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ABSTRACT 

 
We present the gradient and Hessian of the trace of the multivariate Cramér-Rao bound (CRB) 

formula for unknown impinging angles of plane waves with non-unitary beamspace 

measurements,. These gradient and Hessian can be used to find the optimal beamspace 

transformation matrix, i.e., the optimum beamsteering angles, using the Newton-Raphson 

iteration. These trace formulas are particularly useful to deal with the multiple source senario. 

We also show the mean squred error (MSE) performance gain of the optimally steered 

beamspace measurements compared with the usuall DFT steered measurements, when the angle 

of arrivals (AOAs) are estimated with stochastic maximum likelihood (SMLE) algorithm.   
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1. INTRODUCTION 

 

The angle of arrival (AOA) estimation problem arises a wide variety of applications dealing with 

electromagnetic or sound waves. Therefore, AOA estimation has been one of the most active 

research topics for the past several decades, and various algorithms such as the interferometry, 

monopulse, MUSIC, ESPRIT and maximum likelihood estimation (MLE) have been devised. A 

related problem of theoretical importance is to get the Cramér-Rao bound (CRB), i.e, a lower 

bound of the mean squared error (MSE) for the AOA estimation, which also has been studied by 

many researchers. However, what has been missing in this direction of research is the 

investigation of the effect of controllable parameters on the CRB. In this paper, we derive the 

optimal beam directions that minimizes the CRB for the AOA estimation problem in the presence 

of multiple impinging plane waves. We also show that the resulting optimal directions give a 

lower MSE through Monte-Carlo simulation.  

 

The angle of arrival (AOA) estimation may be carried out either in the sensor element space or in 

the beam space. Although accurate angle estimation requires an array with a large number of 
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sensors in general, direct utilization of all sensors is impractical. The reason is that manipulation 

of full multi-channel digital data incurs high computational burden, let alone the high hardware 

cost for down-conversion and digitization of every sensor measurement signal. To alleviate the 

difficulty, a dimension reduction matrix 
KMB ×∈Χ , MK < , may be used to transform an 

element space (ES) measurement vector 
1×∈ Mz Χ  to a beamspace (BS) measurement vector 

1×∈ KH zB Χ , where superscript H  denotes the conjugate transpose. The BS transformation 

matrix, B  may be designed under different criteria, for example, to cover a given spatial sector 

[5], to maximize the signal to noise ratio (SNR) in the sector [11], to minimize the interfering 

power [10], to minimize the Cramér-Rao bound (CRB) [1], or simply to ease the implementation 

by employing the discrete Fourier transformation (DFT) [13], [2], [12]. Apart from the DFT-

based transformation, the above-mentioned B  will have arbitrary complex-numbered elements, 

and therefore, they will incur higher hardware cost than the case with unit-modulus complex 

numbers, if B  is to be implemented with analog parts. 

 

If we design B  with unit-modulus elements, it admits a simpler implementation using phase-

shifters only. In other words, we wish to steer the beams tactfully, in a different manner from the 

usual orthogonal DFT beams, so that the CRB for the angle estimation is the minimum. A block 

diagram of the proposed transformation is shown in Fig 1. 

 
 

Figure1: Beamspace transformation with sphase-shifters only (K=3) 

 

Now the CRB formula in [9] cannot be used to find the optimum steering angles because B  is 

not unitary and therefore the measurement noise is spatially correlated. Furthermore, the pre-

whitening technique [4, 6, 7] cannot be used because the pre-whitening matrix will not be an 

explicit parametric function of the steering angles, and therefore does not admit explict 

differentiations.  

 

2. REVIEW OF THE CRB FOR BEAM SPACE MEASUREMENT 

 

Consider the measurement vector 
1×∈ Mz Χ  of an array with M  sensors,  
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where the n th column )( na θ  of 
NMA ×∈Χ  is the array response vector for the n th plane-wave 

signal ns  impinging at the angle nθ , superscript T  denotes the transpose, and )(0, 2
ICNn nσ:  

denotes the spatially and temporally uncorrelated measurement noise vector. Then, the stochastic 

CRB of 
T

N ],,[= 1 θθ Λθ  is given by [9]  
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Let 
KM

bKb aaB
×∈ Χ)](,),([= 1 θθ Λ  denote a BS transformation matrix, towards a steering 

angle 
T

bKbb ],,[= 1 θθ Λθ . Then the resulting dimension reduced measurement will be 
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In general, the noise vector nB
H

 is correlated, which may be pre-whitened as 

nUBAsUBz HH

B += , where U  is a Hermitian square root matrix of ( ) 1−
BBH

. Now the 

stochastic BS CRB can be expressed as  
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where DUBBUDF H

AHUB

HH ⊥Π= , APUBRBUPAG HHH 1= −
 and 

IBUAPAUBR n

HHH 2= σ+ . However, U  is a function of bkθ  whose explicit form is not 

available, and therefore, we cannot minimize (4) with respect to bkθ . The following lemma [12] 

gives a direct CRB formula for (3), not resorting to pre-whitening.  

