

Jan Zizka et al. (Eds) : CCSIT, SIPP, AISC, CMCA, SEAS, CSITEC, DaKM, PDCTA, NeCoM - 2016

pp. 183–199, 2016. © CS & IT-CSCP 2016 DOI : 10.5121/csit.2016.60117

RESILIENT INTERFACE DESIGN FOR

SAFETY-CRITICAL EMBEDDED

AUTOMOTIVE SOFTWARE

Harald Sporer, Georg Macher, Christian Kreiner and Eugen Brenner

Institute of Technical Informatics,

Graz University of Technology, Graz, Austria
{sporer,georg.macher,christian.kreiner,brenner}@tugraz.at

http://www.iti.tugraz.at/

ABSTRACT

The replacement of the former, purely mechanical, functionality with mechatronics-based

solutions, the introduction of new propulsion technologies, and the connection of cars to their

environment are just a few reasons for the continuously increasing electrical and/or electronic

system (E/E system) complexity in modern passenger cars. Smart methodologies and techniques

have been introduced in system development to cope with these new challenges. A topic that is

often neglected is the definition of the interface between the hardware and software subsystems.

However, during the development of safety-critical E/E systems, according to the automotive

functional safety standard ISO 26262, an unambiguous definition of the hardware-software

interface (HSI) has become vital. This paper presents a domain-specific modelling approach for

mechatronic systems with an integrated hardware-software interface definition feature. The

newly developed model-based domain-specific language is tailored to the needs of mechatronic

system engineers and supports the system’s architectural design including the interface

definition, with a special focus on safety-criticality.

KEYWORDS

Embedded Automotive Systems, Hardware-Software Interface, Model-Based Design, Domain-

Specific Modelling, Functional Safety

1. INTRODUCTION

Electrical and/or electronic systems (E/E systems) in the automotive domain have grown

increasingly complex over the past decades. New functionality, mainly realized through

embedded E/E systems, as well as the growing connectivity (Car2X-Communication), will keep

this trend alive in the upcoming years. Well-defined development processes are crucial for

managing this complexity and achieving high quality products. Wide-spread standards and

regulations, such as Automotive SPICE® and ISO 26262, provide guidance through the

development life cycle. Some of the key aspects of these concepts are full traceability and

consistency between the different development artifacts.

In the automotive industry, the E/E system architectural design models are usually created with

techniques based on the Unified Modeling Language (UML). Either the meta-model is extended,

184 Computer Science & Information Technology (CS & IT)

or a profile is created to make it possible to use the UML-based approach in embedded

automotive system design. A wide-spread example of an UML2 profile is the Systems Modeling

Language (SysML), which reuses many of the original UML diagram types (State Machine

Diagram, Use Case Diagram, etc.), uses modified diagram types (Activity Diagram, Block

Definition Diagram, etc.), and adds new ones (Requirement Diagram, Parametric Diagram) [1].

Even if the UML-based methodologies are valuable for projects with an emphasis on software,

they are sometimes too powerful for embedded automotive system design, due to the numerous

representation options. Particularly for domain experts who have no or limited knowledge of

software development, the large number of elements available for modelling, turns system

architectural design into an awkward task. However, it is not the intention of this work to decry

the SysML approaches created so far. They are a good choice for a multitude of tasks. Instead,

this paper showcases an extension of these SysML approaches, which makes the architectural

design process easier, placing a special focus on the specification of the hardware-software

interface for UML non-natives.

A model-based domain-specific language and domain-specific modelling (DSM) has been

developed for the specific needs of embedded automotive mechatronics systems. Additionally, a

software tool has been created to support the new modelling techniques. By linking development

artifacts such as requirements (e.g. technical system requirements, software requirements, etc.),

and verification criteria to the design model, the traceability mentioned earlier is assured.

The main goal of this work is to contribute to the improvement of the existing system

architectural design methods by facilitating the specification of the hardware-software interface.

The approach presented has mainly been created for the development of embedded mechatronics-

based E/E systems in the automotive field. However, the techniques are also suitable for other

domains. Improvements have been made by extending the system modelling approach presented

in previous publication using HSI specification capabilities.

Section 2 presents an overview of related approaches, domain-specific modelling and integrated

tool chains. Section 3 provides a description of the proposed hardware-software interface

specification approach for the model-based system engineering. An application of the

methodology described is presented in Section 4. Finally, this work is concluded in Section 5,

which gives an overview of the presented work.

2. RELATED WORK

In recent years, a lot of effort has been made to improve the model-based automotive E/E system

design methods and techniques. Today, the advantages of a model-based approach are clear and

without controversy. Meseguer [2] grants much more reliability, reusability, automatisation, and

cost effectiveness to software that is developed with modelling languages. However, model

transformation within or across different languages is crucial to achieve all these benefits.

