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ABSTRACT 

 

The replacement of the former, purely mechanical, functionality with mechatronics-based 

solutions, the introduction of new propulsion technologies, and the connection of cars to their 

environment are just a few reasons for the continuously increasing electrical and/or electronic 

system (E/E system) complexity in modern passenger cars. Smart methodologies and techniques 

have been introduced in system development to cope with these new challenges. A topic that is 

often neglected is the definition of the interface between the hardware and software subsystems. 

However, during the development of safety-critical E/E systems, according to the automotive 

functional safety standard ISO 26262, an unambiguous definition of the hardware-software 

interface (HSI) has become vital. This paper presents a domain-specific modelling approach for 

mechatronic systems with an integrated hardware-software interface definition feature. The 

newly developed model-based domain-specific language is tailored to the needs of mechatronic 

system engineers and supports the system’s architectural design including the interface 

definition, with a special focus on safety-criticality. 
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1. INTRODUCTION 

 
Electrical and/or electronic systems (E/E systems) in the automotive domain have grown 

increasingly complex over the past decades. New functionality, mainly realized through 

embedded E/E systems, as well as the growing connectivity (Car2X-Communication), will keep 

this trend alive in the upcoming years. Well-defined development processes are crucial for 

managing this complexity and achieving high quality products. Wide-spread standards and 

regulations, such as Automotive SPICE® and ISO 26262, provide guidance through the 

development life cycle. Some of the key aspects of these concepts are full traceability and 

consistency between the different development artifacts. 

 

In the automotive industry, the E/E system architectural design models are usually created with 

techniques based on the Unified Modeling Language (UML). Either the meta-model is extended, 
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or a profile is created to make it possible to use the UML-based approach in embedded 

automotive system design. A wide-spread example of an UML2 profile is the Systems Modeling 

Language (SysML), which reuses many of the original UML diagram types (State Machine 

Diagram, Use Case Diagram, etc.), uses modified diagram types (Activity Diagram, Block 

Definition Diagram, etc.), and adds new ones (Requirement Diagram, Parametric Diagram) [1]. 

Even if the UML-based methodologies are valuable for projects with an emphasis on software, 

they are sometimes too powerful for embedded automotive system design, due to the numerous 

representation options. Particularly for domain experts who have no or limited knowledge of 

software development, the large number of elements available for modelling, turns system 

architectural design into an awkward task. However, it is not the intention of this work to decry 

the SysML approaches created so far. They are a good choice for a multitude of tasks. Instead, 

this paper showcases an extension of these SysML approaches, which makes the architectural 

design process easier, placing a special focus on the specification of the hardware-software 

interface for UML non-natives. 

 

A model-based domain-specific language and domain-specific modelling (DSM) has been 

developed for the specific needs of embedded automotive mechatronics systems. Additionally, a 

software tool has been created to support the new modelling techniques. By linking development 

artifacts such as requirements (e.g. technical system requirements, software requirements, etc.), 

and verification criteria to the design model, the traceability mentioned earlier is assured. 

 

The main goal of this work is to contribute to the improvement of the existing system 

architectural design methods by facilitating the specification of the hardware-software interface. 

The approach presented has mainly been created for the development of embedded mechatronics-

based E/E systems in the automotive field. However, the techniques are also suitable for other 

domains. Improvements have been made by extending the system modelling approach presented 

in previous publication using HSI specification capabilities. 

 

Section 2 presents an overview of related approaches, domain-specific modelling and integrated 

tool chains. Section 3 provides a description of the proposed hardware-software interface 

specification approach for the model-based system engineering. An application of the 

methodology described is presented in Section 4. Finally, this work is concluded in Section 5, 

which gives an overview of the presented work. 

 

2. RELATED WORK 
 

In recent years, a lot of effort has been made to improve the model-based automotive E/E system 

design methods and techniques. Today, the advantages of a model-based approach are clear and 

without controversy. Meseguer [2] grants much more reliability, reusability, automatisation, and 

cost effectiveness to software that is developed with modelling languages. However, model 

transformation within or across different languages is crucial to achieve all these benefits. 

