

Jan Zizka et al. (Eds) : CCSIT, SIPP, AISC, CMCA, SEAS, CSITEC, DaKM, PDCTA, NeCoM - 2016

pp. 287–296, 2016. © CS & IT-CSCP 2016 DOI : 10.5121/csit.2016.60124

A PREFIXED-ITEMSET-BASED

IMPROVEMENT FOR APRIORI

ALGORITHM

Yu Shoujian
1
, Zhou Yiyang

2

College of computer science and technology,

Donghua University, Shanghai, 201600, China
1jackyysj@dhu.edu.cn

2yiyang0203@foxmail.com

ABSTRACT

Association rules is a very important part of data mining. It is used to find the interesting

patterns from transaction databases. Apriori algorithm is one of the most classical algorithms

of association rules, but it has the bottleneck in efficiency. In this article, we proposed a

prefixed-itemset-based data structure for candidate itemset generation, with the help of the

structure we managed to improve the efficiency of the classical Apriori algorithm.

KEYWORDS

Data mining, association rules, Apriori algorithm, prefixed-itemset, hash map

1. INTRODUCTION

With the rapid development of computer technology in various sectors, the data generated by

different industries are becoming more and more, but how to get valuable information from the

big data has become a new problem. Data mining, that is data knowledge discovery, came into

being in this backdrop. Data mining is to excavate the implied, unknown, interesting knowledge

and rules from a large number of data
[1]

. Association rules is an important part of data mining, it

was first put forward by R.Agrawal, mainly to solve the customer transaction association rules

between sets of items in the transaction library
[2]

. In the following year, R.Agrawal proposed the

most classical algorithm to calculate association rules, that is Apriori algorithm
[3]

, which is to

infer the (k+1) – itemsets by the k- itemsets.

However, due to the computing bottleneck of Apriori algorithm when calculating the candidate

set, in recent years there have been many improved algorithms of the traditional Apriori

algorithm from different aspects. Chun-Sheng Z proposed an improved Apriori algorithm based

on classification
[4]

. Jia Y improves the algorithm from the aspect of transaction database

partitioning and dynamic itemset planning
[5]

. Shuangyue L

proposed an improved algorithm

based on the matrix of database to enhance the efficiency of calculating
[6]

. Wang P proposed an

optimization method to reduce the search times of the transaction library to improve the

efficiency
[7]

. Vaithiyanathan V uses the method of compressing the transactions of the similar

interests in the database to improve the efficiency of the algorithm
[8]

. Lin X implements Apriori

288 Computer Science & Information Technology (CS & IT)

algorithm based on Map Reduce to improve the candidate sets of large amounts of data

generation efficiency
[9]

. Zhang first analyze the characteristic of the data, that is medical data,

and then combine the characteristics of the data to improved Apriori algorithm
[10]

. Wu Huan

proposed an improved algorithm IAA, which adopts a new count-based method to prune

candidate itemsets and uses generation record to reduce total data scan amount
[11]

. Wang Yuan

proposes an improved item constrain association rules mining algorithm, which improves

traditional algorithm in two aspects: trimming frequent itemsets and calculating candidate

itemsets
[12]

. Lin Ming-Yen proposes three algorithms, named SPC, FPC, and DPC, to investigate

effective implementations of the Apriori algorithm in the MapReduce framework
[13]

. Chai Sheng

proposes a novel algorithm so called Reduced Apriori Algorithm with Tag (RAAT), which

reduces one redundant pruning operations of C2
[14]

.

This article will be focus on the two concrete steps of classical Apriori algorithm, namely

connecting step and the pruning step, using a new prefix-itemset-based storage, combining the

fast lookup feature of hash tables to improve the efficiency. This paper will first describe the

classical Apriori algorithm and its shortcomings, then specifically describe the improvements,

and finally introduce the comparisons of efficiency of classical Apriori algorithm and improve

Apriori algorithm on specific data sets.

