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ABSTRACT

We present the gradient and Hessian of the trace of the multivariate Cramér-Rao bound (CRB)
formula for unknown impinging angles of plane waves with non-unitary beamspace
measurements,. These gradient and Hessian can be used to find the optimal beamspace
transformation matrix, i.e., the optimum beamsteering angles, using the Newton-Raphson
iteration. These trace formulas are particularly useful to deal with the multiple source senario.
We also show the mean squred error (MSE) performance gain of the optimally steered
beamspace measurements compared with the usuall DFT steered measurements, when the angle
of arrivals (AOAs) are estimated with stochastic maximum likelihood (SMLE) algorithm.
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1. INTRODUCTION

The angle of arrival (AOA) estimation problem arises a wide variety of applications dealing with
electromagnetic or sound waves. Therefore, AOA estimation has been one of the most active
research topics for the past several decades, and various algorithms such as the interferometry,
monopulse, MUSIC, ESPRIT and maximum likelihood estimation (MLE) have been devised. A
related problem of theoretical importance is to get the Cramér-Rao bound (CRB), i.e, a lower
bound of the mean squared error (MSE) for the AOA estimation, which also has been studied by
many researchers. However, what has been missing in this direction of research is the
investigation of the effect of controllable parameters on the CRB. In this paper, we derive the
optimal beam directions that minimizes the CRB for the AOA estimation problem in the presence
of multiple impinging plane waves. We also show that the resulting optimal directions give a
lower MSE through Monte-Carlo simulation.

The angle of arrival (AOA) estimation may be carried out either in the sensor element space or in
the beam space. Although accurate angle estimation requires an array with a large number of
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sensors in general, direct utilization of all sensors is impractical. The reason is that manipulation
of full multi-channel digital data incurs high computational burden, let alone the high hardware
cost for down-conversion and digitization of every sensor measurement signal. To alleviate the
difficulty, a dimension reduction matrix Be€ XMXK, K <M , may be used to transform an
element space (ES) measurement vector ze& X" to a beamspace (BS) measurement vector

B"z7e X**', where superscript H denotes the conjugate transpose. The BS transformation
matrix, B may be designed under different criteria, for example, to cover a given spatial sector
[5], to maximize the signal to noise ratio (SNR) in the sector [11], to minimize the interfering
power [10], to minimize the Cramér-Rao bound (CRB) [1], or simply to ease the implementation
by employing the discrete Fourier transformation (DFT) [13], [2], [12]. Apart from the DFT-
based transformation, the above-mentioned B will have arbitrary complex-numbered elements,
and therefore, they will incur higher hardware cost than the case with unit-modulus complex
numbers, if B is to be implemented with analog parts.

If we design B with unit-modulus elements, it admits a simpler implementation using phase-
shifters only. In other words, we wish to steer the beams tactfully, in a different manner from the
usual orthogonal DFT beams, so that the CRB for the angle estimation is the minimum. A block
diagram of the proposed transformation is shown in Fig 1.
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Figurel: Beamspace transformation with sphase-shifters only (K=3)
Now the CRB formula in [9] cannot be used to find the optimum steering angles because B is
not unitary and therefore the measurement noise is spatially correlated. Furthermore, the pre-
whitening technique [4, 6, 7] cannot be used because the pre-whitening matrix will not be an

explicit parametric function of the steering angles, and therefore does not admit explict
differentiations.

2. REVIEW OF THE CRB FOR BEAM SPACE MEASUREMENT

. Mx1 .
Consider the measurement vector z€ X of an array with M sensors,
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z=As+n, A=[a(0),A ,a(0,)], s=[s,A,s,] (1

where the nth column a(8,) of Ae XMV s the array response vector for the 7th plane-wave

signal s, impinging at the angle @,, superscript 7' denotes the transpose, and n: CN (0, Gf 1)
denotes the spatially and temporally uncorrelated measurement noise vector. Then, the stochastic
CRB of 0 =[6,,A ,0,]1" is given by [9]

2 1
CRB(0) = ;L {Re[(DHHjD)s (PAHR-‘AP)T]} : @)
where R = Ezz" = APA" +021, P=Ess", TI;=1-AA"A)"'A", D=[d,.A .,d],
J = da(8))

n

, L is the number of snapshots, Re(-) is the real-part operator, and € denotes the
n

Hadamard-Schur product.

