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ABSTRACT 

 

Association rules is a very important part of data mining. It is used to find the interesting 

patterns from transaction databases. Apriori algorithm is one of the most classical algorithms 

of association rules, but it has the bottleneck in efficiency. In this article, we proposed a 

prefixed-itemset-based data structure for candidate itemset generation, with the help of the 

structure we managed to improve the efficiency of the classical Apriori algorithm. 
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1. INTRODUCTION 

 
With the rapid development of computer technology in various sectors, the data generated by 

different industries are becoming more and more, but how to get valuable information from the 

big data has become a new problem. Data mining, that is data knowledge discovery, came into 

being in this backdrop. Data mining is to excavate the implied, unknown, interesting knowledge 

and rules from a large number of data 
[1]

. Association rules is an important part of data mining, it 

was first put forward by R.Agrawal, mainly to solve the customer transaction association rules 

between sets of items in the transaction library 
[2]

. In the following year, R.Agrawal proposed the 

most classical algorithm to calculate association rules, that is Apriori algorithm 
[3]

, which is to 

infer the (k+1) – itemsets by the k- itemsets.  

However, due to the computing bottleneck of Apriori algorithm when calculating the candidate 

set, in recent years there have been many improved algorithms of the traditional Apriori 

algorithm from different aspects. Chun-Sheng Z proposed an improved Apriori algorithm based 

on classification 
[4]

. Jia Y improves the algorithm from the aspect of transaction database 

partitioning and dynamic itemset planning 
[5]

. Shuangyue L
 
proposed an improved algorithm 

based on the matrix of database to enhance the efficiency of calculating 
[6]

. Wang P proposed an 

optimization method to reduce the search times of the transaction library to improve the 

efficiency 
[7]

. Vaithiyanathan V uses the method of compressing the transactions of the similar 

interests in the database to improve the efficiency of the algorithm 
[8]

. Lin X implements Apriori 
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algorithm based on Map Reduce to improve the candidate sets of large amounts of data 

generation efficiency 
[9]

. Zhang first analyze the characteristic of the data, that is medical data, 

and then combine the characteristics of the data to improved Apriori algorithm 
[10]

. Wu Huan 

proposed an improved algorithm IAA, which adopts a new count-based method to prune 

candidate itemsets and uses generation record to reduce total data scan amount 
[11]

. Wang Yuan 

proposes an improved item constrain association rules mining algorithm, which improves 

traditional algorithm in two aspects: trimming frequent itemsets and calculating candidate 

itemsets 
[12]

. Lin Ming-Yen proposes three algorithms, named SPC, FPC, and DPC, to investigate 

effective implementations of the Apriori algorithm in the MapReduce framework 
[13]

. Chai Sheng 

proposes a novel algorithm so called Reduced Apriori Algorithm with Tag (RAAT), which 

reduces one redundant pruning operations of C2 
[14]

. 

This article will be focus on the two concrete steps of classical Apriori algorithm, namely 

connecting step and the pruning step, using a new prefix-itemset-based storage, combining the 

fast lookup feature of hash tables to improve the efficiency. This paper will first describe the 

classical Apriori algorithm and its shortcomings, then specifically describe the improvements, 

and finally introduce the comparisons of efficiency of classical Apriori algorithm and improve 

Apriori algorithm on specific data sets. 

2. APRIORI ALGORITHM 

2.1. Apriori algorithm introduction 

Apriori algorithm is a classical algorithm for frequent itemset mining association rules, the basic 

idea of the algorithm is to use an iterative approach layer by layer to find the frequent. The 

algorithm will first obtain k-itemsets, and then use the k- itemsets to explore (k+1)-itemsets. First, 

let’s introduce the priori knowledge of frequent itemsets, which is, any subset of a frequent 

itemset is also a frequent itemset. Apriori algorithm uses the prior knowledge of frequent 

itemsets, first to find the collection of frequent 1-itemsets, denoted L1. Then use the 2-itemsets of 

L1 to get L2, and then L3, and so on, until you cannot find the frequent k-itemsets. Apriori 

algorithm mainly consists of the following three steps:  

(1)  Connecting step: connecting k- frequent itemsets to generate (k+1)-candidate sets, denoted by 

