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ABSTRACT 

  
There is an increasing demand on identifying the sharp and the blur photos from a burst of 

series or a mass of collection. Subjective assessment on image blurriness takes account of not 

only pixel variation but also the region of interest and the scene type. It makes measuring image 

sharpness in line with visual perception very challenging. In this paper, we devise a no-

reference image sharpness metric, which combines a set of gradient-based features adept in 

estimating Gaussian blur, out-of-focus blur and motion blur respectively. We propose a dataset-

adaptive logistic regression to build the metric upon multiple datasets, where over half of the 

samples are realistic blurry photos. Cross validation confirms that our metric outperforms the-

state-of-the-art methods on the datasets with a total of 1577 images. Moreover, our metric is 

very fast, suitable for parallelization, and has the potential of running on mobile or embedded 

devices.  
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1. INTRODUCTION 

 
With fast-growing consumer electronics camera technology, such as phone camera, wearable 
camera, vehicle camera and aerial camera, there are challenging times in exploring easily attained 
photos. Those photos might be captured in a causal way, without a stable support to camera or 
intent focusing on scene. One demand is to discard the useless blurry photos in a mass of 
collection for efficient album management. Another challenge is to pick up the clearest photo 
from a sequence of burst shooting, for either photo snap under unavoidable camera shaking or 
photo recognition crowd-sourcing service like CamFind. To address the automatic and instant 
photo selection, there is a growing interest in a photo sharpness (or blurriness) metric in line with 
human visual perception. 
 
Blur analysis has been widely studied but not well solved. Blur identification in computer vision 
society aims at estimating the type and the amount of blur [19, 16, 28, 26]. It tells in-focus 
regions from out-of-focus ones or moving regions from still backgrounds, forming a blurriness 
map to guide segmentation [5], super-resolution [9], shape-from-focus [20], depth-from-defocus 
[32], motion-from-blur [11], defocus magnification [1], and deblur [11, 25]. However blur 
identification pays attention to local blurriness in radiometric intensity rather than the overall 
quality in perception. Focus measure in electronic microscope and camera design [13, 20] can 
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tackle a focus image series, but probably fail when the scene is moving or changing. Quality 
metrics SSIM, widely used in signal processing society, match perception fairly well, but they 
need a reference image, known as the full-reference metrics. Recent studies develop the no-
reference sharpness metric [14, 2] with the guidance of subjective image quality database and 
even unlabeled images. The subjective databases provide the MOS (subjective mean opinion 
scores) as the ground truth of blur extent, and the unlabeled data are synthesized with the same 
distortion type and level as the subjective databases [29, 27]. However, most databases use the 
synthetic images, which are generated from a limited set of source images with spatially-invariant 
Gaussian convolution. Existing metrics often do well in those synthetic datasets, 
 

 

(a) Reference         (b) Gaussian blur         (c) Disk blur         (d) Linear motion blur   (e) Realistic blur 
 

 
 

but perform poorly on the realistic blur, e.g., UFRJ database [10, 7]. It is also interesting that Ye 
et al. studied the relationship between the blurriness of document images and the OCR (optical 
character recognition) accuracy, and reported that OCR accuracy may not be consistent with 
human perception [29]. To summarize, few prior arts study the realistic blur from the perspective 
of perception; the existing metrics are good at synthetic blur among an image series sharing the 
similar scenes, but perform poorly in practice and change dramatically when scene changes. 
 
In fact, realistic blur is challenging to measure because: 
 
1) Realistic blur mainly include out-of-focus blur and motion blur.  
 
Out-of-focus blur generally smooth the edges, but motion blur may generate edges parallel to the 
motion smear, e.g., light streaks (see Fig. 1(e)). A single feature can hardly predict the hybrid 
blur. 
 
2) Photos may exhibit diverse scenes, from the smooth, e.g., sky and face, to the rough, e.g., 
forest and fabrics.  
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A natural scene may contain steep edges around occlusions or soft edges due to illumination. 
Simple image statistics often fail to tell a sharp smooth scene from a blur rough scene. 
 
3) Blur pixels do not always degrade photo sharpness.  
 
For example, lens blur can pop out the in-focus objects from the out-of-focus background and 
make objects distinctively sharper in appearance. Pure average of local sharpness is possibly 
inconsistent with subjective appreciation. 
 
