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ABSTRACT 

 
Analyzing interconnection structures among the data through the use of graph algorithms and 

graph analytics has been shown to provide tremendous value in many application domains (like 

social networks, protein networks, transportation networks, bibliographical networks, 

knowledge bases and many more). Nowadays, graphs with billions of nodes and trillions of 

edges have become very common. In principle, graph analytics is an important big data 

discovery technique. Therefore, with the increasing abundance of large scale graphs, designing 

scalable systems for processing and analyzing large scale graphs has become one of the 

timeliest problems facing the big data research community. In general, distributed processing of 

big graphs is a challenging task due to their size and the inherent irregular structure of graph 

computations. In this paper, we present a comprehensive overview of the state-of-the-art to 

better understand the challenges of developing very high-scalable graph processing systems. In 

addition, we identify a set of the current open research challenges and discuss some promising 

directions for future research. 
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1. INTRODUCTION 

 
The Big Data delineates huge data set to store, process and analyze. These data are generated by 

the daily aggrandizement of data from various sources, call for Big Data to knob these perplex 

data. Therefore, the conventional means of handling data are now obsolete, emerging Big Data 

with full-fledged, and qui vive for research in these data. Therefore, NoSQL is a prominent field 

in Big Data. The Big Graph is part of NoSQL which is gigantic in size, perplex to handle, and 

arduous to visualize. 

 

Recently people, devices, processes and other entities have been more connected than at any 

other point in history. In general, the complex relationships, interactions and interdependencies 
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between objects are naturally modelled as graphs. Therefore, graphs have been used to represent 

data sets in a wide range of application domains, such as social science, astronomy, 

computational biology, telecommunications, semantic web, protein networks, and many more. In 

practice, graph analytics is an important and effective big data discovery tool. For example, it 

enables identifying influential persons in a social network, inspecting fraud operations in a 

complex interaction network and recognizing product affinities by analyzing community buying 

patterns. 

 
Nowadays, graphs with millions and billions of nodes and edges have become very common. For 

example, in 2012, Facebook has reported that its social network graph contains more than a 

billion users (nodes) and more than 140 billion friendship relationships (edges). The enormous 

growth in graph sizes requires huge amounts of computational power to analyze. In practice, 

distributed processing of large scale graphs is a challenging task due to their size in addition to 

their inherent irregular structure and the iterative nature of graph processing and computation 

algorithms. Graph algorithms are becoming increasingly important for analyzing large datasets in 

many fields. Real-world graph data follows a pattern of sparsity that is 
1
not uniform, but highly 

skewed towards a few items. Implementing graph traversal, statistics and machine learning 

algorithms on such data in a scalable manner is quite challenging. As a result, several graph 

analytics frameworks such as Giraph, FlashGraph, GraphChi, X-Stream and many more, have 

been developed, each offering a solution with different programming models and targeted at 

different users. 

 

The rest of this paper is organized as follows: Section 2 provides basic information about Big 

Graph. In Section 3, we discussed about Big Graph processing systems like Apache Giraph, GPS, 

and many more. We present Big Graph Analytics frameworks like Ringo, PowerGraph and so on 

in Section 4. Graph Algorithms for solving many problems in scientific computing, data mining 

and other domains, are discussed in Section 5. The future directions of Big Graph are discussed 

in Section 6. And finally, Section 7 concludes the paper. 

 

2. BIG GRAPH 
 

We can simply define Big Graph as,  

  “Big Data + Structure = Big Graph”  

Big graphs are ubiquitous, ranging from social networks and mobile call networks to biological 

networks and the World Wide Web. The sources of real-world large-scale graphs include: 

● Social graphs (Facebook, Twitter, Google+, LinkedIn, etc.) 

● Endorsement graphs (web link graph, paper citation graph, etc.) 

● Location graphs (map, power grid, telephone network, etc.) 

The size of large scale graphs used in the recent literature is given in table 1. 

 

 

 

 

                                                           
1
https://www.ibm.com/developerworks/library/os-giraph 
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Table 1: Large Scale Graphs in current literature
1
 

Name  Nodes Edges 

Web Graph More than 20 billion nodes 

(pages) 

More than 160 billion edges 

(hyperlinks) 

 

Facebook More than a billion nodes (users) More than 140 billion edges (friendship 

relationships) 

 

LinkedIn Almost 8 million nodes Almost 60 million edges 

SemanticWeb 3.7 million nodes (objects)  400 million edges (facts) 

 

3. BIG GRAPH PROCESSING 
 

The growth of graph-structured data in modern applications such as social networks and 

knowledge bases creates a crucial need for scalable platforms and parallel architectures that can 

process it in bulk. 