Ck+1. The connect condition of the connecting step is that the two k-itemsets have the same 

first (k-1) items and different k-th items. Denote li[j] is j-th item of  li, the condition is: 

l��1� = l��1� ∧ l��2� = l��2� ∧ ……∧ l��k − 1� = l��k − 1� ∧ l��k� ≠ l��k� 

In which l1 and l2 are k-item subset of the set collection Lk, l1[k] ≠ l2[k] is to ensure not to 

generate duplicate k- itemsets. Itemsets generated by the l1 and l2 connection as follows: 

{l��1�, l��2�, l��3�, …… , l��k�, l��k�} 

 (2) Pruning step: To pick out the true frequent itemsets Lk+1 from the candidate set Ck+1. Because 

the candidate set Ck+1 is the superset of the true frequent itemsets Lk+1. According to the 

nature of Apriori: any subsets of frequent set must also be frequent, that is any (k-1)- items 

subsets of k-items must also be frequent. With this property we can find out if the k- items 

subsets of Ck+1 are in Lk, if not, then remove the candidate (k + 1) - itemset is removed from 

the Ck+1. 

(3) Counting step: scanning the database, accumulate the number of candidates appearing in the 

database. If the appear times of a candidate is less than the given minimum support threshold, 

the candidate itemset will be removed. 
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2.2. Shortage of Apriori algorithm 

Apriori is one of the most classical algorithms for mining association rules, but it also has the 

shortage of low efficiency. The time Apriori algorithm consumes lies mainly in the following 

three aspects: 

(1) In connection step, when connects k-itemsets to generate (k+1)-itemsets, it compares too 

many times to determine if the itemsets meets the connection conditions. When Lk has m k- 

itemsets, the time complexity of the connection step is Ο(k*m^2). 

(2) In the pruning step, when determine if a subset of candidate set Ck+1 is in the frequent set Lk, 

the best situation is to simply scan once to get the result, while the worst-case is that is needs 

to scan k times to find that the k-th subset of Ck+1 is not in the Lk. So the average times need 

to scan and compare the Lk is |Ck+1| * |Lk| * k / 2. 

(3) In counting step, when accumulate the support times of itemsets in Ck+1, we need to scan the 

database for |Ck+1|times. 

Taking into account these three aspects of time-consuming steps of classical Apriori algorithm, 

this article presents an improved Apriori algorithm based on prefix-itemset. 

 

3. IMPROVED APRIORI ALGORITHM 

3.1. Improved Apriori algorithm 

In 1.2 we have analyzed the shortcomings of classical Apriori algorithm, so its improvements 

also focus on the three steps mentioned in 1.2. Since the records are already sorted by the 

dictionary, therefore the candidate set generated by Apriori algorithm is ordered. 

(1）Prefixed-itemset-based storage 

In the improved algorithm we proposed a new method to store the itemsets. For each itemset in 

Lk, we use a structure similar to Map <key, value> to store them, in which we save the forward 

(k-1)- item content as the key while the last item content as the value. After having all the 

itemsets saved in the new format, we group all the itemsets with the same key and store the union 

of their values as the new value. 

For example: the database is shown in Table 1and the minimum support is 2. 

Table 1 database 

TID Itemset 

T1 A,B,E 

T2 B,D 

T3 B,C 

T4 A,B,D 

T5 A,C 

T6 B,C 

T7 A,C 

T8 A,B,C 

T9 A,B,C,E 
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The traditional Apriori algorithm will scan the database to obtain the times each item appears in 

the database, to form the 1- itemsets, and then to generate the 2-itemsets that meets the minimum 

support, that is 2. Here is the content generated by the classical Apriori algorithm. 

 
Table 2 classical Apriori algorithm 

 

1-itemset 2- itemset 

Item Count Item Count 

A 6 AB 4 

B 7 AC 4 

C 6 AE 2 

D 2 BC 4 

E 2 BD 2 

  BE 2 

 

While Table 3 shows how we store the itemsets with the prefix-itemset-based storage. 

Table 3 prefix-itemset-based storage 

 Prefixed-key Value 

1-itemset NULL {A, B, C, D, E} 

2-itemset A {B, C, E} 

B {C, D, E} 

 

As shown in Table 3, 1- itemset has only one item, so the key of 1- itemset is NULL. Besides, we 

can infer the length of the itemset from the length of the key because the length of the value of 

the key stores all the items in the itemset but the last item. 