In this study, we develop a fast metric for practical applications. Keeping this in mind, we learn 
from realistic data and approximate the solution by using a set of low-level vision features. 
Contributions of our work include: 
 
1) We design and select a set of features regarding their correlations with various perceptual blur. 
Those features employ different image statistics and varied pooling strategies to complementarily 
measure the multiple types of blur in subjective datasets.  
 
2) Such datasets are an exhaustive gathering of current public subjective databases and our own 
collection of failure cases. Those versatile data may guarantee unbiased data-driven modeling. 
 
3) We formulate a dataset-adaptive logistic regression to co-train our metric on multiple datasets. 
It bridges the gap between misaligned datasets and makes full use of the adopted data-driven 
approach. 
 

2. REALISTIC BLUR 

 
In photography, photo blur mainly stems from lens blur and motion blur. Lens blur keeps clear 
the in-focus objects if any, and yet obscures the out-of-focus things. Motion blur may pervade the 
whole photo for camera shake or occurs locally on moving objects. 
 
In mathematics, out-of-focus blur is modeled as convolution with a disk kernel, and motion blur 
as convolution with a trajectory kernel. If the motion happens to be linear uniform during 
exposure, the kernel evolves to a line. A disk kernel has a spectrum with circularly symmetric 
sinc waves, while a line kernel exhibits parallel sinc waves in spectrum [12, 16, 28]. If a kernel is 
spatially-invariant, its distinct pattern accumulates and reflects in the image spectrum. Fig. 1 
shows the log spectrum of the disk blur (c) and linear motion blur (d) synthesized from the 
reference (a). 
 
However, the spatially-invariant assumption is too strong for realistic blur. Many factors will 
violate the assumption. 
 
1) Out-of-focus varies with the object depth, and the motion blur correlates to the velocity of 
moving objects; 
 
2) Lens geometric distortion differentiates the blur along the radial direction; 
 
3) Nonlinear tone mapping (e.g., Gama correction) in imaging pipeline changes the dependency 
among pixels which originally takes place at image sensor. 
 
Moreover, after the processing in imaging pipeline including demosaic, denoise and/or resize, the 
final blur makes toward Gaussian blur to some extent. Fig. 1(e) shows the log spectrum of 
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realistic blurry image, where sinc wave patterns disappear. As a result, realistic blur is often 
hybrid and hardly described by a simple mathematic model. 
 

3. PERCEPTUAL SHARPNESS FEATURE 

 
A considerable amount of subjective rating data is available now. It inspires us to use data driven 
modeling. First of all, we design and select the basic features for each type of blur, including 
Gaussian blur, out-of-focus blur and motion blur. Then we combine the features with logistic 
model and train a robust metric on datasets with regression method. 
 

3.1. Maximal gradient (MAG) 

 

 
 

 

 

Smooth regions always pervade natural images, where steep gradients rather than gentle gradients 
dominate the perceptual sharpness. So the largest local maximal gradients are taken into account, 
which often correspond to the structures and textures of an image. As proposed in [2], the global 
maximal gradient is computed as 

 

where operator  computes the expectation (i.e., the mean), k is empirically set to 2% and thus 
the operator max k takes 2% of the largest local maximal gradients. The local maximal gradient 
maps are shown in the second row of Fig. 3, where 2% of the largest values are marked bright. 

3.2. Minimal 2
nd

 order gradients ratio (MGR) 

Gaussian blur and out-of-focus blur smooth image isotropically, while motion blur flattens image 
specially along the motion smears. Such flattening can decrease the 2nd order image gradient in a 
certain direction. Blurriness in this direction can be estimated by the minimal 2nd order gradient, 
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However, smooth regions also have small 2nd order gradients, and thus may mislead the blurriness 
measurement above. To overcome the flaw, we, again, select and count the largest values within 
an image like MAG, as 

 

The minimal 2nd order gradient maps are shown in the third row of Fig. 3, where the largest 
values are marked bright. 

