for the 

entire action video sequence. 

 

4.3 Local Binary Patterns 
 

The first LBP encoding schemes were proposed for quantifying the local image contrast. Ojala in 

[13] extended the LBP to an arbitrary circular derivation to describe the local texture pattern. The 

Computation of the texture can be carried out by thresholding a neighborhood by the gray value 

of its center and by assigning decimal numbers to the pixels of the image. Let  be a scalar 

value of the center pixel and (P=0, ... P-1) be the gray values of its neighborhood of P which 

are pixels equally spaced on a circle with a radius R. This circle constitutes a circular symmetric 

whole of its neighbors. The LBP feature is established by subtracting the  neighbors from the 

center value  to produce a P digit binary number converted to a decimal form as follows: 

 

 
where P is the number of neighborhood pixels and S(x) is 

 

 
 

We then obtain 2
P
 uniform patterns. The evaluation of a histogram over an image, which 

represents the frequency of each occurring number, is generated to encode the texture 

information. In this paper, we use the LBP operator to extract features from the DMM maps as in 

[9]. 

 

4.4 Feature fusion 
 

Recently, the use of information fusion has attracted the attention of researchers in the action 

recognition domain as a consequence of its greater accuracy. The concatenation of feature vectors 

to improve the system performance is a simple and traditional method frequently used in the 

literature. The feature vectors of different kinds have been concatenated together to find a single 

long feature vector to train the classifier. In [36], Wang and Han employed this fusion approach 

to combine HOG and LBP feature vectors for human detection. Dimitrovski and Kocev [37] 

performed the low level feature fusion approach to describe medical images. Several extracted 

features have been concatenated in a single feature vector before the classification step. Local 
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feature and boundary based shape features were concatenated in [38] to improve the recognition 

performance of the object class. In [39], the authors started by extracting the HOG and LBP 

features. After that, they applied PCA to each of them to reduce the dimension. Finally, the 

concatenation of the two obtained feature vectors was performed to give the mixed HOG-LBP 

descriptor. 

 

In our work, we extract HOG and LBP features from the DMM to represent the depth sequence 

from diverse prospects. We then apply the fusion algorithm based on the PCA to concatenate 

DMM-HOG and DMM-LBP feature vectors. 

 

5. CLASSIFICATION ALGORITHM 

 

5.1 Collaborative Representation Classifier 

 
The CRC has been employed in various work [10, 14] owing to its performance and efficiency in 

classification. Given c as the number of classes, we have n training samples belonging to c 

classes, denoted X= [X1, X2, ..., Xc] = [ x1, x2, ...,xn], where  and the total number of 

training samples is  being the number of samples pertaining to class k. 

The test sample y is described in the CRC as a linear association: y = αX, where α = [ α1, …, αc] 

represents the coefficient vector of the corresponding training sample. We then apply the l2 norm 

to optimize α by a minimizing formulation as follows: 

 

 
Where  is a parameter of regularization and L is the Tikhonov regularization matrix that 

represents the distance weighted matrix by giving less weight to the training samples dissimilar 

from the test samples as follows: 

 

 
 

The Tikhonov regularization is used to solve this minimization problem: 

 

 
 

A minimization of the reconstruction error is made to take a classification decision. 
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5.2 Sparse representation 
 

Human action recognition utilizing SRC is inspired by the work of Wright and Yang [15] which 

used sparse representation to recognize faces. In the SRC, the testing samples are obtained by a 

sparse linear combination of the training samples. The unknown sample is identified by finding 

the label with the lowest residual error. Given a matrix X of training samples for c classes and an 

optional error tolerance  > 0, the test sample of the kth class y is represented from the training 

set Xk  with the coefficients αk.  According to the sparse representation of y in terms of dictionary 

constructed from training samples of all c classes, we can retrieve αk  as follows :  

 

 
 

Subsequently, we classify y for k= 1, 2, ..., c as follows: 

 

 
The calculation of identity (y) defines the label of the test sample y from all distinct c classes. 