 (2) Prefixed-itemset-based connecting step 

After the establishing of prefix-itemset-based storage, when we have to generate (k+1)- itemset 

by connecting the two k- itemsets, we can simply combine two different items in the value, and 

then generate new itemset with the key. For example, when connecting the 2-itemset with the 

prefix-key of A in Table 3, we can generate the 3- itemset by combine the value and get the result 

as {{B, C},{B, D},{C, D}}. 

 (3) Prefixed-itemset-based pruning step 

In chapter 1.1 we know that (k+1)- itemsets are generate from two k- itemsets, and if any k-

itemset subset of the (k+1)-itemset does not exist in Lk, then we have to remove the (k+1)- 

itemset from Ck+1. 

Theorem: If we generate a (k+1)-itemset by connecting two k-itemsets, l1 and l2, and one k- 

itemset of all the k-itemset subset does not exist in Lk, then the k-itemset subset must contains 

both l1[k] and l2[k]. 
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Prove: Assume l1 and l2 are both k-itemset, and the (k+1)-itemset generated by connecting l1 and 

l2 is {l��1�, l��2�, l��3�, …… , l��k�, l��k�}. If the k- itemset dose not contains both l1[k] and l2[k], 

then the possible options are {l��1�, l��2�, l��3�,…… , l��k�}and {l��1�, l��2�, l��3�,…… , l��k�}, that 

is l1 and l2, and both l1 and l2 come from Lk, so if the k-itemset does not belong to Lk, then it must 

contains both l��k� and l��k�. 

So in prefixed-itemset-based pruning step, we can simply consider the subset of (k+1)- itemset 

which contains both the last two items. With the example from Table 3, we can get the result as 

follow. 
Table 4 pruning step 

Subset of 3-itemset If  belong to L2 

B,C yes 

B,E yes 

C,E no 

C,D no 

C,E no 

D,E no 

 

As shown in Table 4, only {{B,C},{B,E}} are possible 2-itemset subsets, plus the corresponding 

prefix-key, that is {{A,B,C},{A,B,E}}, namely the candidate set C�. 

 

After the pruning step, we have to scan the database to accumulate the times the itemset appears. 

After accumulating the times of itemsets after pruning step, we can find that both {A,B,C} and 

{A,B,E} meet the minimum support, and then we add them to the prefix-itemset-based storage as 

follows. 
Table 5 3-itemset storage 

 prefix-key Value 

3-itemset A,B {C,E} 

 

3.2. Algorithm 

The algorithm is described as follow: 

 Input：Database D，minimum support min_sup 

 Output：frequent itemsetsL 

 1)  L�=1-itemset of D 

 2) Map<String[],String[]> map; 

 3) Import L1 to map, set the key as null，value as the union of items in L1 

 4) for(k=2;L��� ≠ ϕ;k++){ 

 5)  C�=pre_apriori_gen(map,k-2); 

 6)  count the appear times of every itemset of C�, L�={cϵC�|c.count>min_sup} 

 7) } 

 8) Return L�; 

 procedurepre_apriori_gen(map:Map<String[],String[]>;k:int) 

 1) for each key in map{ 
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 2)  if(key.length()==k){

 3)   c:=key plus two items from value

 4)   if(map.containsKey(c[0:k])){

 5)    

 6)    

 7)    

 8)  } 

 9）  else continue； 

 10) } 

 11) Return C� 

 

4. EXPERIMENT AND RESULTS

The data of the experimental is a total of 120000 patient

in Ruijin Hospital, the data record

experimental machine is configured to Core i5

memory. 

 

This experiment compares the classical Apriori

algorithm from two aspects, one is to compare the operation efficiency with fixed total tests and 

variable minimum support, the other is to compare the operation efficiency with fixed minimum 

support and variable total tests. 

 

The result of the first experiment

 

Figure 1. Time 

The picture above shows the time consuming 

and variable min_sup. We can infer that the less min_sup is, the more operation efficiency the 

improved algorithm improves. And when the min_sup increases to a certain point, the classical 

Apriori algorithm and the improved algorithm are of the same efficiency.
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if(key.length()==k){ 

c:=key plus two items from value 

if(map.containsKey(c[0:k])){ 

If( any (k+1)- itemset subset belong to (key,value)){

 put c into Ck 

} 

 

ESULTS 

The data of the experimental is a total of 120000 patients with diabetes clinical prescription data 

the data records the prescription drug number per user per visit. This 

experimental machine is configured to Core i5 2.7GHz 8GB processor, 1866MHz LPDDR3 Intel 

compares the classical Apriori algorithm and the prefixed-itemset

from two aspects, one is to compare the operation efficiency with fixed total tests and 

, the other is to compare the operation efficiency with fixed minimum 

experiment is as follows. 