2. APRIORI ALGORITHM

2.1. Apriori algorithm introduction

Apriori algorithm is a classical algorithm for frequent itemset mining association rules, the basic

idea of the algorithm is to use an iterative approach layer by layer to find the frequent. The

algorithm will first obtain k-itemsets, and then use the k- itemsets to explore (k+1)-itemsets. First,

let’s introduce the priori knowledge of frequent itemsets, which is, any subset of a frequent

itemset is also a frequent itemset. Apriori algorithm uses the prior knowledge of frequent

itemsets, first to find the collection of frequent 1-itemsets, denoted L1. Then use the 2-itemsets of

L1 to get L2, and then L3, and so on, until you cannot find the frequent k-itemsets. Apriori

algorithm mainly consists of the following three steps:

(1) Connecting step: connecting k- frequent itemsets to generate (k+1)-candidate sets, denoted by

Ck+1. The connect condition of the connecting step is that the two k-itemsets have the same

first (k-1) items and different k-th items. Denote li[j] is j-th item of li, the condition is:

l��1� = l��1� ∧ l��2� = l��2� ∧ ……∧ l��k − 1� = l��k − 1� ∧ l��k� ≠ l��k�

In which l1 and l2 are k-item subset of the set collection Lk, l1[k] ≠ l2[k] is to ensure not to

generate duplicate k- itemsets. Itemsets generated by the l1 and l2 connection as follows:

{l��1�, l��2�, l��3�, …… , l��k�, l��k�}

 (2) Pruning step: To pick out the true frequent itemsets Lk+1 from the candidate set Ck+1. Because

the candidate set Ck+1 is the superset of the true frequent itemsets Lk+1. According to the

nature of Apriori: any subsets of frequent set must also be frequent, that is any (k-1)- items

subsets of k-items must also be frequent. With this property we can find out if the k- items

subsets of Ck+1 are in Lk, if not, then remove the candidate (k + 1) - itemset is removed from

the Ck+1.

(3) Counting step: scanning the database, accumulate the number of candidates appearing in the

database. If the appear times of a candidate is less than the given minimum support threshold,

the candidate itemset will be removed.

Computer Science & Information Technology (CS & IT) 289

2.2. Shortage of Apriori algorithm

Apriori is one of the most classical algorithms for mining association rules, but it also has the

shortage of low efficiency. The time Apriori algorithm consumes lies mainly in the following

three aspects:

(1) In connection step, when connects k-itemsets to generate (k+1)-itemsets, it compares too

many times to determine if the itemsets meets the connection conditions. When Lk has m k-

itemsets, the time complexity of the connection step is Ο(k*m^2).

(2) In the pruning step, when determine if a subset of candidate set Ck+1 is in the frequent set Lk,

the best situation is to simply scan once to get the result, while the worst-case is that is needs

to scan k times to find that the k-th subset of Ck+1 is not in the Lk. So the average times need

to scan and compare the Lk is |Ck+1| * |Lk| * k / 2.

(3) In counting step, when accumulate the support times of itemsets in Ck+1, we need to scan the

database for |Ck+1|times.

Taking into account these three aspects of time-consuming steps of classical Apriori algorithm,

this article presents an improved Apriori algorithm based on prefix-itemset.

3. IMPROVED APRIORI ALGORITHM

3.1. Improved Apriori algorithm

In 1.2 we have analyzed the shortcomings of classical Apriori algorithm, so its improvements

also focus on the three steps mentioned in 1.2. Since the records are already sorted by the

dictionary, therefore the candidate set generated by Apriori algorithm is ordered.

(1）Prefixed-itemset-based storage

In the improved algorithm we proposed a new method to store the itemsets. For each itemset in

Lk, we use a structure similar to Map <key, value> to store them, in which we save the forward

(k-1)- item content as the key while the last item content as the value. After having all the

itemsets saved in the new format, we group all the itemsets with the same key and store the union

of their values as the new value.

For example: the database is shown in Table 1and the minimum support is 2.

Table 1 database

TID Itemset

T1 A,B,E

T2 B,D

T3 B,C

T4 A,B,D

T5 A,C

T6 B,C

T7 A,C

T8 A,B,C

T9 A,B,C,E

290 Computer Science & Information Technology (CS & IT)

The traditional Apriori algorithm will scan the database to obtain the times each item appears in

the database, to form the 1- itemsets, and then to generate the 2-itemsets that meets the minimum

support, that is 2. Here is the content generated by the classical Apriori algorithm.