 

Traceability and consistency between the development artifacts have always been important 

topics. However, these properties have become even more important due to the increasing 

number of electronic and electric-based functionalities. According to the international standard 

ISO 26262 [3], released in 2011, traceability between the relevant artifacts is mandatory for 

safety-critical systems. A description of the common deliverables relevant to automotive E/E 
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system development, and a corresponding process reference model is presented by the de facto 

standard Automotive SPICE [4]. Neither the functional safety standard nor the process reference 

model enforces a specific methodology for how the development artifacts have to be created or 

linked to each other. However, connecting the various work products manually is a tedious and 

error-prone task. 

 

One of the early work products found in the engineering process is the system architectural 

design. In the field of automotive E/E system development, a wide-spread and common approach 

is to utilize a UML-based technique for this design, such as the UML2 profile SysML. 

Andrianarison and Piques [5], Boldt [6], and many other publications (e.g. [7], [8], [9]) present 

their SysML methodologies for system design. As stated by Broy et al. [10], the drawbacks of the 

UML-based design are still the low degree of formalization, and the lack of technical agreement 

regarding the proprietary model formats and interfaces. The numerous possibilities of how to 

customize the UML diagrams and how to get a language for embedded system design, are behind 

these drawbacks. Even if there is an agreement to utilize a common UML profile such as SysML, 

there are plenty of design artifact variations. This scenario does not provide an optimal base for 

the engineer who has to design the embedded automotive system from a mechatronics point of 

view. Ideally, the tool should be intuitive and it should be possible to use it easily without 

specific knowledge of UML. 

 

Mernik et al. [11] describe a domain-specific language as a language that is tailored to the 

specific application domain. This tailoring should lead to a substantial increase in expressiveness 

and ease of use, compared to general-purpose languages. Even if expressiveness is increased by 

the utilization of SysML-based modelling techniques, the ease of use for embedded automotive 

mechatronics system design has not been improved. 

 

Preschern et al. [12] claim that DSLs help to decrease system development costs by providing 

developers with an effective way to construct systems for a specific domain. The benefit in terms 

of a more effective development has to be greater than the investment needed to create or 

establish a DSL at a company or in a department. In addition, the authors argue that the 

mentioned DSL development cost will decrease significantly over the next few years, due to new 

tools that support language creation such as the Eclipse-based Sirius
1
. 

 

Vujovic et al. [13] present a model-driven engineering approach to creating domain-specific 

modelling (DSM). Sirius is the framework used to develop a new DSM and the DSM graphical 

modelling workbench. The big advantage of this tool is that the workbench for the DSM is 

developed graphically. Therefore, knowledge about software development with Java, the 

graphical editor framework (GEF) or the graphical modelling framework (GMF) is not needed. 

Although it is obvious that an unambiguous specification of the various signals between the items 

of an embedded automotive system design is vital, publications on embedded automotive 

hardware-software interface definition are rare. This contribution aims to extend a model-based 

development approach for an ISO 26262 aligned hardware-software interface definition presented 

by the authors of [14]. More background on the origin of HSI characteristics is presented and the 

model-based support is shifted from a classic SysML-based methodology to a domain-specific 

modelling methodology for the E/E system architectural design of mechatronics-based systems. 

 The domain-specific modelling (DSM) language definition is presented in [15]. 

                                                           
1
 https://eclipse.org/sirius/ 
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3. APPROACH 

 
The main goal of this contribution is to convey the importance of the hardware-software interface 

for today's Embedded Automotive Systems and how it is supported by the approach described. 

Moreover, the key driving factors for establishing a well-defined interface, which is also suitable 

for safety-critical applications, will be shown within this section. Before describing the HSI 

specification approach in detail, the utilized domain-specific model-based system architectural 

design technique shall be introduced. This domain-specific modelling method has been 

developed to outline mechatronics-based system architectures in the automotive sector and 

therefore serves as a basis for the specification of the hardware-software interface found in our 

approach. 