A heavier motion blur can spread over a wider area, but can be hardly described by the 2nd order 
gradient which covers only a 3×3 neighbourhoods. To avoid slow convolutions with big kernel 
size, we resort to multi-scale analysis. To be specific, the ratio of the M2G values between image 
scales may indicate whether the blurriness propagation terminates at the current stage. Given a 

sequence of increasing resolutions  we have corresponding  

 

 

Figure 3. Visualized sharpness feature map of the samples in UFRJ database. The rows, top down, show 
original images, maximal gradients, minimal 2nd order gradients, gradient kurtosis, doubled gradient angles, 
and patch-wise MAG (for computing MSG) respectively. 

 

We define the minimal 2nd order gradients ratio (MGR) as: 
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3.3. Average gradient kurtosis (AGK) 

Natural images have super-Gaussian distribution with an acute peak and heavy tails in spatial 
frequency domain. The blur process widens the distribution and thus reduces its peakedness. 
Actually, the kurtosis for a blurred patch is smaller than that of a sharp one in Fourier [31], DCT 
(discrete cosine transform) [4], and gradient domain respectively [25]. Shi et al., use local 
gradient kurtosis to justify the blurriness of patches [25], which inspires us evaluating the 
sharpness of whole image with the average local gradient kurtosis as 

 

where image grid I is divided into non-overlapped patches indexed with p, kurtosis operator  
computes the kurtosis within the p-th patch, and the local gradient kurtosis is the smaller one 
between the vertical gradient kurtosis and the horizontal gradient kurtosis. The gradient kurtosis 
maps are shown in the fourth row of Fig. 3. 

 

Figure 4. Doubling the vector angle may cancel out the perpendicular vectors (top) and consolidate the 
opposite vectors (bottom). 

3.4. Average angle-doubled gradient 

So far, we expect that the maximal gradients can measure the isotropic blur like Gaussian blur 
and the minimal 2nd order gradients can evaluate the anisotropic blur like simple motion blur. 
Though blur classification is simplistic in practice, we nevertheless try to identify the blur type. 
Note that linear motion blur smooths image along and opposite to the motion direction and 
meanwhile maintain or even enhance the contrast perpendicular to the motion direction. 
Measuring the coherence of gradient angles should therefore add the same or the opposite 
directions but cancel out the orthogonal directions. As proposed by Jang et al. [15], doubling and 
subsequently averaging the gradient vectors can exactly accomplish this goal. Actually as proved 
in [8], the average doubled gradient angle correlates to the direction, along which the image 
embodies the minimal high-frequency energy. 
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The gradient vector field  can be represented by the complex array  and doubling 

arguments (angles in radius) is obtained by squaring the vectors as  
Adding the angle-doubled gradients may cancel out the perpendicular gradients and yet 
consolidate the opposite gradients, as illustrated in Fig. 4. In Fig. 3, the angle-doubled gradient 
maps are visualized with uniform-lightness color images, with the double angle as hue and the 
magnitude as saturation. Coherent motion directions leads to concentrated colors. On one hand 
the energy of average angle-doubled gradient (EDG) indicates the coherence.  

 

The bigger the magnitude is, the more directionally coherent the gradients are. On the other hand, 
the average energy of angle-doubled gradients (ADG), as  

 

equals to the average squared gradient energy, and reflects the contrast of textures and edges in an 
image. Chen et al. argue that ADG can identify whether the image (patch) is motion blurred or 
out-of-focus blurred [8], while Jiang et al. suggest that EDG normalized by ADG can identify 
blur type more inconsistently with scene change [15]. We on one hand select ADG as a feature of 
our metric, and on the other hand normalize MDG by ADG to obtain the normalized energy of 
average angle-doubled gradient (NDG): 

 

To identify heavier blur, we use multi-scale analysis again and define the product of NDGs across 
image scales as 

 

3.5. Moment of sharp gradients (MSG) 

How a local patch contributes to perceptual global blurriness may depend on where it is. For 
example, an in-focus subject against out-of-focus background, which is often created in a shallow 
DOF (depth of field), will look distinctively sharper. Therefore, the distribution of sharp regions 
and blur regions should be taken into account. 