Table 2 classical Apriori algorithm

1-itemset 2- itemset

Item Count Item Count

A 6 AB 4

B 7 AC 4

C 6 AE 2

D 2 BC 4

E 2 BD 2

 BE 2

While Table 3 shows how we store the itemsets with the prefix-itemset-based storage.

Table 3 prefix-itemset-based storage

 Prefixed-key Value

1-itemset NULL {A, B, C, D, E}

2-itemset A {B, C, E}

B {C, D, E}

As shown in Table 3, 1- itemset has only one item, so the key of 1- itemset is NULL. Besides, we

can infer the length of the itemset from the length of the key because the length of the value of

the key stores all the items in the itemset but the last item.

 (2) Prefixed-itemset-based connecting step

After the establishing of prefix-itemset-based storage, when we have to generate (k+1)- itemset

by connecting the two k- itemsets, we can simply combine two different items in the value, and

then generate new itemset with the key. For example, when connecting the 2-itemset with the

prefix-key of A in Table 3, we can generate the 3- itemset by combine the value and get the result

as {{B, C},{B, D},{C, D}}.

 (3) Prefixed-itemset-based pruning step

In chapter 1.1 we know that (k+1)- itemsets are generate from two k- itemsets, and if any k-

itemset subset of the (k+1)-itemset does not exist in Lk, then we have to remove the (k+1)-

itemset from Ck+1.

Theorem: If we generate a (k+1)-itemset by connecting two k-itemsets, l1 and l2, and one k-

itemset of all the k-itemset subset does not exist in Lk, then the k-itemset subset must contains

both l1[k] and l2[k].

Computer Science & Information Technology (CS & IT) 291

Prove: Assume l1 and l2 are both k-itemset, and the (k+1)-itemset generated by connecting l1 and

l2 is {l��1�, l��2�, l��3�, …… , l��k�, l��k�}. If the k- itemset dose not contains both l1[k] and l2[k],

then the possible options are {l��1�, l��2�, l��3�,…… , l��k�}and {l��1�, l��2�, l��3�,…… , l��k�}, that

is l1 and l2, and both l1 and l2 come from Lk, so if the k-itemset does not belong to Lk, then it must

contains both l��k� and l��k�.

So in prefixed-itemset-based pruning step, we can simply consider the subset of (k+1)- itemset

which contains both the last two items. With the example from Table 3, we can get the result as

follow.
Table 4 pruning step

Subset of 3-itemset If belong to L2

B,C yes

B,E yes

C,E no

C,D no

C,E no

D,E no

As shown in Table 4, only {{B,C},{B,E}} are possible 2-itemset subsets, plus the corresponding

prefix-key, that is {{A,B,C},{A,B,E}}, namely the candidate set C�.

After the pruning step, we have to scan the database to accumulate the times the itemset appears.

After accumulating the times of itemsets after pruning step, we can find that both {A,B,C} and

{A,B,E} meet the minimum support, and then we add them to the prefix-itemset-based storage as

follows.
Table 5 3-itemset storage

 prefix-key Value

3-itemset A,B {C,E}

3.2. Algorithm

The algorithm is described as follow:

 Input：Database D，minimum support min_sup

 Output：frequent itemsetsL

 1) L�=1-itemset of D

 2) Map<String[],String[]> map;

 3) Import L1 to map, set the key as null，value as the union of items in L1

 4) for(k=2;L��� ≠ ϕ;k++){

 5) C�=pre_apriori_gen(map,k-2);

 6) count the appear times of every itemset of C�, L�={cϵC�|c.count>min_sup}

 7) }

 8) Return L�;

 procedurepre_apriori_gen(map:Map<String[],String[]>;k:int)

 1) for each key in map{

292 Computer Science & Information Technology (CS & IT)

 2) if(key.length()==k){

 3) c:=key plus two items from value

 4) if(map.containsKey(c[0:k])){

 5)

 6)

 7)

 8) }

 9） else continue；

 10) }

 11) Return C�

4. EXPERIMENT AND RESULTS

The data of the experimental is a total of 120000 patient

in Ruijin Hospital, the data record

experimental machine is configured to Core i5

memory.