 
Figure 1. Time consuming with variable min_sup 

The picture above shows the time consuming of the two algorithms when given fixed total test 

and variable min_sup. We can infer that the less min_sup is, the more operation efficiency the 

improved algorithm improves. And when the min_sup increases to a certain point, the classical 

and the improved algorithm are of the same efficiency. 

itemset subset belong to (key,value)){ 

with diabetes clinical prescription data 

per visit. This 

2.7GHz 8GB processor, 1866MHz LPDDR3 Intel 

itemset-based 

from two aspects, one is to compare the operation efficiency with fixed total tests and 

, the other is to compare the operation efficiency with fixed minimum 

of the two algorithms when given fixed total test 

and variable min_sup. We can infer that the less min_sup is, the more operation efficiency the 

improved algorithm improves. And when the min_sup increases to a certain point, the classical 
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Table 6 improvements under variable min_sup

Min_sup 

(total 12w) 

Classical Apriori

Time(ms)

600 210696

1200 53822

1800 26317

2400 19359

3000 15508

3600 12393

4200 9017

4800 5705

5400 4868

 

Table 6 shows the specific operation time of the 

Apriori algorithm and the comparison

 

The results of the second experiment are as follows.

 

Figure 2. Time 

The picture above shows the time consuming of the two algorithm

and variable total test. And we can tell that when the total test becomes larger, the 

become more obvious. 

Computer Science & Information Technology (CS & IT)                                 

Table 6 improvements under variable min_sup 

Classical Apriori 

Time(ms) 

Improved Apriori 

Time(ms) 

Improvement (%) 

210696 25192 81.44% 

53822 11648 68.63% 

26317 7614 51.88% 

19359 7127 38.99% 

15508 6753 56.45% 

12393 5842 52.86% 

9017 5424 39.85% 

5705 5175 9.29% 

4868 5161 -6.02% 

Table 6 shows the specific operation time of the classical Apriori algorithm and the 

comparison between them. 

The results of the second experiment are as follows. 

 
 

Figure 2. Time consuming with variable total test 

above shows the time consuming of the two algorithms when given fixed min_sup 

and variable total test. And we can tell that when the total test becomes larger, the improvements 
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and the improved 

 

when given fixed min_sup 

improvements 
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Table 7 improvements under variable total test 

Total tests 

(min_sup% 

=2%) 

Classical 

Apriori 

Time(ms) 

Improved 

Apriori 

Time(ms) 

Improvement 

(%) 

10k 1686 390 76.87% 

20k 2839 695 75.52% 

30k 4088 1229 69.94% 

40k 5729 1846 67.78% 

50k 8141 2409 70.41% 

60k 9833 3197 67.49% 

70k 12848 3630 71.75% 

80k 13004 4339 66.63% 

90k 16007 5442 66.00% 

100k 17438 5588 67.96% 

 

Table 7 shows the specific operation time of the two algorithm and we can learn from the table 

that when the min_sup is fixed to 2% of the total test, the improvement rate is about 70%. 

 

Experiments have shown that the prefix-itemset-based Apriori algorithm is effective and feasible. 

 

4. SUMMARY 

In this paper, we described the Apriori algorithm specifically, and pointed out some limitations of 

the classical Apriori algorithm during the two steps of the algorithm, namely the connection and 

the paper cutting steps, and proposed the method of prefixed-itemset-based data storage and the 

improvements based on it. With the help of prefixed-itemset-based data storage, we managed to 

finish the connecting step and the pruning step of the Apriori algorithm much faster, besides we 

can store the candidate itemsets with smaller storage space. Finally, we compare the efficiency of 

classical Apriori algorithm and improve Apriori algorithm on the aspect of support degree and 

the total number, and the experimental results on both aspects proved the feasibility of the 

prefixed-itemset-based algorithm. 
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