Traceability and consistency between the development artifacts have always been important

topics. However, these properties have become even more important due to the increasing

number of electronic and electric-based functionalities. According to the international standard

ISO 26262 [3], released in 2011, traceability between the relevant artifacts is mandatory for

safety-critical systems. A description of the common deliverables relevant to automotive E/E

Computer Science & Information Technology (CS & IT) 185

system development, and a corresponding process reference model is presented by the de facto

standard Automotive SPICE [4]. Neither the functional safety standard nor the process reference

model enforces a specific methodology for how the development artifacts have to be created or

linked to each other. However, connecting the various work products manually is a tedious and

error-prone task.

One of the early work products found in the engineering process is the system architectural

design. In the field of automotive E/E system development, a wide-spread and common approach

is to utilize a UML-based technique for this design, such as the UML2 profile SysML.

Andrianarison and Piques [5], Boldt [6], and many other publications (e.g. [7], [8], [9]) present

their SysML methodologies for system design. As stated by Broy et al. [10], the drawbacks of the

UML-based design are still the low degree of formalization, and the lack of technical agreement

regarding the proprietary model formats and interfaces. The numerous possibilities of how to

customize the UML diagrams and how to get a language for embedded system design, are behind

these drawbacks. Even if there is an agreement to utilize a common UML profile such as SysML,

there are plenty of design artifact variations. This scenario does not provide an optimal base for

the engineer who has to design the embedded automotive system from a mechatronics point of

view. Ideally, the tool should be intuitive and it should be possible to use it easily without

specific knowledge of UML.

Mernik et al. [11] describe a domain-specific language as a language that is tailored to the

specific application domain. This tailoring should lead to a substantial increase in expressiveness

and ease of use, compared to general-purpose languages. Even if expressiveness is increased by

the utilization of SysML-based modelling techniques, the ease of use for embedded automotive

mechatronics system design has not been improved.

Preschern et al. [12] claim that DSLs help to decrease system development costs by providing

developers with an effective way to construct systems for a specific domain. The benefit in terms

of a more effective development has to be greater than the investment needed to create or

establish a DSL at a company or in a department. In addition, the authors argue that the

mentioned DSL development cost will decrease significantly over the next few years, due to new

tools that support language creation such as the Eclipse-based Sirius
1
.

Vujovic et al. [13] present a model-driven engineering approach to creating domain-specific

modelling (DSM). Sirius is the framework used to develop a new DSM and the DSM graphical

modelling workbench. The big advantage of this tool is that the workbench for the DSM is

developed graphically. Therefore, knowledge about software development with Java, the

graphical editor framework (GEF) or the graphical modelling framework (GMF) is not needed.

Although it is obvious that an unambiguous specification of the various signals between the items

of an embedded automotive system design is vital, publications on embedded automotive

hardware-software interface definition are rare. This contribution aims to extend a model-based

development approach for an ISO 26262 aligned hardware-software interface definition presented

by the authors of [14]. More background on the origin of HSI characteristics is presented and the

model-based support is shifted from a classic SysML-based methodology to a domain-specific

modelling methodology for the E/E system architectural design of mechatronics-based systems.

 The domain-specific modelling (DSM) language definition is presented in [15].

1
 https://eclipse.org/sirius/

186 Computer Science & Information Technology (CS & IT)

3. APPROACH

The main goal of this contribution is to convey the importance of the hardware-software interface

for today's Embedded Automotive Systems and how it is supported by the approach described.

Moreover, the key driving factors for establishing a well-defined interface, which is also suitable

for safety-critical applications, will be shown within this section. Before describing the HSI

specification approach in detail, the utilized domain-specific model-based system architectural

design technique shall be introduced. This domain-specific modelling method has been

developed to outline mechatronics-based system architectures in the automotive sector and

therefore serves as a basis for the specification of the hardware-software interface found in our

approach.

3.1. Embedded Mechatronics System Domain-Specific Modelling

The key objective of domain-specific modelling is to provide a lean approach for engineers to

facilitate embedded automotive mechatronics system modelling on a high abstraction level. The

approach described focusses on the model-based structural description of the E/E system under

development. Additionally, the signals and interfaces are an essential part of modelling.

The existing SysML-based design method (see also [14]) is extended by the newly developed

Embedded Mechatronics System Domain-Specific Modeling (EMS-DMS) for automotive

embedded system architectural design. It is not intended to replace the SysML-based solution

created so far. Instead, the EMS-DSM is integrated into existing methods. Hence, the whole tool-

chain, starting from the SysML-based system architectural design tool and finishing at software /

hardware architectural design, can be utilized if desired. An overview of the tool integration is

shown in Figure 1.