 

5.3 Kernel based extreme learning machine 

 
KELM was developed in [17] to solve regression and multiclass classification tasks. An extreme 

learning machine was initially dedicated to match a Single-hidden Layer Feedforward Neural 

Network (SLFNN) in order to overcome the learning slowness. We have the n training samples 

where and is it corresponding label. ti  = is the 

network target binary vector that denotes the sample belonging, where only one component is non 

null. For example, if  tik = 1, it implies that the sample belongs to class k. The responses of the 

SLFNN to xi, hi = [hi1, …, hic]
T
 is: 

 

 
 

where D is the number of the hidden nodes, f(.) is a linear activation function for the network 

output layer, and are the weight vectors that connect ith hidden node to the 

input and output nodes respectively and ei  is the bias for the ith hidden node. For all n equations 

we have: h = α F, where α is the network output weights  and F is the matrix of hidden 

layer outputs of all training sets xi, which is written as: 
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T = [ t1,.., tn ]
T
 is the matrix that contains the network target vectors. The output weights α is 

analytically computed as: 

 

 
where is the Moore-Penrose generalized inverse of the matrix F: 

 

 
 

A positive regularization term  is added to the diagonal elements of FF
T
 , so we have: 

 

 
 

The kernel matrix for the ELM is used as follows:  

 

  
 

Therefore, the output of KELM classifier is :  

 

 

where  is an identity matrix . 

 

The predicted class label of the testing sample y  R
d 
 is the index number of the network output 

node which has the highest value. Considering fk(y) as the output function of the kth hidden node, 

where f(y) = [f1(y),…, fc(y)]T, the predicted class of y is calculated as :  

 

  
5.4 Classifier fusion 
 

The fusion of various classifiers is a known robust technique as it is usually more robust and 

accurate than a single learner system. For benchmarking, we consider nine fusion approaches. 

The Majority vote serves in collecting all the votes of the different classifiers and selecting the 

label that is the most frequently occurring value. The maximum approach chooses the most 

confident classifier with the highest classification score. The sum function calculates the sum of 

score output elements of classifiers and outcomes the label with the highest value. The minimum 

method gives the class which has a minimum objection by different classifiers. The mean of the 

output classifier scores consists in choosing the label with the highest mean value. The product 

fusion technique consists in multiplying the vector elements of the classifier score outputs, and 

the final decision corresponds to the class with the highest probability. The Decision Template 

(DT) is a simple and robust classifier fusion method that compares the classifier output 

combination with a representative template for each class. The decision templates are the 
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averages of all classifier decision outputs during the training step that ties to the belonging of 

training samples to each class. These templates are later used to output the final class based on 

similarity measure. The Dempster-Shafer (DS) technique is like the DT and we can place both 

methods in the same group. The decision templates are generated from the training data to 

represent the most characteristic decision profile for each class. In the testing step, the DS method 

compares the DT to give the label with the largest similarity. 

 

Naive-Bayes is a powerful technique for combining the confidence outputs of different classifiers 

[21, 22]. This method consists in calculating the a posteriori probability of each possible class wk  

given the output labels si of the different classifiers. We assume that we have c classes and L 

classifiers Di  match the data y  R
d
. Each classifier generates a label si, i [1,L], so we have the 

output vector s = [ s1,…sL ]. We define p(si) as the probability that classifier Di  labels y in class si. 

Naive Bayesian approach computes the a posteriori probability that y is labeled as wk as follows: 

 

 
 

where  p(wk) is the a priori probability of the hypothesis wk, p( s / wk ) is the likelihood and p(s) is 

the evidence used for normalization, which can be neglected. The equation that describes the 

support for class wk  can be written as : 

 

 

The  confusion matrix  is defined for each classifier Di  where is the number of 

data elements having a true class wk , and labeled by Di as class ws. Assuming that the training 

dataset X contains a total of n elements and ns elements from class ws, the probability for class wk 

is given by and the probability can be written in the form . In this way and 

according to (16), we obtain: 

 

 
 

The highest value  is used to label y in class wk 

 

 

6. EXPERIMENTAL RESULTS 

 
In order to verify the validity of our method, we have carried out experiments based on the two 

Kinect v2 and UTD-MHAD datasets. 
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6.1 Kinect v2 dataset 
 

We harnessed a public multimodal dataset defined in [14], with collected data from a Kinect v2 

camera and a wearable inertial sensor simultaneously. This database contains three modalities of 

depth, skeleton joint position and inertial signals. In this paper, we use the depth images modality. 

As shown in Figure 3, the dataset includes the following ten actions: right hand high wave, right 

hand catch, right hand high throw, right hand draw x, right hand draw tick, right hand draw circle, 

right hand horizontal wave, right hand forward punch, right hand hammer and hand clap (two 

hands). These actions were effected by three female subjects and three male ones and each 

subject rehearsed the actions five times. Consequently, we obtained 300 depth video sequences in 

total. We performed the subject-specific experiment as in [14] to divide the data into training and 

testing steps. For each subject, the first two repetitions were chosen in training, and the remaining 

repetitions in testing. Table 2 compares our proposed approach with that used in [14], where the 

authors applied the DMM and CRC techniques to recognize actions from depth samples. 