 

3.1. Embedded Mechatronics System Domain-Specific Modelling 

The key objective of domain-specific modelling is to provide a lean approach for engineers to 

facilitate embedded automotive mechatronics system modelling on a high abstraction level. The 

approach described focusses on the model-based structural description of the E/E system under 

development. Additionally, the signals and interfaces are an essential part of modelling. 

 

The existing SysML-based design method (see also [14]) is extended by the newly developed 

Embedded Mechatronics System Domain-Specific Modeling (EMS-DMS) for automotive 

embedded system architectural design. It is not intended to replace the SysML-based solution 

created so far. Instead, the EMS-DSM is integrated into existing methods. Hence, the whole tool-

chain, starting from the SysML-based system architectural design tool and finishing at software / 

hardware architectural design, can be utilized if desired. An overview of the tool integration is 

shown in Figure 1. 

 

 
Figure 1. Tool-Chain Integration of DSM and SysML Model Approach (based on [16]) 
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The definition of the newly developed model-based domain-specific language is shown in Figure 

2. The EMS-DSM Component is the origin of all other classes regarding language definition. The 

six attributes of this class are 

 

• ID - unique identifier of the particular instance in the architectural design model, set 

automatically. 

 

• Name - name or short description of the particular instance, chosen by the design 

engineer. 

 

• Mask - graphical representation of the particular instance, set by the engineer responsible 

for the design tool. 

• Requirement - in this approach, a link to the Redmine requirements database is set by the 

designer. 

• Verification Criteria - similar to Requirement, a link to the Redmine verification criteria 

artifact is set by the designer. 

• Specification - link to further information about the actual component, e.g. a CAD 

drawing or a data sheet. 

The EMS-DSM Component serves as the base node of the EMS-DSM definition, and declares the 

common attributes of the derived classes at the lower levels. Therefore, this component is not 

instanced for the design process. At the next language definition level, the following component 

classes are available: 

• Mechanical Components - used by all mechanical, domain-specific components, e.g. the 

Mechanical Pressure Regulator class in the use-case shown in Section 4. 

• Compartment Components - gives the opportunity to specify areas or compartments, 

where mechanical and hardware components are installed. 

• E/E Item Components - an abstract component class definition, which serves as a basis 

for the hardware and software components at the lower levels. Additionally, the property 

ASIL, corresponding to the ISO 26262, is stated. 

The majority of the non-abstract component classes are derived from the hardware component 

class: 

• Sensor Component - used for all domain-specific sensor components. 

• Control Unit Component - used for all domain-specific control unit components. 

• Actuator Component - used for all domain-specific actuator components. 

• External Control Unit Component - special class, to make signals from an external 

system available in the considered system.  
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All hardware components and their instances in the system design model, with the exception of 

the External Control Unit Component, are capable of containing a software design model. This 

means that any kind of software component instance is only allowed to be implemented in a 

software design model which belongs to an instance of a hardware component. This special 

language characteristic is defined by the Aggregation relationship between hardware and 

software components, which also implies the hardware-software interface. 

The last part of the EMS-DSM definition description is related to the classes (derived from the 

software component): 

• Basis Software Component - used for all low-level, hardware-dependent software 

components. 

• Application Software Component - used for all functional software components. 

 

Figure 2.  EMS-DSM Language Definition 

As mentioned in Section 2, a more detailed description of the domain-specific modelling 

language can be found in [15]. 