First of all, we classify an image into a shallow DOF or a deep DOF by analyzing the 
concentration of sharp regions. To this end, we estimate a patch-wise binary sharpness map for an 
image. During computing the aforementioned MAG, we have located the k-largest gradients in an 
image. A patch that contains more than T top-k-largest gradients belongs to the sharp patch set, 

denoted by $p\in P_s$, otherwise the blur patch set, denoted by  As a result, concentrated 
large gradients will cause fewer sharp patches while scattered large gradients will generate more 
sharp patches. The resultant gradient maps are shown in the bottom row of Fig. 3, where sharp 
patches are marked bright and blur patches are assigned dark. Accordingly, an image with less 

than 40% sharp patches is classified as a shallow DOF scene, denoted by  otherwise as a 

deep DOF scene, denoted by . 

Then, we analyse the distribution of sharp and blur regions. In photography, the subjects are 
typically framed and composed at the center or at the one third in the image space (known as rule 
of thirds), where we mark as composition reference points. We define moment arm as the city 

block distance from the considered point  to the nearest composition reference point, as 
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where W and H are the width and height of the image. We further define the sharp moments as 
the average transformed moment arms for all sharp points,  

 

and the blur moments as the average transformed moment arms for all blur points. 

 

Finally,we calculate the feature for shallow DOF and deep DOF scene separately: 

 
 

4. ADAPTIVE REGRESSION ON MULTIPLE DATASETS 
 

Given an image set  with the mean opinion scores about perceptual sharpness  and a 

group of selective features , we look for a metric  with parameters , to maximize the 
likelihoods: 

 
If multiple image sets are available, we maximize the total likelihoods among all the sets: 

 

where the datasets are indexed by j. 

Subjective opinions about perceptual sharpness are always bounded, like other psychological 
measurements. That is, opinion scores will approach the lower bound for the worst quality and the 
upper bound the best quality, which are called the flooring and the ceiling effects.  

A key challenge of analyzing multiple datasets is that the mean opinion scores cannot be mixed 
up straightforwardly. This is because the flooring and ceiling effects rely on the context of the test 
materials and may vary across datasets. Actually, a human subject can hardly valuate an isolated 
photo without being demonstrated how the “best” and the “worst” ones look like. The test 
conditions between the datasets were factually inconsistent here. So the transform from the 
sharpness measure towards the MOS cannot be fixed since the context is not consistent. 

To span the gap, a standard of method is to align the MOSs via the “anchor” samples shared 
between datasets [3]. However, the datasets here cannot be aligned in that way, for lack of 
intersect images as anchors. We propose adaptive logistic regression for the problem as 
following. Logistic modeling is suitable for psychological measurement, since it fuses features 
and maps them to a bounded interval. A logistic model can be written as  
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where  is a parameter vector with the equal length as feature vector f and b is a scalar parameter. 

Traditionally, b is often merged into  as . However, we isolate b and adapt it to each dataset. 

That is, we use a unique  for all datasets and yet  for the datasets indexed with j. So Eq.(8) is 
rewritten as 

 

We assume the opinion scores as Gaussian distributed variables and therefore instantiate the 
likelihood as mean squared error. Eq.(10) is derived as 

 

Parameters  controls the shape of the sigmoid logistic curve and adapts the predicted quality 
scores q towards the MOSs for each dataset. They compensate the misaligned flooring and ceiling 
effects across datasets. It is interesting that b does not change the rank order of the predict quality 

scores for each dataset. Instead, it is  that determines the rank order of the predicted quality. 

It is straightforward to use the nonlinear regression toolbox of MATLAB to solve  with a 
gradient-descent method. The convergence is usually guaranteed during our ample random tests. 
Moreover, the regression toolbox also provides the statistical significance test for the feature 
evaluation, which will be discussed in the next section. 

5. EXPERIMENT 

5.1. Protocol 

We collect nine datasets, including the publicly-available databases and our own database. We 
extract the subsets of Gaussian blurred images, from the public databases LIVE [24], IVC [18], 
A57 [6], TID2008 [22], CSIQ [17], VCL_FER [30], and TID2013 [21]. These images are 
synthesized by convoluting sharp reference images with spatially-invariant Gaussian kernels. 
UFRJ database [10] and our database, contain realistic blurry photos. In UFRJ database, the 
photos are captured with digital compact cameras, and wherein the blur is further classified and 
labeled as out-of-focus, simple motion, complex motion and “other” type. Our database contains 
the photos snapped with phone cameras and wearable cameras in daily life. Its samples are the 
failure cases during our many rounds of redesign and retest (refer to the supplementary material 
for more detail). We believe that those data allow us avoid overfitting on limited and biased data. 
Both UFRJ and our database keep the JPEG EXIF information intact for each image. 