Let B=[a(8,,).A ,a(6,;)]le X" denote a BS transformation matrix, towards a steering

angle 0, =[6,,,A ,68,,]" . Then the resulting dimension reduced measurement will be
7, = B"As+B"n. (3)

In general, the noise vector B”n is correlated, which may be pre-whitened as

2 = UB" As+UB"n, where U is a Hermitian square root matrix of (B "B )_1 . Now the
stochastic BS CRB can be expressed as

2
(o} -1
CRB,(6.6,)= " Re(Fe ")}, @)
where F =D"BU"IL, , UB"D, G=PA"BU"R"'UB" AP and
R=UB" APA"BU" + 0.1 . However, U is a function of &,, whose explicit form is not

available, and therefore, we cannot minimize (4) with respect to 6,, . The following lemma [12]

gives a direct CRB formula for (3), not resorting to pre-whitening.

Lemma 1 For the BS measurement model in (3), the CRB for 0 is given as

CRB,(0.0,)= Z_IL{Re (FeG™ )} 5)

where F = D"II; ,BR"B"D, G= (PA"BR'B" AP) and R=B" APA"B+0>B"B.
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3. GRADIENT AND HESSIAN OF THE TRACE OF THE CRB

Assuming that multiple sources impinge on an array of sensors at angles,  =[6,,A ,8, 1", we
s

are interested in finding the optimal steering angles 0, for the BS transformation matrix

B=[a(8,),A ,a(6, )] such that

0, = argmin7/[CRB(0,0,)]. (6)
&
Since tr[CRB(0,0,)] is a nonlinear function of 0,, the minimization needs to be carried out

numerically.

We shall use the Newton-Raphson iteration which needs the gradient Vir[CRB(0,0,)] and
Hessian H (tr[CRB(0,0,)]) of tr[CRB(6.,0,)].

They are provided in the following lemmas.

Lemma 2 The ith element of the gradient vector, Vtr[CRB (0,0 b)] is given by

dur[CRB(8,6,)]
aebi

1 ) .
= tr[Re(Fe G) ' ReU e G+ Fe V) Re(Fe G| (7)
where
F=(p"11; ,BR"B"D)

G =(PA"BR™B" AP

U, = ;TI; = (" H,BR"B" D)+ (D11}, ,CR"B"D)
+(p"m; BR7C D)+ (DM \BLB" D)
v, =25 _(pa"c.R'B" AP +(PA" BRC" AP) +(PA" BL B" AP
bi
o
96,
L= R _ ~-R'GR™
96,
aHﬁBA 0 " 1 g
H=—g" _?%(I—HBA(A ,A) A HB)

=- a‘; ,A(A"T1,A)" A7,

bi
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=-0A(A"T1,A)" A"T1, -T1,A(A"T1,A) A" O, —T1,APA"TI,

P= azbi (A"m,A)" =—(a"m1,A) (A" 0.A)A"TT,A)"

0, = azbi n,=c(8"B)'B" +B0.B" +B(B"B)'C"

0 = 82b,~ (87B)" =-(8"B)"(c," B+ B"C )B"B)"

G, = aaeR,,i =C"APA"B+B" APA"C,+0>C," B+ B"C, (8)

Proof. The proof of this lemma is omitted because it is tedious but straightforward, utilizing
matrix differentiation rules.

Lemma 3 The (i, j) th element of the Hessian matrix H (tr[CRB(0,0,)]) is given by

dulcrB(9.6,)] _ 1 20) _ (a0 ,
26,09, ——ZNtr[Re ‘Re ‘Re(0)

+Re(0)" Re (a eigeb,J RC(Q)_IJFRC(Q)_I'Re( 90 J'Re( aQJ ] ©)

where 0 = Fe G and

Re| 22 ] =—Re(0)" 'Re( 90 ]'R@(Q)_l

96, 26,

Re 90 =Re(UeG+FeV)
96,
R 00 =ReU. eG+UeV.+U V. +FeV, )
€ agbiaebj e\ iV i€ Vi ij
and
aU H 1 H -1pH
U, =~ =(p"H, BR"'B"D)+(D"H,C,R"'B"D)
" 86’ t

+(p” HiBLjBHD)+(DHHiBR‘1CjHD)
+(p"H,cR'B"D)+(D"1I}; ,C, ,R'B"D)
+lpmy cLB"p)+(p"My ,CRC"D)
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+("H BR7C/ D)+ ("1} ,C;RVC" D)
+lp"my BLC )+ (D" BRC, D)

+(p"H BLB" D)+ (D11}, ,C,L,B"D)
+(p'my b1, B"D)+ (D" BLC," D)
-

¥ (PA”C R'C " aPf +(PA"C,LB" AP]