Figure 1. Tool-Chain Integration of DSM and SysML Model Approach (based on [16])

Computer Science & Information Technology (CS & IT) 187

The definition of the newly developed model-based domain-specific language is shown in Figure

2. The EMS-DSM Component is the origin of all other classes regarding language definition. The

six attributes of this class are

• ID - unique identifier of the particular instance in the architectural design model, set

automatically.

• Name - name or short description of the particular instance, chosen by the design

engineer.

• Mask - graphical representation of the particular instance, set by the engineer responsible

for the design tool.

• Requirement - in this approach, a link to the Redmine requirements database is set by the

designer.

• Verification Criteria - similar to Requirement, a link to the Redmine verification criteria

artifact is set by the designer.

• Specification - link to further information about the actual component, e.g. a CAD

drawing or a data sheet.

The EMS-DSM Component serves as the base node of the EMS-DSM definition, and declares the

common attributes of the derived classes at the lower levels. Therefore, this component is not

instanced for the design process. At the next language definition level, the following component

classes are available:

• Mechanical Components - used by all mechanical, domain-specific components, e.g. the

Mechanical Pressure Regulator class in the use-case shown in Section 4.

• Compartment Components - gives the opportunity to specify areas or compartments,

where mechanical and hardware components are installed.

• E/E Item Components - an abstract component class definition, which serves as a basis

for the hardware and software components at the lower levels. Additionally, the property

ASIL, corresponding to the ISO 26262, is stated.

The majority of the non-abstract component classes are derived from the hardware component

class:

• Sensor Component - used for all domain-specific sensor components.

• Control Unit Component - used for all domain-specific control unit components.

• Actuator Component - used for all domain-specific actuator components.

• External Control Unit Component - special class, to make signals from an external

system available in the considered system.

188 Computer Science & Information Technology (CS & IT)

All hardware components and their instances in the system design model, with the exception of

the External Control Unit Component, are capable of containing a software design model. This

means that any kind of software component instance is only allowed to be implemented in a

software design model which belongs to an instance of a hardware component. This special

language characteristic is defined by the Aggregation relationship between hardware and

software components, which also implies the hardware-software interface.

The last part of the EMS-DSM definition description is related to the classes (derived from the

software component):

• Basis Software Component - used for all low-level, hardware-dependent software

components.

• Application Software Component - used for all functional software components.

Figure 2. EMS-DSM Language Definition

As mentioned in Section 2, a more detailed description of the domain-specific modelling

language can be found in [15].

3.2. Influence of Process Reference Model on HSI Specification

Due to their broad dissemination in the automotive sector, the two most important reference

models are Automotive SPICE [4] and CMMI [17]. Both pursue similar targets: they (a)

determine the process capability/maturity, and (b) aspire a continuous process improvement in

the particular development team and/or company. The reference models do not exist in order to

specify how processes have to be implemented. Instead, desired process outcomes (Automotive

SPICE) or goals (CMMI) are defined and described in more detail by best practice

characterisation (base or generic practices at Automotive SPICE, and specific or generic practices

at CMMI). The Automotive S(oftware) P(rocess) I(mprovement) and C(apability)

(D)e(termination) reference model is based on the international standard ISO 15504 and is

Computer Science & Information Technology (CS & IT) 189

primarily used in Europe, as well as in some parts of Eastern Asia. The latest version, which was

analysed for this approach, is 3.0 and was released in July 2015. The C(apability) M(aturity)

M(odel) I(ntegration) reference model has been developed by the Software Engineering Institute

(SEI) at Carnegie Mellon University. CMMIs currently exist for Acquisition, Development, and

Services. As CMMI is not widespread in the European automotive sector, the remaining part of

this section will focus on Automotive SPICE as the relevant process assessment and reference

model. The model does not address the demand for a hardware-software interface directly, but

some guidance on HSI specification can be extracted from general interface topics.

Table 1 lists the elements of the Automotive SPICE reference model that provide information

about interfaces between system components. As expected, interface work products are needed

for Architectural Design and the Integration topics. In addition to the Process ID and the Process

Name, the corresponding Base Practice IDs are indicated. These give more detailed information

on what the outcome should look like. In SYS.3.BP3, the definition (identify, develop, and

document) of system element interfaces is stipulated. This equally applies to the hardware-

software interface. In SYS.3.BP4, a description of the dynamic behaviour of and between the

system elements is provided. The possible operating modes of the system, which determine the

dynamic behaviour, have to be taken into account in the HSI definition. Base Practice SYS.4.BP3

postulates that the interfaces between system items have to be covered by the system integration

test to show consistency between the real interfaces and the architectural design. With regard to

the HSI, SWE.2.BP3 and SWE.2.BP4 can be interpreted in a similar way to their system level

counterparts (SYS.3.BP3, SYS.3.BP4). SWE.2.BP5 claims the determination and documentation

of the resource consumption objectives of all relevant software architectural design elements. To

support this using the hardware-software interface definition, information on resource

consumption shall be included in the description of the signals, wherever applicable. An interface

definition is also demanded at process SWE.3 - Software Detailed Design and Unit Construction.