 

3.1. Pregel 

Pregel[3] is a scalable, general-purpose system for implementing graph algorithms in a 

distributed environment. It is known as the first Bulk Synchronous Parallel (BSP), an 

implementations that provides a native API specifically for graph algorithms using a “think like a 

vertex” computing paradigm. The basic computation model of Pregel is shown in figure 1. 

 
Figure 1. Pregel Computation Model with three supersteps and three workers[4]. 

 

In Pregel, programs are expressed as a sequence of iterations (supersteps), in each of which a 

vertex can receive messages sent in the previous iteration, send messages to other vertices, and 

modify its own state and that of its outgoing edges. The input graph is loaded once at the start of 

a program and all computations are executed in-memory. 

 

3.2. Giraph 
 

Apache Giraph[1] is an iterative graph processing system built for high scalability. It runs 

workers as map-only jobs on Hadoop and uses HDFS for data input and output. Giraph adds 

several features including master computation, sharded aggregators, edge-oriented input, out-of-
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core computation, and more. It also uses Apache ZooKeeper for coordination, checkpointing, and 

failure recovery schemes. With a steady development cycle and a growing community of users 

worldwide, Giraph is a natural choice for unleashing the potential of structured datasets at a 

massive scale. For example, it is currently used at Facebook to analyze the social graph formed 

by users and their connections. 

 

3.3. Mizan 
 

Mizan[8] is a scalable framework for supporting graph mining algorithms in large parallel 

computing infrastructures. It is a layer between the users’ code and a variety of computing 

infrastructures, such as Linux clusters, cloud environments and supercomputers. Mizan examines 

the graph structure and decides the placement of the data and the low level message passing 

mechanism transparently to the users’ code. It uses message passing and implements an instance 

of the Bulk Synchronous Parallel model. 

 

3.4. GPS 
 

GPS[9] is an open-source system for scalable, fault-tolerant, and easy-to-program execution of 

algorithms on extremely large graphs. It is a distributed system, designed to run on a cluster of 

machines, such as Amazon's EC2. GPS offers Large Adjacency List Partitioning (LALP), an 

optional performance optimization of algorithms that send to all of its neighbors the same 

message. GPS also features an optional dynamic migration scheme. Dynamic migration 

repartitions the graph during the computation by migrating vertices between workers, to improve 

workload balance and network usage. 

 

3.5. GraphLab 
 

GraphLab[11] is a framework for asynchronous parallel graph computations in machine learning. 

It differs from Pregel in that it does not work in bulk synchronous steps, but rather allows the 

vertices to be processed asynchronously based on a scheduler. The vertex functions can run at 

any time as long as specified consistency rules are obeyed. It is therefore well-suited for the 

machine learning types of applications for which it is defined, where each vertex accumulates 

information from its neighbors' states and updates its state, possibly asynchronously. It extends 

the shared memory GraphLab abstraction to the distributed setting by refining the execution 

model, relaxing the scheduling requirements, and introducing a new distributed data-graph, 

execution engines, and fault-tolerant systems. 

 

3.6. Graph Sample and Hold 
 

Graph Sample and Hold (gSH)[7] is a stream sampling framework that supports analytics over 

big graphs. The nice property of gSH consists in building theoretically sound unbiased estimators 

derived from the sample graph, but still robust for the estimation of different properties of the 

target (big) graph, yet conveying in high accuracy and tolerable approximation errors. 

 

3.7. Pregelix 
 

Pregelix[6] is a dataflow-based Pregel-like system built on top of the Hyracks parallel dataflow 

engine. It combines the Pregel API from the systems world with data-parallel query evaluation 
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techniques from the database world in support of large scale graph analytics. This combination 

leads to effective and transparent out-of-core support, scalability, and throughput, as well as 

increased software simplicity and physical flexibility. To the best of our knowledge, Pregelix is 

the only open source Pregel-like system that scales to out-of-core workloads efficiently, can 

sustain multi-user workloads, and allows runtime flexibility. 

 

4. BIG GRAPH ANALYTICS 
 

Analytics is the ability to discover meaningful patterns and interesting insights into data. Graph 

analytics is a special piece of analytics where the underlying data can be modeled as a set of 

graphs. Graph analytics is a rapidly developing area where a combination of graph-theoretic, 

statistical and database techniques are applied to model, store, retrieve, and perform analyses on 

graph-structured data. 

 

4.1. In-Memory Big Graph Analyitcs 
 

PowerGraph: A scalable, distributed graph computation framework written in C++. 

PowerGraph[12] supports both the highly-parallel bulk-synchronous Pregel model of 

computation as well as the computationally efficient asynchronous GraphLab model of 

computation. PowerGraph exploits the Gather-Apply-Scatter (GAS) model of computation to 

factor vertex-programs over edges, splitting high-degree vertices and exposing greater parallelism 

in natural graphs. It allows vertex-partitioning to effectively place its large scale graph in a 

distributed environment. 