 

 
 

Figure 3. Kinect v2 dataset depth images 
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6.2 UTD-MHAD dataset 
 

The UTD-MHAD dataset, described in [20], is acquired by a Kinect camera and an inertial sensor 

that collect multimodal data. UTD-MHAD encloses 27 actions which are mostly an arm or a leg 

based activity, as shown in Table 1. 

 

 
 

 
 

Each action was carried out by four females and four males, and each subject performed four 

repetitions, so we have 861 video sequences in total after eliminating three corrupted videos. The 

UTD-MHAD is a multimodal database that includes color and depth videos, skeleton joint 

positions and inertial sensor signals (acceleration, angular velocity and magnetic strength). We 

executed two types of experiments on the UTD-MHAD dataset. The first is nominated half-

subject where subjects 1, 3, 5 and 7 were used for training and subjects 2, 4, 6 and 8 for testing. 

The comparison of the existing work with our approach using the UTD-MHAD dataset for the 

half-subject experiment is illustrated in Table 3. The second experiments are the subject-specific 

settings in [19]. As each subject performs an action four times, the first two repetitions are used 

for training and the two remaining repetitions for testing. Table 4 depicts our obtained results 

compared to the method implemented in [19] based on the Kinect depth feature only. 

 

6.3 Evaluation protocol 
 

The experiment was carried out using a computer i7 3.4GHZ with a RAM of 16 GB. 

 

Table 5 lists the recognition rate results of nine methods for score level fusion of the CRC, the 

SRC and the KELM. Figure 4 reports the classification results using the SRC, the CRC and the 

KELM each alone and then the fusion of these three classifiers based on the naive-Bayes fusion 

method. 
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6.4 Discussion 
 

Recognizing human actions with a good recognition rate is an key computer vision requirement. 

In our paper, we propose a fusion approach based on Kinect v2 and UTD-MHAD datasets to 

improve accuracy. In the first step, we start by extracting the HOG and the LBP from the DMM 

representation of depth video sequences. Then, we concatenate these features using PCA to 

reduce dimension. Finally, the naive Bayesian approach is applied to fuse the classification score 

outputs of the CRC, the SRC and the KELM classifiers. As detailed in Table 5, we test different 

fusion methods on the Kinect v2 and UTD-MHAD datasets. These findings point to the 

usefulness of naive-Bayes as a score level fusion approach as they give a great recognition rate 

for both datasets. Figure 4 highlights how important our score level fusion method is for 

improving the recognition rate compared to approaches using each classifier alone. It is apparent 

from Table 2 that our method on the Kinect v2 dataset outperforms previous methods [14] by 

around 15%. The results of the two types of experiments on UTD-MHAD can be seen in Table 4 

and Table 3. In Table 4, our technique for the subject-specific experiment demonstrates a clear 

advantage over the work in [19], which improves the accuracy by 6.5%. We observe from Table 

3 that our fused method for the half-subject experiment outperforms previous work based on 

depth data with an accuracy of 90.5%. We are aware that our work may have two limitations. The 

first is that we have not considered conjointly the depth skeleton joint position and inertial 

multimodalities data and the fusion between them which can improve the classification rate. The 

second negative factor regarding our algorithm is that it has a limit with real-time constraints. An 

acceleration of our action recognition method can be suggested by using field-programmable gate 

array or graphics processing unit to speed up the application.Despite this, we can still state that 

our approach outperforms several previous methods based on only depth data, and it can be 

employed in computer vision applications. 

 

 
Figure 4. Recognition accuracy of our proposed approach 
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7. CONCLUSION 

 
This paper has given an account of our proposed probabilistic score level fusion based on the 

Bayes theorem for human action recognition tested on the Kinect v2 and UTD-MHAD datasets. 

We have exploited the depth video sequence in these datasets to calculate the DMM. To represent 

the DMM, we have used the HOG and LBP feature descriptors. The concatenation of the DMM-

HOG and the DMM-LBP using the PCA technique has been then performed. Finally, we have 

applied a naive Bayesian approach to fuse the SRC, CRC and KELM classification scores, that 

has been shown to outperform different other fusion methods. Our results indicate that our system 

presents a good recognition accuracy compared to existing work. Future work will focus on 

multimodalities fusion at data, feature or score levels. We will also develop a co-design 

architecture to speed up the system. 
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