However, in this case, the specification belongs to the signals communicated between the

components on the lowest (most detailed) software level. Hence, this communication

specification does not directly belong to the hardware-software interface, and will not be taken

into consideration in this approach. The last process/base practice in Table 1 is SWE.5.BP3. It

demands a description of the interaction between relevant software units and their dynamic

behaviour. Again, this base practice can be interpreted in a similar way to its system level

counterpart (SYS.4.BP3).

Table 1. HSI Accompanying Automotive SPICE Processes.

Process ID Process Name Base Practice ID

SYS.3 System Architectural Design BP3, BP4

SYS.4 System Integration and Integration Test BP3

SWE.2 Software Architectural Design BP3, BP4, BP5

SWE.5 Software Integration and Integration Test BP3

In the Automotive SPICE reference model, Output Work Products are also defined and linked to

the base practices previously stated. From this contribution’s point of view, the relevant work

products are:

• System Architectural Design - the main aspects to consider regarding the HSI are

memory/capacity requirements, hardware interface requirements, security/data

190 Computer Science & Information Technology (CS & IT)

protection characteristics, system parameter settings, system components operation

modes, and the influence of the system’s and system component’s dynamic behaviour.

• Interface Requirement Specification - the main aspects to consider regarding the HSI are

definition of critical timing dependencies or sequence ordering and physical interface

definitions.

3.3. Influence of Automotive Functional Safety on HSI Specification

The international standard ISO 26262 for Functional Safety in the automotive electrical and/or

electronic system domain was released in 2011. Since then, many best practice articles and books

have been published on how to develop according to the standard. However, with the exception

of the safety-critical view, the hardware-software interface has rarely been highlighted in these

publications.

According to ISO 26262, the HSI is to be specified during the phase Product Development at the

System Level (see Figure 3), which is described in Part 4 of the standard. As a prerequisite for

specifying the hardware-software interface, a system design has to be established. While

preparing the system architectural design, the technical safety and non-safety requirements are

allocated to the hardware and software. Subsequent to this allocation, an initial interface

description can be prepared. The HSI shall be continuously refined in the ensuing hardware and

software product development phases, which are described in Parts 5 & 6 of the ISO 26262.

Figure 3. Development Phases According to [3]

The majority of information concerning how to specify the interface aligned to functional safety

can be found in Clause 7.4.6 of Part 4 of the standard. In our approach, most of the HSI

characteristics demanded by this clause, such as operation modes of the hardware device and

shared/exclusive use of the hardware resource, are described in the Detailed Hardware

Specification (DHS) documents, which are linked to the main HSI document. A detailed

description of the various development artifacts and their relationships is presented in Subsection

3.4. Additionally, the informative Annex B of Part 4 of ISO 26262 provides information

concerning the possible content of the interface definition.

Computer Science & Information Technology (CS & IT) 191

3.4. Incorporated Hardware-Software Interface Specification

Two main objectives have to be achieved when developing a new HSI specification approach:

1. identification, development and documentation of the essential HSI specification

attributes & characteristics, and

2. support for the linking of related information to ensure full traceability.

The principle of the hardware-software interface specification approach described here is based

on three origins, two of which have been described in the previous subsections:

a. the process reference and assessment model Automotive SPICE,

b. the automotive functional safety standard ISO 26262, and

c. the industrial experience of authors in past automotive E/E system development projects.

It is important to note that the hardware-software interface specification does not only consist of a

single spreadsheet with a description of all signals between hardware and software. Further

information belonging to the HSI specification can also be found in various development

artifacts. Figure 4 shows the different aspects of our HSI specification approach:

• Hardware-Software Interface Signal List - spreadsheet with data of all signals between

hardware and software. The attributes describing each signal have been derived from

sources (a) - (c), which were mentioned at the beginning of this subsection.

• Resource Consumption Objectives - depending on the particular project, the objectives

are described in spreadsheet(s) and/or free text document(s). Regardless of the type, the

documents are linked to the software components in software architectural design (see

attribute Specification <<Link>> Software Component class in the EMS-DSM language

definition in Figure 2).

• Detailed Hardware Specification - depending on the particular project, the objectives are

described in spreadsheet(s) and/or free text document(s). Regardless of the type, the

documents are linked to the hardware components in system architectural design (see

attribute Specification <<Link>> Hardware Component class in the EMS-DSM

language definition in Figure 2).