 

3.2. Influence of Process Reference Model on HSI Specification 

Due to their broad dissemination in the automotive sector, the two most important reference 

models are Automotive SPICE [4] and CMMI [17]. Both pursue similar targets: they (a) 

determine the process capability/maturity, and (b) aspire a continuous process improvement in 

the particular development team and/or company. The reference models do not exist in order to 

specify how processes have to be implemented. Instead, desired process outcomes (Automotive 

SPICE) or goals (CMMI) are defined and described in more detail by best practice 

characterisation (base or generic practices at Automotive SPICE, and specific or generic practices 

at CMMI). The Automotive S(oftware) P(rocess) I(mprovement) and C(apability) 

(D)e(termination) reference model is based on the international standard ISO 15504 and is 
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primarily used in Europe, as well as in some parts of Eastern Asia. The latest version, which was 

analysed for this approach, is 3.0 and was released in July 2015. The C(apability) M(aturity) 

M(odel) I(ntegration) reference model has been developed by the Software Engineering Institute 

(SEI) at Carnegie Mellon University. CMMIs currently exist for Acquisition, Development, and 

Services. As CMMI is not widespread in the European automotive sector, the remaining part of 

this section will focus on Automotive SPICE as the relevant process assessment and reference 

model. The model does not address the demand for a hardware-software interface directly, but 

some guidance on HSI specification can be extracted from general interface topics. 

 

Table 1 lists the elements of the Automotive SPICE reference model that provide information 

about interfaces between system components. As expected, interface work products are needed 

for Architectural Design and the Integration topics. In addition to the Process ID and the Process 

Name, the corresponding Base Practice IDs are indicated. These give more detailed information 

on what the outcome should look like. In SYS.3.BP3, the definition (identify, develop, and 

document) of system element interfaces is stipulated. This equally applies to the hardware-

software interface. In SYS.3.BP4, a description of the dynamic behaviour of and between the 

system elements is provided. The possible operating modes of the system, which determine the 

dynamic behaviour, have to be taken into account in the HSI definition. Base Practice SYS.4.BP3 

postulates that the interfaces between system items have to be covered by the system integration 

test to show consistency between the real interfaces and the architectural design. With regard to 

the HSI, SWE.2.BP3 and SWE.2.BP4 can be interpreted in a similar way to their system level 

counterparts (SYS.3.BP3, SYS.3.BP4). SWE.2.BP5 claims the determination and documentation 

of the resource consumption objectives of all relevant software architectural design elements. To 

support this using the hardware-software interface definition, information on resource 

consumption shall be included in the description of the signals, wherever applicable. An interface 

definition is also demanded at process SWE.3 - Software Detailed Design and Unit Construction. 

However, in this case, the specification belongs to the signals communicated between the 

components on the lowest (most detailed) software level. Hence, this communication 

specification does not directly belong to the hardware-software interface, and will not be taken 

into consideration in this approach. The last process/base practice in Table 1 is SWE.5.BP3. It 

demands a description of the interaction between relevant software units and their dynamic 

behaviour. Again, this base practice can be interpreted in a similar way to its system level 

counterpart (SYS.4.BP3).  

 
Table 1. HSI Accompanying Automotive SPICE Processes. 

Process ID Process Name Base Practice ID 

SYS.3 System Architectural Design BP3, BP4 

SYS.4 System Integration and Integration Test BP3  

SWE.2 Software Architectural Design BP3, BP4, BP5 

SWE.5 Software Integration and Integration Test BP3 

 

In the Automotive SPICE reference model, Output Work Products are also defined and linked to 

the base practices previously stated. From this contribution’s point of view, the relevant work 

products are: 

 

• System Architectural Design - the main aspects to consider regarding the HSI are 

memory/capacity requirements, hardware interface requirements, security/data 
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protection characteristics, system parameter settings, system components operation 

modes, and the influence of the system’s and system component’s dynamic behaviour.  

 

• Interface Requirement Specification - the main aspects to consider regarding the HSI are 

definition of critical timing dependencies or sequence ordering and physical interface 

definitions. 
 