= (Pa”c, ,R'B" AP) +(PA"C,L,B" AP

+(Pa”BL, B" AP) +(PA"BL.C " AP
+(Pa"c R'C AP) +(PA"BL,C AP
+(Pa"BRC, " AP|

" 96,00,
0 n -1
H,, = WHH“ = -0, A(A"TI,A) ' A"T1, - 0,AP A"TI,

~0,A(a"T1,4) ' A"0, —0,A(a"T1,A) " A% 0,
-1
~T1,AP,A"0, ~T1,A(A"T1,A) A" 0O,
—0,APA"T1, —I1,AP_A"TI, —~T1,APA"O,

P, = ag » =P, (A"0,A\A"TT,A)"
- (AHHBA)‘1 (a%0, A\a"m,A)' - (a"11,A) (4" 0,A)P,
0, = 82,,,» o,=C,(B"B)'B" +C0,B" +C/(B"B)'C,” +C,0B"
+BQ B"+BoC," +C,(B"B)'c" +Bo,C" +B(B"B)'C, "
0, = ae,,j 0.=-0,(c"B+B"C)B"B)" -(B"B) '(c"B+B"C o,
~(8"8)"(c"c,+c"c,\B"B)"

=-LGR'-R'G, ,R"'-R'GL,
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G, = % =C, "APA"B+C," APA"C,+C," APA" C,+ B" APA" C

j
2 H 2 ~H 2 H 2npH
+0,C,; B+o,C, C;+0,C, C,+0,B"C,;

i,j

Proof. The proof of this lemma is omitted because it is tedious but straightforward, utilizing
matrix differentiation rules.

The gradient in (7) and Hessian in (9) contain the unknown parameter @, which we are
ultimately interested to find, and therefore, cannot be directly used for Newton-Raphson iteration

for finding 0, . In reality, however, information on the interval ® , where @ must be in, is

s
usually available to us, for example from a surveillance radar, and therefore, it is appropriate to
use the averaged CRB

CRB(®,.0,)= [, CRB(6.0,)d6 =~ 3" CRB(6.0,)-A®.

6.c0

1 N
This, in turns, gives the following averaged gradient and Hessian, after interchanging the
integration and differentiation:

V[trCRB(®,,0,)]= > V[trCRB(6,,0,)]- A8,

60,

H[tr(CRB(®,,0,))]= > H[tr(CRB(6,,0,))]-A6.

0.€0
Therefore, the optimal 0 , 1s found by

0., =0, — u|H{r(CRB(®..0,))] 'VIirCRB(©®..5,)]
where éi =[éh1,/\ ,éhk]iT.

4. SIMULATION RESULTS

For a low-angle ship-borne radar, the target reflection usually returns back to the radar via two
pathes — the direct path and the sea-surface reflection path [13, 14]. Although the AOA of the
direct path is well-defined (for a continuous tracking radar), the AOA of the reflection path
cannot be accurately predictable due to the diffuse refelction from rough sea surface. We shall
consider a tracking radar with three beams, and obtain the optimal beam steering angles for this
multipath senario.

First, we compare the CRBs of the proposed BS processing, with the DFT-based BS processing
and the ES processing. Fig. 2 is the case when M =16, K =3, L=6 and SNR=10dB . It is

assumed that €, =1° and 6, € ®_, where ®_ =[—1.3°,—1.1°]. In this case, the computed optimal
steering angles are 6,, =2.7266°, 6,, =—0.6966° and 6,, = —2.3956°, while the DFT-based
steering angles are 6,, =—7.1808°, 6,, =0° and 6,, =7.1808°. The CRB of the proposed BS
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processing is not only lower than that of the DFT-based BS processing, but also close to that of

the ES processing throughout the interval ® .
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Figure 2: Comparison of the CRB with the proposed steering to that with the DFT-beam
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Figure 3: Comparison of the MSE with the proposed steering to that with the DFT beam
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Second, we use the stochastic maximum likelihood (SMLE) method [8]

20
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0" =0 —uH'(6)HV'()

V'(6') = 2Re|Diag|s(6')" RPd(6"))

H(0')=26"Reld(8)" Pd(8')- 8" (8)Rg(8"))

g2(6") = as[(afﬁas )_1 -67(0')(a! a, )_l}

1

626" = Ty Tr{P;R}

Here a, =UB "a(@") is evaluated for two different B s; the proposed one and the DFT-based
one. Mean squared errors (MSEs) of the two estimates for 100 trials are compared in Fig. 3.

5. CONCLUSIONS

We have used the non-unitary beamspace CRB formula [3] to derive the gradient and Hessian of
the trace of the CRB. Then applying these gradient and Hessian to a three-beam array antenna,
we have found a set of three optimum beamsteering angles, for the case of two impinging plane
waves, where one AOA can be rather accurately predictable, while the other has a large
uncertainty. The MSE with the SMLE AOA estimation with the resulting optimum three-beam
array is shown to be lower than the MSE with orthogonal DFT-beam AOA estimation.
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