• Model-based Architectural Design - this item represents the central source of

information. The defined domain-specific modelling language facilitates the creation of

the system and the software architectural design within the same design environment and

allows the linking of all other relevant development artifacts. From a HSI specification

perspective, the three previous items in this list are the most important development

artifacts to be linked to the architectural design models.

192 Computer Science & Information Technology (CS & IT)

Figure 4. Distributed Hardware-Software Interface Specification

Establishing full traceability between the Resource Consumption Objectives, the Detailed

Hardware Specification, and the Model-based Architectural Design is an easy task, accomplished

by linking the related documents in the architectural design.

The integration of the Hardware-Software Interface Signal List data into the design model is

more technically challenging. In [14] the authors described the functionality of the HSI Definition

Exporter and Importer, which was developed to achieve a seamless transformation of the HSI

representation between the SysML-based architectural design and the spreadsheet tool. The HSI

Definition Exporter is an extension (dynamic link library) for the model-based development

(MBD) tool, which is written in C# and allows the modelled HSI to be exported to a spreadsheet

document (either in csv or xls format). The HSI Definition Importer is the counterpart of the HSI

Definition Exporter, which is also implemented as a dynamic link library using the spreadsheet

tool’s API. It allows the import of all HSI information from the spreadsheet document or a

selective update of the HSI model artifacts. Using both the export and import functionality leads

to a round-trip engineering capability regarding the HSI signal list and the HSI signals modelled

in the architectural design. In this approach, the libraries of the exporter and importer extensions

are slightly adapted to the needs of the domain-specific modelling language.

To conclude the description of our approach, the HSI signal attributes and their origins are listed

in Table 2.

Computer Science & Information Technology (CS & IT) 193

Table 2. HSI Signal List Attributes.

Attribute Comments Origin

Signal Direction
Input or Output, out of the controllers

view
Author’s Experience

Signal Description
A short signal description or the signals

name
ISO 26262-4 (Annex B)

Sensor / Actuator Type or identifier of signals source/sink Author’s Experience

Supply Voltage - Author’s Experience

Physical Min Value - ASPICE SYS.4.BP3

Physical Max Value - ASPICE SYS.4.BP3

Accuracy In % of range of values ISO 26262-4 (Annex B)

Physical Unit E.g. V, A, ...
ISO 26262-4 (Annex B)

ASPICE SYS.4.BP3

HW Interface Type E.g. Digital In, Analog Out, CAN, ...
ISO 26262-4 (Annex B)

ASPICE WP 17-08

HW Pin # Pin number or identifier at e.g. ECU ISO 26262-4 (Annex B)

Message ID
In case of bus communication Author’s Experience

Start Bit

Internal Cycle Time E.g. 10 ms

ISO 26262-4 (Section 7.4.6)

ASPICE SYS.4.BP3, SWE.5.BP3, WP

17-08

External Cycle Time Only applicable for digital signals Author’s Experience

HW Timer / Interrupt /

Watchdog
Identifier of triggered e.g. interrupt ISO 26262-4 (Section 7.4.6)

Operating Modes

Information if signal is needed special

operating modes (e.g. start up,

calibration, ...)

ISO 26262-4 (Annex B)

ASPICE SYS.3.BP4, SWE.2.BP4, WP

04-06

HW Diagnostic Feature E.g. short circuit detection, ... ISO 26262-4 (Section 7.4.6)

Memory Type E.g. RAM, EEPROM, ... ISO 26262-4 (Annex B)

Security/Data Protection Information on special security issues ASPICE WP 04-06

Critical Timing

Dependencies or

Sequence Ordering

- ASPICE WP 17-08

Signal Name @ SW
Identifier of signal as used in

application software
Author’s Experience

Initial Value - Author’s Experience

Data Type E.g. UInt16, Float, ... ASPICE SYS.4.BP3, SWE.5.BP3

Scaling LSB Scaling information in case of fixed-

point arithmetic
ASPICE SYS.4.BP3, SWE.5.BP3

Scaling Offset

Min Value @ SW - ASPICE SWE.5.BP3

Max Value @ SW - ASPICE SWE.5.BP3

Accuracy @ SW In % of range of values ISO 26262-4 (Annex B)

Physical Unit @ SW E.g. km/h, Nm, ... ASPICE SWE.5.BP3

Default Value @ SW
Default value in case of an invalid

input signal
Author’s Experience

Detection Time Time until a fault is diagnosed ISO 26262-4 (Section 7.4.6)

Reaction Time
Admissible reaction time after a fault

was detected
ISO 26262-4 (Section 7.4.6)

ASIL

Automotive Safety Integrity Level

classified A - D, or QM if no safety-

relevance is given

ISO 26262-4 (Annex B)

Signal ID Identifiers required for the support of the

domain-specific modelling approach
Author’s Experience

HW Device ID

194 Computer Science & Information Technology (CS & IT)

4. APPLICATION

In this section, the HSI specification approach is applied to the development of an automotive

fuel tank system for compressed natural gas (CNG). For an appropriate scale of the showcase,

only a small part of the real-world system is utilized. The application should be seen as

illustrative material, reduced for internal training purposes for students. Therefore, the disclosed

and commercially non-sensitivity use-case is not intended to be exhaustive or representative of

leading-edge technology. Before the showcase is illustrated, tool support regarding both domain-

specific modelling and requirements management shall be explained briefly.