This experiment compares the classical Apriori

algorithm from two aspects, one is to compare the operation efficiency with fixed total tests and

variable minimum support, the other is to compare the operation efficiency with fixed minimum

support and variable total tests.

The result of the first experiment

Figure 1. Time

The picture above shows the time consuming

and variable min_sup. We can infer that the less min_sup is, the more operation efficiency the

improved algorithm improves. And when the min_sup increases to a certain point, the classical

Apriori algorithm and the improved algorithm are of the same efficiency.

Computer Science & Information Technology (CS & IT)

if(key.length()==k){

c:=key plus two items from value

if(map.containsKey(c[0:k])){

If(any (k+1)- itemset subset belong to (key,value)){

 put c into Ck

}

ESULTS

The data of the experimental is a total of 120000 patients with diabetes clinical prescription data

the data records the prescription drug number per user per visit. This

experimental machine is configured to Core i5 2.7GHz 8GB processor, 1866MHz LPDDR3 Intel

compares the classical Apriori algorithm and the prefixed-itemset

from two aspects, one is to compare the operation efficiency with fixed total tests and

, the other is to compare the operation efficiency with fixed minimum

experiment is as follows.

Figure 1. Time consuming with variable min_sup

The picture above shows the time consuming of the two algorithms when given fixed total test

and variable min_sup. We can infer that the less min_sup is, the more operation efficiency the

improved algorithm improves. And when the min_sup increases to a certain point, the classical

and the improved algorithm are of the same efficiency.

itemset subset belong to (key,value)){

with diabetes clinical prescription data

per visit. This

2.7GHz 8GB processor, 1866MHz LPDDR3 Intel

itemset-based

from two aspects, one is to compare the operation efficiency with fixed total tests and

, the other is to compare the operation efficiency with fixed minimum

of the two algorithms when given fixed total test

and variable min_sup. We can infer that the less min_sup is, the more operation efficiency the

improved algorithm improves. And when the min_sup increases to a certain point, the classical

Computer Science & Information Technology (CS & IT)

Table 6 improvements under variable min_sup

Min_sup

(total 12w)

Classical Apriori

Time(ms)

600 210696

1200 53822

1800 26317

2400 19359

3000 15508

3600 12393

4200 9017

4800 5705

5400 4868

Table 6 shows the specific operation time of the

Apriori algorithm and the comparison

The results of the second experiment are as follows.

Figure 2. Time

The picture above shows the time consuming of the two algorithm

and variable total test. And we can tell that when the total test becomes larger, the

become more obvious.

Computer Science & Information Technology (CS & IT)

Table 6 improvements under variable min_sup

Classical Apriori

Time(ms)

Improved Apriori

Time(ms)

Improvement (%)

210696 25192 81.44%

53822 11648 68.63%

26317 7614 51.88%

19359 7127 38.99%

15508 6753 56.45%

12393 5842 52.86%

9017 5424 39.85%

5705 5175 9.29%

4868 5161 -6.02%

Table 6 shows the specific operation time of the classical Apriori algorithm and the

comparison between them.

The results of the second experiment are as follows.

Figure 2. Time consuming with variable total test

above shows the time consuming of the two algorithms when given fixed min_sup

and variable total test. And we can tell that when the total test becomes larger, the improvements

 293

and the improved

when given fixed min_sup

improvements

294 Computer Science & Information Technology (CS & IT)

Table 7 improvements under variable total test

Total tests

(min_sup%

=2%)

Classical

Apriori

Time(ms)

Improved

Apriori

Time(ms)

Improvement

(%)

10k 1686 390 76.87%

20k 2839 695 75.52%

30k 4088 1229 69.94%

40k 5729 1846 67.78%

50k 8141 2409 70.41%

60k 9833 3197 67.49%

70k 12848 3630 71.75%

80k 13004 4339 66.63%

90k 16007 5442 66.00%

100k 17438 5588 67.96%

Table 7 shows the specific operation time of the two algorithm and we can learn from the table

that when the min_sup is fixed to 2% of the total test, the improvement rate is about 70%.

Experiments have shown that the prefix-itemset-based Apriori algorithm is effective and feasible.