The full datasets contain a total of 1577 blurry images and the associated MOSs. The MOSs 
represents the ground truth of image sharpness or blurriness, and is used to evaluate the prediction 
accuracy of metric. In experiment, we normalize all subjective scores to the range [0,1]; a MOS 
of 0 indicates the worst quality (the blurriest) while a MOS of 1 represents the best quality (the 
sharpest). 

5.2. Evaluation criterion 

The model accuracy is evaluated using the Spearman’s rank order correlation coefficient 

(SROCC)  between the predicted and the subjective quality score series.  has a range of 

 the higher the value, the better the accuracy. Random predictions will achieve a  value 
of about 0. 
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 evaluates the ordinal match between two score series, and thus remains invariant with any a 

monotonic mapping of the series. In other words, the accuracy in terms of  does not rely on any 
curve-fitting procedure. Such a curve-fitting procedure is, however, inevitable and sensitive for 
computing other criteria, like Pearson’s linear correlation coefficient (LCC) and root-mean-
squared error (RMSE). 

5.3 Feature evaluation 

The selective features  includes MAG, MGR1, MGR2, AGK, ADG, PNDG, MSG as well as 
EXP (exposure time), as listed in Table 1. The exposure time is recorded in the JPEG EXIF data. 
For the image without the exposure time information, we set EXP = 0.01 second (at such a shutter 
speed, the photo just tends not to blur). We compared the proposed features and state-of-the-art 
metrics over the datasets. The accuracy for each type of blur is plotted in the spider chart of Fig. 

5, where the radial axis indicates the correlation  ranging from  ̶ 0.4 at the center origin to 1 at 
the outermost square grid. Four types of blur are counted. For Gaussian blur (the upward direction 

in Fig. 5), we compute the average  on the seven Gaussian blur datasets, which cover a total of 
687 images. For out-of-focus (rightward), simple motion (downward) and complex motion 

(leftward) blur, we calculate the  on the corresponding subsets of UFRJ database, which 
contain 141, 57 and 62 images respectively. 

Table 1.  Abbreviations and definitions of features and metrics. 

Abbr. (Def.) Feature / metric operator [Ref.] 

ADG (5) Average energy of angle-Doubled Gradients 

AGK (4) Average Gradient Kurtosis 

EXP Exposure time in JPEG EXIF 

GRA1 Gaussian derivative [20] 

GRA2 Gradient energy [20] 

GRA4 Squared gradient [20] 

LPC_SI Local phase congruency sharpness index [14] 

MAG (1) Maximal Gradient 

MGR1 (2) Minimal 2nd Gradient Ratio at Scale 1 & 2 

MGR2 (3) Minimal 2nd Gradient Ratio at Scale 3 & 4 

MIS9 Vollath’s autocorrelation [20] 

MSG (7) Moment of Sharp Gradients 

PNDG (6) Product of Normalized energy of average angle-Doubled Gradient 

STA8 Histogram range [20] 

 
Table 2.  Statistical significance of features in regression 

Feature fm 95% CI of Parm. βm p value of Parm. βm 

EXP 0.290±0.042 4.0×10 ̶̵ 39 

MGR2 ̶ 1.07±0.19 1.2×10 ̶ 28 

MGR1 ̶ 0.363±0.099 1.0×10 ̶ 12 

PNDG 0.0796±0.0277 1.0×10 ̶ 11 

ADG ̶ 0.346±0.142 2.1×10 ̶ 6 

MAG 0.242±0.142 9.0×10 ̶ 4 

AGK ̶ 0.359±0.221 1.5×10 ̶ 3 

MSG ̶ 0.762±0.586 1.1×10 ̶ 2 

 

These experimental results give us a first impression about the capability of the features. Among 
the proposed features, ADG has the best overall accuracy on all datasets; MGR2 ranks the second 
in overall and is specially good at “simple motion” and “out-of-focus” blur; AGK is generally 
accurate and does especially well in motion blur; MAG achieves the state-of-the-art accuracy on 
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Gaussian blur; and the other feature MGR1, MSG or PNDG alone appears not to correlate with 
each type of blur very well. 
 