3.3. Influence of Automotive Functional Safety on HSI Specification 

The international standard ISO 26262 for Functional Safety in the automotive electrical and/or 

electronic system domain was released in 2011. Since then, many best practice articles and books 

have been published on how to develop according to the standard. However, with the exception 

of the safety-critical view, the hardware-software interface has rarely been highlighted in these 

publications. 

 

According to ISO 26262, the HSI is to be specified during the phase Product Development at the 

System Level (see Figure 3), which is described in Part 4 of the standard. As a prerequisite for 

specifying the hardware-software interface, a system design has to be established. While 

preparing the system architectural design, the technical safety and non-safety requirements are 

allocated to the hardware and software. Subsequent to this allocation, an initial interface 

description can be prepared. The HSI shall be continuously refined in the ensuing hardware and 

software product development phases, which are described in Parts 5 & 6 of the ISO 26262. 

 

 
 

Figure 3.  Development Phases According to [3] 

The majority of information concerning how to specify the interface aligned to functional safety 

can be found in Clause 7.4.6 of Part 4 of the standard. In our approach, most of the HSI 

characteristics demanded by this clause, such as operation modes of the hardware device and 

shared/exclusive use of the hardware resource, are described in the Detailed Hardware 

Specification (DHS) documents, which are linked to the main HSI document. A detailed 

description of the various development artifacts and their relationships is presented in Subsection 

3.4. Additionally, the informative Annex B of Part 4 of ISO 26262 provides information 

concerning the possible content of the interface definition.  
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3.4. Incorporated Hardware-Software Interface Specification 

 
Two main objectives have to be achieved when developing a new HSI specification approach: 

 

1. identification, development and documentation of the essential HSI specification 

attributes & characteristics, and 

 

2. support for the linking of related information to ensure full traceability. 

 

The principle of the hardware-software interface specification approach described here is based 

on three origins, two of which have been described in the previous subsections: 

 

a. the process reference and assessment model Automotive SPICE, 

 

b. the automotive functional safety standard ISO 26262, and 

 

c. the industrial experience of authors in past automotive E/E system development projects. 

 

It is important to note that the hardware-software interface specification does not only consist of a 

single spreadsheet with a description of all signals between hardware and software. Further 

information belonging to the HSI specification can also be found in various development 

artifacts. Figure 4 shows the different aspects of our HSI specification approach: 

 

• Hardware-Software Interface Signal List - spreadsheet with data of all signals between 

hardware and software. The attributes describing each signal have been derived from 

sources (a) - (c), which were mentioned at the beginning of this subsection. 

 

• Resource Consumption Objectives - depending on the particular project, the objectives 

are described in spreadsheet(s) and/or free text document(s). Regardless of the type, the 

documents are linked to the software components in software architectural design (see 

attribute Specification <<Link>> Software Component class in the EMS-DSM language 

definition in Figure 2). 

 

• Detailed Hardware Specification - depending on the particular project, the objectives are 

described in spreadsheet(s) and/or free text document(s). Regardless of the type, the 

documents are linked to the hardware components in system architectural design (see 

attribute Specification <<Link>> Hardware Component class in the EMS-DSM 

language definition in Figure 2). 

 

• Model-based Architectural Design - this item represents the central source of 

information. The defined domain-specific modelling language facilitates the creation of 

the system and the software architectural design within the same design environment and 

allows the linking of all other relevant development artifacts. From a HSI specification 

perspective, the three previous items in this list are the most important development 

artifacts to be linked to the architectural design models. 
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Figure 4.  Distributed Hardware-Software Interface Specification 

Establishing full traceability between the Resource Consumption Objectives, the Detailed 

Hardware Specification, and the Model-based Architectural Design is an easy task, accomplished 

by linking the related documents in the architectural design.  