4. SUMMARY

In this paper, we described the Apriori algorithm specifically, and pointed out some limitations of

the classical Apriori algorithm during the two steps of the algorithm, namely the connection and

the paper cutting steps, and proposed the method of prefixed-itemset-based data storage and the

improvements based on it. With the help of prefixed-itemset-based data storage, we managed to

finish the connecting step and the pruning step of the Apriori algorithm much faster, besides we

can store the candidate itemsets with smaller storage space. Finally, we compare the efficiency of

classical Apriori algorithm and improve Apriori algorithm on the aspect of support degree and

the total number, and the experimental results on both aspects proved the feasibility of the

prefixed-itemset-based algorithm.

Computer Science & Information Technology (CS & IT) 295

REFERENCES

[1] Han J, Kamber M, Pei J, et al. Data mining.Concepts and techniques. 3rd ed[J]. San Francisco, 2001,

29(S1):S103–S109.

[2] RakeshAgrawal T. Imielinski,andArun Swami. Miningassociationrules between setsof items inlarge

databases[J]. Inproceedings Ofthe AcmSigmod Conference, 1993:207--216.

[3] Agrawal, Rakesh, and RamakrishnanSrikant. "Fast algorithms for mining association rules." Proc.

20th int. conf. very large data bases, VLDB. Vol. 1215. 1994.

[4] Chun-Sheng Z, Yan L. Extension of local association rules mining algorithm based on apriori

algorithm[C]//Software Engineering and Service Science (ICSESS), 2014 5th IEEE International

Conference on. IEEE, 2014: 340-343.

[5] Jia Y, Xia G, Fan H, et al. An Improved Apriori Algorithm Based on Association Analysis[C]//2012

Third International Conference on Networking and Distributed Computing. 2012.

[6] Shuangyue L, Li P. Analysis of Coal Mine Hidden Danger Correlation Based on Improved A Priori

Algorithm[C]//Intelligent Systems Design and Engineering Applications, 2013 Fourth International

Conference on. IEEE, 2013: 112-116.

[7] Wang P, An C, Wang L. An improved algorithm for Mining Association Rule in relational

database[C]//Machine Learning and Cybernetics (ICMLC), 2014 International Conference on. IEEE,

2014, 1: 247-252.

[8] Vaithiyanathan V, Rajeswari K, Phalnikar R, et al. Improved apriori algorithm based on selection

criterion[C]//Computational Intelligence & Computing Research (ICCIC), 2012 IEEE International

Conference on. IEEE, 2012: 1-4.

[9] Lin X. MR-Apriori: Association Rules algorithm based on MapReduce[C]//Software Engineering and

Service Science (ICSESS), 2014 5th IEEE International Conference on. IEEE, 2014: 141-144.

[10] Zhang, Wenjing, Donglai Ma, and Wei Yao. "Medical Diagnosis Data Mining Based on Improved

Apriori Algorithm." Journal of Networks 9.5 (2014): 1339-1345.

[11] Wu, Huan, et al. "An improved apriori-based algorithm for association rules mining." Fuzzy Systems

and Knowledge Discovery, 2009. FSKD'09. Sixth International Conference on. Vol. 2. IEEE, 2009.

[12] Wang, Yuan, and Lan Zheng. "Endocrine Hormones Association Rules Mining Based on Improved

Apriori Algorithm." Journal of Convergence Information Technology 7.7 (2012).

[13] Lin, Ming-Yen, Pei-Yu Lee, and Sue-Chen Hsueh. "Apriori-based frequent itemset mining algorithms

on MapReduce." Proceedings of the 6th international conference on ubiquitous information

management and communication. ACM, 2012.

[14] Chai, Sheng, Jia Yang, and Yang Cheng. "The research of improved Apriori algorithm for mining

association rules." Service Systems and Service Management, 2007 International Conference on.

IEEE, 2007.

[15] Han J, Pei J, Yin Y. Mining Frequent Patterns without Candidate Generation[J]. Proceeding of

AcmSigmod International Conference Management of Data, 1999, 29(2):1-12.

296 Computer Science & Information Technology (CS & IT)

AUTHORS

Yu Shoujian, the vice professor, main research direction: Web services, enterprise application integration,

database and data warehouse;

Zhou Yiyang, master, the main research direction: data mining, machine learning