4.1. EMS-DSM Language Tool Support

Generally speaking, the EMS-DSM language can be supported by various tools, but at the time

when the research project was initiated, the highest possible flexibility was desired, as was full

access to the tool’s source code. To avoid developing an application from scratch, the open

source project WPF Diagram Designer (see [18]) was chosen as a basis for tool development.

The corresponding documentation has about 540,000 views and the source code has been

downloaded more than 24,000 times. Therefore, the source, which provides standard

functionality such as file handling and basic graphical modelling, is well reviewed. The source

code is written in C# and provides good expandability. New functionalities have been

implemented for the diagram designer, named EASy-Design (Embedded Automotive System-

Design), to facilitate engineering with EMS-DSM models. However, EASy-Design is just one

possibility for EMS-DSM tool support. The methodology and its C# implementation can be

ported to e.g. Enterprise Architect
2
 by the provided Add-in mechanism. Another alternative is the

Eclipse
3
 framework, or rather the Eclipse-based project Sirius, which enables the creation of a

graphical modelling workbench, by facilitating the Eclipse modelling technologies without

writing code.

4.2. Project and Requirements – Management Tool Support

The web-based open source application Redmine
4
 is used for topics such as project management

and requirements management in this approach. Owing to its high flexibility through

configuration, new trackers have been added for development according to the de facto standard

Automotive SPICE [4]. The process reference model already mentioned in Section 3 defines

three different types of requirements of the engineering process group: Customer Requirements,

System Requirements, and Software Requirements. The hardware focus is missing from the

embedded E/E system view. Additionally, requirements and design items for mechanical

components have to be introduced for the design of an embedded mechatronics-based E/E

system. Similar to the Automotive SPICE methodology on a system and software level,

engineering processes have been defined for these missing artifacts. To sum up, the available

requirement and test case types for this approach are: Customer Req, System Req, System TC,

System Integration TC, Software Req, Software TC, Software Integration TC, Hardware Req,

Hardware TC, Mechanics Req, and Mechanics TC.

The test case and requirement items are connected to each other by their unique identifier. For a

safety-critical development according to ISO 26262, additional issue types such as Functional

2
 http://www.sparxsystems.com/

3
 http://eclipse.org/

4
 http://www.redmine.org/

Computer Science & Information Technology (CS & IT) 195

Safety Requirements have been added. By reconfiguring the project management tool Redmine,

all requirement types mentioned have been implemented.

4.3. CNG Tank System Showcase

Figure 5 illustrates the EMS-DSM tool EASy-Design with the system architectural design model

of the simplified showcase. The CNG fuel tank system consists of seven mechanical components,

which are blue coloured (Tank Cylinder, Filter, etc.) The medium flow between mechanical

components, which is CNG in this case, is displayed by blue lines with an arrow at the end.

Furthermore, five hardware components are placed at the system design model level, which are

yellow coloured (In-Tank Temperature Sensor, Tank ECU, etc.) The signal flow between the

components is displayed using yellow lines ending with an arrow. A communication bus is

inserted between the Control Unit and the External Control Unit component, shown by the

double compound line type and arrows at both ends.

By selecting a model element and clicking the button Link Requirements, the elements

requirements dialogue is opened and a link between the selected element and an item from the

requirements database (e.g. System Requirement, see Subsection 4.2) can be established. Already

linked requirements from Redmine’s MySQL database are listed with their ID, Type, Title, ASIL,

and Core functionality attribute. With a click on Link Specifications, various documents, such as

detailed hardware specifications and datasheets, can be linked to the selected model element.

The Hardware-Software Interface Specification emphasis of this contribution is also supported

by EASy-Design. Again, a hardware element of the model has to be selected and can be defined

with a subsequent click on the button Edit Hardware-Software Interface in the Element

Properties group, the interface of the selected hardware item. In Figure 5, the Tank ECU has

been selected and in Figure 6, the newly opened HSI definition dialogue for the Tank ECU is

illustrated. Within this dialogue, all operations needed to add, modify or delete signals can be

triggered by clicking the relevant button:

• Add New Signal - a new dialogue window is opened and a signal can be created by

entering the properties described in Table 2 (see Figure 7).