 

The integration of the Hardware-Software Interface Signal List data into the design model is 

more technically challenging. In [14] the authors described the functionality of the HSI Definition 

Exporter and Importer, which was developed to achieve a seamless transformation of the HSI 

representation between the SysML-based architectural design and the spreadsheet tool. The HSI 

Definition Exporter is an extension (dynamic link library) for the model-based development 

(MBD) tool, which is written in C# and allows the modelled HSI to be exported to a spreadsheet 

document (either in csv or xls format). The HSI Definition Importer is the counterpart of the HSI 

Definition Exporter, which is also implemented as a dynamic link library using the spreadsheet 

tool’s API. It allows the import of all HSI information from the spreadsheet document or a 

selective update of the HSI model artifacts. Using both the export and import functionality leads 

to a round-trip engineering capability regarding the HSI signal list and the HSI signals modelled 

in the architectural design. In this approach, the libraries of the exporter and importer extensions 

are slightly adapted to the needs of the domain-specific modelling language. 

 

To conclude the description of our approach, the HSI signal attributes and their origins are listed 

in Table 2. 
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Table 2.  HSI Signal List Attributes. 

Attribute Comments Origin 

Signal Direction 
Input or Output, out of the controllers 

view 
Author’s Experience 

Signal Description 
A short signal description or the signals 

name 
ISO 26262-4 (Annex B) 

Sensor / Actuator Type or identifier of signals source/sink Author’s Experience 

Supply Voltage - Author’s Experience 

Physical Min Value - ASPICE SYS.4.BP3 

Physical Max Value - ASPICE SYS.4.BP3 

Accuracy In % of range of values ISO 26262-4 (Annex B) 

Physical Unit E.g. V, A, ... 
ISO 26262-4 (Annex B) 

ASPICE SYS.4.BP3 

HW Interface Type E.g. Digital In, Analog Out, CAN, ... 
ISO 26262-4 (Annex B) 

ASPICE WP 17-08 

HW Pin # Pin number or identifier at e.g. ECU ISO 26262-4 (Annex B) 

Message ID 
In case of bus communication Author’s Experience 

Start Bit 

Internal Cycle Time E.g. 10 ms 

ISO 26262-4 (Section 7.4.6) 

ASPICE SYS.4.BP3, SWE.5.BP3, WP 

17-08 

External Cycle Time Only applicable for digital signals Author’s Experience 

HW Timer / Interrupt / 

Watchdog 
Identifier of triggered e.g. interrupt ISO 26262-4 (Section 7.4.6) 

Operating Modes 

Information if signal is needed special 

operating modes (e.g. start up, 

calibration, ...) 

ISO 26262-4 (Annex B) 

ASPICE SYS.3.BP4, SWE.2.BP4, WP 

04-06 

HW Diagnostic Feature E.g. short circuit detection, ... ISO 26262-4 (Section 7.4.6) 

Memory Type E.g. RAM, EEPROM, ... ISO 26262-4 (Annex B) 

Security/Data Protection Information on special security issues ASPICE WP 04-06 

Critical Timing 

Dependencies or 

Sequence Ordering 

- ASPICE WP 17-08 

Signal Name @ SW 
Identifier of signal as used in 

application software 
Author’s Experience 

Initial Value - Author’s Experience 

Data Type E.g. UInt16, Float, ... ASPICE SYS.4.BP3, SWE.5.BP3 

Scaling LSB Scaling information in case of fixed-

point arithmetic 
ASPICE SYS.4.BP3, SWE.5.BP3 

Scaling Offset 

Min Value @ SW - ASPICE SWE.5.BP3 

Max Value @ SW - ASPICE SWE.5.BP3 

Accuracy @ SW In % of range of values ISO 26262-4 (Annex B) 

Physical Unit @ SW E.g. km/h, Nm, ... ASPICE SWE.5.BP3 

Default Value @ SW 
Default value in case of an invalid 

input signal 
Author’s Experience 

Detection Time Time until a fault is diagnosed ISO 26262-4 (Section 7.4.6) 

Reaction Time 
Admissible reaction time after a fault 

was detected 
ISO 26262-4 (Section 7.4.6) 