 

GraphX: GraphX[14] enables distributed dataflow frameworks such as Spark to naturally 

express and efficiently execute iterative graph algorithms. To achieve performance parity with 

specialized graph systems, GraphX recasts graph-specific optimizations as distributed join 

optimizations and materialized view maintenance. By leveraging advances in distributed dataflow 

frameworks, GraphX brings low-cost fault tolerance to graph processing. GraphX API enables 

the composition of graphs with unstructured and tabular data and permits the same physical data 

to be viewed both as a graph and as collections without data movement or duplication. 

 

Ringo: A system for construction and analysis of large scale graphs on a single large memory 

multicore machine that combines high productivity analysis with fast and scalable execution 

times. Ringo [10] table operations, transformations between tables and graphs, and several graph 

algorithms are fully parallelized to take full advantage of the multi-core environment, and the set 

of graph algorithms available for parallel execution is under constant expansion. 

 

4.2. SSD-Based Big Graph Analytics 
 

FlashGraph: It stores vertex state in memory and edge lists on SSDs. FlashGraph[19] runs on 

top of the set-associative file system (SAFS), a user-space filesystem designed to realize both 

high IOPS, and lightweight caching for SSD arrays on non-uniform memory and I/O systems. It 

uses an asynchronous user-task I/O interface to reduce overhead associated with accessing data in 

the filesystem and overlap computation with I/O. FlashGraph selectively accesses edge lists 

required by a graph algorithm from SSDs to reduce data access; it conservatively merges I/O 

requests to increase I/O throughput and reduce CPU consumption; it further schedules the order 

of processing vertices to help merge I/O requests and maximize the page cache hit rate. 
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4.3. Disk-Based Big Graph Analytics 
 

GraphChi: A disk-based system for computing efficiently on graphs with billions of edges. 

GraphChi[13] is able to execute several advanced data mining, graph mining, and machine 

learning algorithms on very large graphs, using just a single consumer-level computer. It 

partitions the vertices into disjoint intervals and breaks large edge list into smaller shards 

containing edges with destinations in corresponding intervals. GraphChi uses a vertex-centric 

processing model, which gathers data from neighbors by reading edge values, computes and 

applies new values to the vertices, and scatters new data to neighbors by writing values on the 

edges. 

 

X-Stream: An edge-centric graph processing system, uses streaming partitions to utilize the 

sequential streaming bandwidth of the storage medium for graph processing. X-Stream[17] 

introduces an edge-centric scatter-gather processing model. In the scatter phase, it streams every 

edge, and generates updates to propagate vertex states. In the gather phase, it streams every 

update, and applies it to the corresponding vertex state. 

 

TurboGraph: A disk-based graph engine that process billion-scale graphs very efficiently by 

using modern hardware on a single PC. TurboGraph[15] is the first truly parallel graph engine 

that exploits full parallelism, including multi-core parallelism and FlashSSD IO parallelism, and 

full overlap of CPU processing and I/O processing as much as possible. 

 

Chaos: A graph processing system designed for analytics on big graphs using small clusters. 

Chaos [16] builds on the X-Stream single-machine graph processing system, but scales out to 

multiple machines. It treats the aggregate storage of all machines as a single at disk and uses 

work stealing to balance the load across nodes in the cluster. With very limited pre-processing, 

Chaos achieves sequential storage access, computational load balance and I/O load balance. 

 

GridGraph: A system for processing large-scale graphs on a single machine using 2-level 

hierarchical partitioning. GridGraph[18] breaks graphs into 1D-partitioned vertex chunks, and 

2D-partitioned edge blocks using a first fine-grained level partitioning in preprocessing. It uses a 

new streaming-apply the model that streams edges sequentially and applies updates onto vertices 

instantly. 

 

4.4. Issues and Challenges of Big Graph Analytics 
 

High-degree vertex: Graphs with high-degree vertices are computationally challenging and 

contribute heavily communication and storage overhead. In addition, these graphs are difficult to 

partition. 

 

Sparseness: Splitting sparse graph requires more communication, more computation and more 

synchronization. 

 

Data-driven computations: Graph computations are often completely data-driven. The 

computations performed by a graph algorithm are dictated by the vertex and edge structure of the 

graph on which it is operating rather than being directly expressed in code. As a result, 

parallelism based on partitioning of computation can be difficult to express because the structure 

of computations of the algorithm is not known apriori. 
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Unstructured problems: Similar to difficulties encountered in parallelizing a graph problem based 

on its computational structure, irregular structure of graph data makes it difficult to extract 

parallelism by partitioning the problem data. 

 

In-memory challenge: The large-scale graph does not fit in a single memory location, because of 

its immense in size. Instead of SSD or HDD, the graph data should reside in the RAM, such that 

the response time would become minimal. 