• Add Connected Signal - the hardware elements in the architectural system design can be

connected by (yellow) lines as described in Subsection 4.1. Every output signal from any

connected hardware element can be added as an input signal in the HSI signal definition

in the actual hardware element.

• Modify Signal - at the HSI signal definition main dialogue (illustrated in Figure 6), a

signal has to be selected, for which the modification dialogue will be opened after a click

on Modify Signal. The signal modification dialogue is similar to the Add New Signal

dialogue.

• Import Signal(s) - the HSI Definition Importer, as described in Subsection 3.4, is

selected, and signals from a HSI signal definition stored in spreadsheet format can be

added to the system architectural design model.

• Export Signal(s) - the HSI Definition Exporter, as described in Subsection 3.4, is selected

and signals from the HSI signal definition in the system architectural design model can

be exported to a HSI signal definition in spreadsheet format.

• Delete Signal(s) - the signals have to be selected from the main HSI signal definition

dialogue and are removed from the interface when the button is clicked.

196 Computer Science & Information Technology (CS & IT)

Figure 5. Self-developed tool EASy Design with a Simplified CNG Tank System Architectural Design

Figure 6. Hardware-Software Interface Dialog at EASy Design

Figure 7. Hardware-Software Interface Add New Signal Dialog at EASy Design

Computer Science & Information Technology (CS & IT) 197

As can be seen in Figure 5, no Software Components are modelled at this level (System Design

Model). With a double-click on a Hardware Component (e.g. Tank ECU), the next modelling

level is opened (named E/E Item Design Level). The (green coloured) Basis Software

Components and Application Software Components can be placed here. At each basis software

component, the input and output signals from the HSI definition in the particular hardware

component can be used and therefore connected to the software.

5. CONCLUSION

Previous sections described the factors influencing the development of our hardware-software

interface specification approach as well as the supporting tools. A domain-specific modelling

method for the design of embedded automotive mechatronics-based E/E systems formed the basis

for this work. This approach has the potential to bring together the different engineering

disciplines involved in E/E system development by facilitating the HSI specification process.

Additionally, many artifacts such as requirements, verification criteria, and various specifications

can be linked to the models, created with the new, domain-specific modelling language. With the

help of the linked artifacts, vital traceability can be established. Depending on the respective tool

chain and the organisation’s process landscape, the EMS-DSM models can also facilitate a single

point of truth strategy.

First use case implementations show promising results. However, there are several features that

still need to be implemented. Options for describing the system’s behaviour, e.g. a kind of task

scheduling definition, are to be introduced. Furthermore, the Model-to-Model-Transformer

between the domain-specific and traditional SysML system architectural design model has to be

extended to achieve an automatic transformation of the HSI signal definition between the

different modelling strategies.

REFERENCES

[1] S. Friedenthal, A. Moore, and R. Steiner, “OMG Systems Modeling Language (OMG SysMLTM)

Tutorial,” in INCOSE International Symposium, 2006.

[2] J. Meseguer, “Why Formal Modeling Language Semantics Matters,” in Model-Driven Engineering

Languages and Systems, ser. Lecture Notes in Computer Science, J. Dingel, W. Schulte, I. Ramos, S.

A. ao, and E. Insfran, Eds., vol. 17th International Conference, MODELS 2014, Valencia, Spain, no.

8767. Springer International Publishing Switzerland, 2014, keynote.

[3] “ISO 26262, Road vehicles - Functional safety,” International Organization for Standardization,

Geneva, CH, International Standard, November 2011.

[4] VDA QMC Working Group 13 / Automotive SIG, “Automotive SPICE Process Assessment /

Reference Model,” Tech. Rep. Revision ID: 470, July 2015, version 3.0.

[5] E. Andrianarison and J.-D. Piques, “SysML for embedded automotive Systems: a practical

approach,” in Conference on Embedded Real Time Software and Systems. IEEE, 2010.

[6] R. Boldt, “Modeling AUTOSAR systems with a UML/SysML profile,” IBM Software Group, Tech.

Rep., July 2009.

[7] H. Giese, S. Hildebrandt, and S. Neumann, “Model Synchronization at Work: Keeping SysML and

AUTOSAR Models Consistent,” LNCS 5765, pp. 555 –579, 2010.

198 Computer Science & Information Technology (CS & IT)

[8] R. Kawahara, H. Nakamura, D. Dotan, A. Kirshin, T. Sakairi, S. Hirose, K. Ono, and H. Ishikawa,

“Verification of embedded system’s specification using collaborative simulation of SysML and

simulink models,” in International Conference on Model Based Systems Engineering (MBSE’09).

IEEE, 2009, pp. 21–28.