 

Lemma 1 For the BS measurement model in (3), the CRB for θ  is given as  
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3. GRADIENT AND HESSIAN OF THE TRACE OF THE CRB 

 

Assuming that multiple sources impinge on an array of sensors at angles, 
T

s
N ],,[= 1 θθ Λθ , we 

are interested in finding the optimal steering angles bθ  for the BS transformation matrix 

)](,),([= 1 bkb aaB θθ Λ  such that  

 

)].,([argmin=ˆ
b

b

b CRBtr θθθ
θ

                                                                                       (6) 

Since )],([ bCRBtr θθ  is a nonlinear function of bθ , the minimization needs to be carried out 

numerically. 

 

We shall use the Newton-Raphson iteration which needs the gradient )],([ bCRBtr θθ∇  and 

Hessian )]),([( bCRBtrH θθ  of )],([ bRBtr θC θ .  

 

They are provided in the following lemmas. 

 

Lemma 2 The i th element of the gradient vector, [ ]),( bCRBtr θθ∇  is given by  
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Proof. The proof of this lemma is omitted because it is tedious but straightforward, utilizing 

matrix differentiation rules.  

 

Lemma 3 The ),( ji th element of the Hessian matrix )]),([( bCRBtrH θθ  is given by 
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Proof. The proof of this lemma is omitted because it is tedious but straightforward, utilizing 

matrix differentiation rules.  

 

The gradient in (7) and Hessian in (9) contain the unknown parameter θ , which we are 

ultimately interested to find, and therefore, cannot be directly used for Newton-Raphson iteration 

for finding bθ . In reality, however, information on the interval sΘ , where θ  must be in, is 

usually available to us, for example from a surveillance radar, and therefore, it is appropriate to 

use the averaged CRB  
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This, in turns, gives the following averaged gradient and Hessian, after interchanging the 

integration and differentiation:  
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4. SIMULATION RESULTS 

 

For a low-angle ship-borne radar, the target reflection usually returns back to the radar via two 

pathes – the direct path and the sea-surface reflection path [13, 14]. Although the AOA of the 

direct path is well-defined (for a continuous tracking radar), the AOA of the reflection path 

cannot be accurately predictable due to the diffuse refelction from rough sea surface. We shall 

consider a tracking radar with three beams, and obtain the optimal beam steering angles for this 

multipath senario.  

 

First, we compare the CRBs of the proposed BS processing, with the DFT-based BS processing 

and the ES processing. Fig. 2 is the case when 16=M , 3=K , 6=L  and dBSNR 10= . It is 

assumed that 
ο1=1θ  and sΘ∈2θ  where ]1.1,1.3[= οο −−Θs . In this case, the computed optimal 

steering angles are 
ο2.7266=1bθ , 

ο0.6966=2 −bθ  and 
ο2.3956=3 −bθ , while the DFT-based 

steering angles are 
ο7.1808=1 −bθ , 

ο0=2bθ  and 
ο7.1808=3bθ . The CRB of the proposed BS 
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processing is not only lower than that of the DFT-based BS processing, but also close to that of 

the ES processing throughout the interval sΘ . 

 
Figure  2: Comparison of the CRB with the proposed steering to that with the DFT-beam 

 
Figure  3: Comparison of the MSE with the proposed steering to that with the DFT beam 

 

Second, we use the stochastic maximum likelihood (SMLE) method [8] 
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Here )(= iH

s aUBa θ  is evaluated for two different B s; the proposed one and the DFT-based 

one. Mean squared errors (MSEs) of the two estimates for 100 trials are compared in Fig. 3.  
 

5. CONCLUSIONS 

 

We have used the non-unitary beamspace CRB formula [3] to derive the gradient and Hessian of 

the trace of the CRB. Then applying these gradient and Hessian to a three-beam array antenna, 

we have found a set of three optimum beamsteering angles, for the case of two impinging plane 

waves, where one AOA can be rather accurately predictable, while the other has a large 

uncertainty. The MSE with the SMLE AOA estimation with the resulting optimum three-beam 

array is shown to be lower than the MSE with orthogonal DFT-beam AOA estimation. 
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