ASIL 

Automotive Safety Integrity Level 

classified A - D, or QM if no safety-

relevance is given 

ISO 26262-4 (Annex B) 

Signal ID Identifiers required for the support of the 

domain-specific modelling approach 
Author’s Experience 

HW Device ID 
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4. APPLICATION 

 
In this section, the HSI specification approach is applied to the development of an automotive 

fuel tank system for compressed natural gas (CNG). For an appropriate scale of the showcase, 

only a small part of the real-world system is utilized. The application should be seen as 

illustrative material, reduced for internal training purposes for students. Therefore, the disclosed 

and commercially non-sensitivity use-case is not intended to be exhaustive or representative of 

leading-edge technology. Before the showcase is illustrated, tool support regarding both domain-

specific modelling and requirements management shall be explained briefly. 

 

4.1. EMS-DSM Language Tool Support 

Generally speaking, the EMS-DSM language can be supported by various tools, but at the time 

when the research project was initiated, the highest possible flexibility was desired, as was full 

access to the tool’s source code. To avoid developing an application from scratch, the open 

source project WPF Diagram Designer (see [18]) was chosen as a basis for tool development. 

The corresponding documentation has about 540,000 views and the source code has been 

downloaded more than 24,000 times. Therefore, the source, which provides standard 

functionality such as file handling and basic graphical modelling, is well reviewed. The source 

code is written in C# and provides good expandability. New functionalities have been 

implemented for the diagram designer, named EASy-Design (Embedded Automotive System-

Design), to facilitate engineering with EMS-DSM models. However, EASy-Design is just one 

possibility for EMS-DSM tool support. The methodology and its C# implementation can be 

ported to e.g. Enterprise Architect
2
 by the provided Add-in mechanism. Another alternative is the 

Eclipse
3
 framework, or rather the Eclipse-based project Sirius, which enables the creation of a 

graphical modelling workbench, by facilitating the Eclipse modelling technologies without 

writing code. 

 

4.2. Project and Requirements – Management Tool Support 

The web-based open source application Redmine
4
 is used for topics such as project management 

and requirements management in this approach. Owing to its high flexibility through 

configuration, new trackers have been added for development according to the de facto standard 

Automotive SPICE [4]. The process reference model already mentioned in Section 3 defines 

three different types of requirements of the engineering process group: Customer Requirements, 

System Requirements, and Software Requirements. The hardware focus is missing from the 

embedded E/E system view. Additionally, requirements and design items for mechanical 

components have to be introduced for the design of an embedded mechatronics-based E/E 

system. Similar to the Automotive SPICE methodology on a system and software level, 

engineering processes have been defined for these missing artifacts. To sum up, the available 

requirement and test case types for this approach are: Customer Req, System Req, System TC, 

System Integration TC, Software Req, Software TC, Software Integration TC, Hardware Req, 

Hardware TC, Mechanics Req, and Mechanics TC. 

The test case and requirement items are connected to each other by their unique identifier. For a 

safety-critical development according to ISO 26262, additional issue types such as Functional 

                                                           
2
 http://www.sparxsystems.com/ 

3
 http://eclipse.org/ 

4
 http://www.redmine.org/ 
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Safety Requirements have been added. By reconfiguring the project management tool Redmine, 

all requirement types mentioned have been implemented. 

4.3. CNG Tank System Showcase 

Figure 5 illustrates the EMS-DSM tool EASy-Design with the system architectural design model 

of the simplified showcase. The CNG fuel tank system consists of seven mechanical components, 

which are blue coloured (Tank Cylinder, Filter, etc.) The medium flow between mechanical 

components, which is CNG in this case, is displayed by blue lines with an arrow at the end. 

Furthermore, five hardware components are placed at the system design model level, which are 

yellow coloured (In-Tank Temperature Sensor, Tank ECU, etc.) The signal flow between the 

components is displayed using yellow lines ending with an arrow. A communication bus is 

inserted between the Control Unit and the External Control Unit component, shown by the 

double compound line type and arrows at both ends. 