[9] J. Meyer, “Eine durchgängige modellbasierte Entwicklungsmethodik für die automobile

Steuergeräteentwicklung unter Einbeziehung des AUTOSAR Standards,” Ph.D. dissertation,

Universität Paderborn, Fakultät für Elektrotechnik, Informatik und Mathematik, Paderborn, Germany,

July 2014.

[10] M. Broy, M. Feilkas, M. Herrmannsdoerfer, S. Merenda, and D. Ratiu, “Seamless Model-Based

Development: From Isolated Tools to Integrated Model Engineering Environments,” Proceedings of

the IEEE, vol. 98, no. 4, pp. 526–545, 2010.

[11] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop domain-specific languages,”

ACM computing surveys (CSUR), vol. 37, no. 4, pp. 316–344, 2005.

[12] C. Preschern, N. Kajtazovic, and C. Kreiner, “Efficient development and reuse of domain-specific

languages for automation systems,” International Journal of Metadata, Semantics and Ontologies, vol.

9, no. 3, pp. 215–226, 2014.

[13] V. Vujovic, M. Maksimovic, and B. Perisic, “Sirius: A rapid development of DSM graphical editor,”

in 18th International Conference on Intelligent Engineering Systems (INES). IEEE, 2014, pp. 233–

238.

[14] G. Macher, H. Sporer, E. Armengaud, E. Brenner, and C. Kreiner, “Using Model-based Development

for ISO26262 aligned HSI Definition,” in Critical Automotive applications: Robustness & Safety, ser.

CARS@EDCC2015, Paris, France, 2015.

[15] H. Sporer, “A Model-Based Domain-Specific Language Approach for the Automotive E/E-System

Design,” in International Conference on Research in Adaptive and Convergent Systems (RACS

2015), ser. RACS ’15, Prague, Czech Republic, 2015.

[16] G. Macher, E. Armengaud, and C. Kreiner, “Bridging Automotive Systems, Safety and Software

Engineering by a Seamless Tool Chain,” in 7th European Congress Embedded Real Time Software

and Systems Proceedings, 2014, pp. 256–263.

[17] Software Engineering Institute, “CMMI for Development, Version 1.3,” SEI, Carnegie Mellon, Tech.

Rep. CMU/SEI-2010-TR-033, ESCTR-2010-033, November 2010.

[18] Code Project, “WPF Diagram Designer - Part 4,” Online Resource, March 2008,

http://www.codeproject.com/Articles/24681/WPFDiagram-Designer-Part, accessed Mar 2015.

AUTHORS

Harald Sporer received a MSc. degree in Telematics from Graz University of

Technology. He worked as software development engineer on Hardware-in-the-Loop

(HIL) systems at AVL List GmbH and as functional software developer for embedded

automotive systems at Magna Powertrain AG & Co KG. Currently he is working on his

PhD at the Institute of Technical Informatics at Graz University of Technology. Parallel

to his PhD thesis he is also active in the field of embedded automotive system design,

engineering process improvement, and functional safety engineering.

Computer Science & Information Technology (CS & IT) 199

Georg Macher received a MSc. degree in Telematics and worked as software

development engineer on prototype vehicles at AVL List GmbH. Currently he joined the

R&D department of AVL's powertrain engineering branch and is working on his PhD at

Institute for Technical Informatics at Graz University of Technology. Parallel to his PhD

thesis is also active in the field of system, software, and functional safety engineering.

Dr. Christian Kreiner graduated and received a PhD degree in Electrical Engineering

from Graz University of Technology in 1991 and 1999 respectively. 1999-2007 he

served as head of the R&D department at Salomon Automation, Austria, focusing on

software architecture, technologies, and processes for logistics software systems. He

was in charge to establish a company-wide software product line development process

and headed the product development team. During that time, he led and coordinated a

long-term research programme together with the Institute for Technical Informatics of

Graz University of Technology. There, he currently leads the Industrial Informatics and

Model-based Architectures group. His research interests include systems and software engineering,

software technology, and process improvement.

Prof. Dr. Eugen Brenner is Associate Professor at the Institute for Technical

Informatics of the Graz University of Technology. He completed his master in

Electrical Engineering 1983 in Graz. His PhD in Control Theory was finished 1987

also in Graz, dealing with optimal control in systems with limited actuating variables.

He joined the institute in 1987, being the first scientific staff member. His post-

doctoral lecture qualification in Process Automation was achieved in 1996.He has been

member of the senate, of the curricula commission for Bachelor and Master-Programs,

and Dean of Studies for Telematics. He currently is head of the Study Commission and

Vice-Dean of Studies for Telematics. Eugen Brenner's primary research interests developed from FPGA-

based hardware extension to parallel systems, real-time systems and process control systems. The most

recent focus targeting embedded systems is on modelling, software-development, systems engineering and

systems security, including agile programming methods and smart service engineering.