 

Poor locality: Because graphs represent the relationships between entities and because these 

relationships may be irregular and unstructured, the computations and data access patterns tend 

not to have very much locality. Performance in contemporary processors is predicated upon 

exploiting locality. Thus, high performance can be hard to obtain for graph algorithms, even on 

serial machines. 

 

Communication overhead: The high-degree vertices incur communication overheads. Today, the 

high-degree vertices are in millions, but tomorrow will be in the billions, and beyond. 

 

Load balancing: When we analyze graphs such as power-law graphs, then we have to pay extra 

attention to load balancing. 

 

4.5. Applications of Big Graph Analytics 
 

Graph analytics has wide ranging applications in many diverse domains such as Internet and 

overlay management, road networks, online social networks, etc. 

 

4.5.1. Machine Learning 
 

One of the most popular application of machine learning is recommendation systems. One 

approach to the design of recommendation systems that has wide use is collaborative filtering. 

The Netflix movie recommendation task uses collaborative filtering to predict the movie ratings 

for each user, based on the ratings of similar users. 

 

4.5.2. Social Network Analysis 
 

Graphs are employed heavily in online social networks. The reason for this popularity is that 

graphs offer a natural way of representing various kinds of relationships that are important for 

these applications. 

 

4.5.3. Semantic Networks 
 

A semantic network is a graph structure for representing knowledge in patterns of interconnected 

nodes and arcs. Declarative graphic representation is common to all semantic networks that can 

be used to represent knowledge and support automated systems for reasoning about the 

knowledge. 
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4.5.4. Biological Networks 
 

Interactions arise naturally in biology and it can be assembled into networks of graphs where the 

nodes are biological entities and edges represent molecular interactions, associations between 

diseases. 

 

4.5.5. Friend Recommendations 

 

Existing social networking services recommend friends to users based on their social graphs, 

which may not be the most appropriate to reject a user's preferences on friend selection in real 

life. 

 

5. GRAPH ALGORITHMS 
 

Graph algorithms are becoming increasingly important for solving many problems in scientific 

computing, data mining and other domains. 

 

5.1. PageRank 
 

PageRank[20] is a method for computing a ranking for every web page based on the graph of the 

web. It is used by Google to rank webpages based on the idea that more important websites likely 

receive more links from other websites. PageRank has applications in search, browsing, and 

traffic estimations. 

 

5.2. Connected Components 
 

A connected component, in an undirected graph, is a connected subgraph of the graph. In a 

directed graph, connected component can either be weakly connected or strongly connected. 

Weakly and strongly connected component are respectively weakly and strongly connected 

subgraphs of a graph. 

 

5.3. Single Source Shortest Path (SSSP) 
 

The single-source shortest path problem is a classical problem in the research field of graph 

algorithm. In SSSP problem, we have to find the shortest paths from a source vertex ‘v’ to all 

other vertices in a graph. 

 

5.4. Triangle Counting 
 

In this algorithm, each vertex shares its neighborhood list with each of its neighbors. Each vertex, 

then checks if any of their neighbors overlap with the neighborhood list(s) they received. With 

directed edges and no cycles, the total number of such overlaps gives the number of triangles in 

the graph. With undirected edges, the total number of overlaps gives 3-times the number of 

triangles. 
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5.5. Collaborative Filtering 
 
It is used, for example, to recommend products based on purchases of other users with similar 

interests. This is a machine learning algorithm that estimates how a given user would rate an item 

given an incomplete set of (user, item) ratings. 

 

6. FUTURE DIRECTION 
 

In the era of big data, interest in analysis and extraction of information from large data graphs is 

increasing rapidly. Graphs are now widely used for data modeling in application domains for 

which identifying relationship patterns, rules, and anomalies are useful. These domains include 

web graph, social networks, semantic web, protein-protein interaction networks, bibliographical 

networks, etc. The ever-increasing size of graph-structured data for these applications creates a 

critical need for scalable systems that can process large amounts of it efficiently. 

 

7. CONCLUSION 
 

The usage of large scale graph processing platforms is rapidly expanding in both academia and 

industry. In principle, large scale graph processing platforms are increasingly important as more 

and more problems require dealing with graphs. To this end, we presented a thorough survey of 

the state-of-the-art of the emerging platforms in this domain. In addition, we have provided an 

overview of the recent studies for benchmarking and evaluating some of the existing platforms. 

Finally, we identified and presented a set of the current open research challenges and also 

presented some of the promising directions for future research. In general, we believe that there 

are still many opportunities for new innovations and optimizations in the domain of large scale 

graph processing. Hence, we consider this article as an important step in helping researchers to 

understand the domain and guiding them towards the right direction to improve the state-of-the-

art. 
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