By selecting a model element and clicking the button Link Requirements, the elements 

requirements dialogue is opened and a link between the selected element and an item from the 

requirements database (e.g. System Requirement, see Subsection 4.2) can be established. Already 

linked requirements from Redmine’s MySQL database are listed with their ID, Type, Title, ASIL, 

and Core functionality attribute. With a click on Link Specifications, various documents, such as 

detailed hardware specifications and datasheets, can be linked to the selected model element. 

The Hardware-Software Interface Specification emphasis of this contribution is also supported 

by EASy-Design. Again, a hardware element of the model has to be selected and can be defined 

with a subsequent click on the button Edit Hardware-Software Interface in the Element 

Properties group, the interface of the selected hardware item. In Figure 5, the Tank ECU has 

been selected and in Figure 6, the newly opened HSI definition dialogue for the Tank ECU is 

illustrated. Within this dialogue, all operations needed to add, modify or delete signals can be 

triggered by clicking the relevant button: 

• Add New Signal - a new dialogue window is opened and a signal can be created by 

entering the properties described in Table 2 (see Figure 7). 

• Add Connected Signal - the hardware elements in the architectural system design can be 

connected by (yellow) lines as described in Subsection 4.1. Every output signal from any 

connected hardware element can be added as an input signal in the HSI signal definition 

in the actual hardware element. 

• Modify Signal - at the HSI signal definition main dialogue (illustrated in Figure 6), a 

signal has to be selected, for which the modification dialogue will be opened after a click 

on Modify Signal. The signal modification dialogue is similar to the Add New Signal 

dialogue. 

• Import Signal(s) - the HSI Definition Importer, as described in Subsection 3.4, is 

selected, and signals from a HSI signal definition stored in spreadsheet format can be 

added to the system architectural design model. 

• Export Signal(s) - the HSI Definition Exporter, as described in Subsection 3.4, is selected 

and signals from the HSI signal definition in the system architectural design model can 

be exported to a HSI signal definition in spreadsheet format. 

• Delete Signal(s) - the signals have to be selected from the main HSI signal definition 

dialogue and are removed from the interface when the button is clicked. 
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Figure 5.  Self-developed tool EASy Design with a Simplified CNG Tank System Architectural Design 

 

Figure 6.  Hardware-Software Interface Dialog at EASy Design 

 

Figure 7.  Hardware-Software Interface Add New Signal Dialog at EASy Design 
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As can be seen in Figure 5, no Software Components are modelled at this level (System Design 

Model). With a double-click on a Hardware Component (e.g. Tank ECU), the next modelling 

level is opened (named E/E Item Design Level). The (green coloured) Basis Software 

Components and Application Software Components can be placed here. At each basis software 

component, the input and output signals from the HSI definition in the particular hardware 

component can be used and therefore connected to the software. 

5. CONCLUSION 

Previous sections described the factors influencing the development of our hardware-software 

interface specification approach as well as the supporting tools. A domain-specific modelling 

method for the design of embedded automotive mechatronics-based E/E systems formed the basis 

for this work. This approach has the potential to bring together the different engineering 

disciplines involved in E/E system development by facilitating the HSI specification process. 

Additionally, many artifacts such as requirements, verification criteria, and various specifications 

can be linked to the models, created with the new, domain-specific modelling language. With the 

help of the linked artifacts, vital traceability can be established. Depending on the respective tool 

chain and the organisation’s process landscape, the EMS-DSM models can also facilitate a single 

point of truth strategy. 

 

First use case implementations show promising results. However, there are several features that 

still need to be implemented. Options for describing the system’s behaviour, e.g. a kind of task 

scheduling definition, are to be introduced. Furthermore, the Model-to-Model-Transformer 

between the domain-specific and traditional SysML system architectural design model has to be 

extended to achieve an automatic transformation of the HSI signal definition between the 

different modelling strategies. 
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