We compare with the state-of-the-art Gaussian blur metric LPC_SI [14], the best focus metric for 
microscope MIS9 [13], and the recommended focus metrics for OCR, i.e. GRA1, GRA2, GRA4, 
and STA8 [23] (see their definitions in [20]). Considering the performance of the existing metrics 
as shown in Fig. 5(b), the Gaussian blur is the easiest to predict, the out-of-focus blur is also easy 
to handle, and yet the motion blur are much more challenging to measure. This is partly because 
the Gaussian blur is synthetic and ideally spatially-invariant, the out-of-focus blur here is also 
nearly spatially-invariant since the images with shallow DOF have been picked out to the “other” 
type of blur in UFRJ database, but the motion blur here is rarely coincidental with spatially-
variant blur. Another reason is that the Gaussian blur images, although abound here, are 
synthesized and derived from a few reference images, but the images in UFRJ database have 
more diverse scenes. 

 

Figure 5. Correletion  between features and single type of perceptual blur, in terms of spider chart 

Feature selection not only depends on the performance of using each feature alone, but also relies 
on that of using feature combinations. The latter point can be evaluated by the statistical 
significance test. For logistic regression model, the p value and the CI (confidence interval) can 
indicate the significance of the feature variables. On one hand, the smaller the p values is, the 
more confident the corresponding feature is. On the other hand, the 95% CI (confidence interval) 

of  does not cover 0 means that feature  is sufficiently confident. In this paper, we omit the 
process of feature selection but show the statistical significance of the final feature combination 

in Table 2. Parameters  are obtained by nonlinear regression on the full datasets. All the 
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95% CIs are apart from 0, so it is confident that the selective features are powerful. It is worth to 

mention that MGR1 and PNDG correspond to quite small p values in Table 2, despite low  
values in Fig. 5. It means that MGR1 and PNDG themselves alone are weak but they are really 
helpful to the feature combination. Moreover, the image composition related feature MSG also 
plays a fairly significant role, for a p value of 0.01. 
 

5.4 Metric comparison 

 
With the selective features and adaptive logistic regression, we obtain the metric as Eq. (9). The 

accuracy of metrics is compared in Fig. 6. In Fig. 6, the radial axis still indicates  on each 
dataset ranging from  ̶ 0.4 at the centre to 1 at the outermost decagon grid. In the upward 

direction, we compute the weighted average  on all datasets, which is weighed by the number 
of images in each dataset. 

 

Figure 6. Correlation  of metrics on each dataset 

 
For a fair comparison, we report the cross validation result of our metric. That is, for each time, 
we randomly divide each dataset into two segments, 50% for training and the other 50% for 

testing, find a unique set of parameters  by training, and test it to obtain a set of accuracy on 
every dataset. Running the procedure for 100 times, we compute the average accuracy. 
 
As a result, our metric achieves the best overall accuracy on all databases. It outperforms other 
metrics on the realistic photos datasets, UFRJ and our database. UFRJ database is quite 
challenging. To the best of our knowledge, only two papers disclose the result of their proposal 

on UFRJ database; the authors of UFRJ database report  of 0.56±0.04 [10], and Chen et al. 

claim  of 0.586 [7]. Our metric attains  of 0.688±0.052 in cross validation. We use the same 

features but replace logistic regression with SVR (supporting vector regression), and obtain a  
of 0.631 in cross validation. Our database is even tougher, since it contains the failure cases 
during our past repetitive trials, such as blurry but high-contrast images (e.g., textural, noisy and 
overexposure scenes) as well as sharp but low-contrast scenes (e.g., sky, lake and nightscape), as 

shown in Fig. 7. On our database, LPC_SI only obtains  of 0.132 and most existing metrics 

even get a negative , which are not better than a random prediction. However, our metric 

attains  of 0.424.  
 
For most of the synthetic image datasets, our metric achieves comparable accuracy as the state-of-
the art approach LPC_SI. It is inferior to most metrics only on A57 and IVC. These two datasets 
are too small to guarantee unbiased random divisions in cross validations. Note that the number 
of samples in each dataset is annotated in the parenthesis in Fig. 6. 
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6. CONCLUSION 

 
A no-reference sharpness metric is proposed and verified efficient for realistic data. It is nothing 
special, but comprises a set of nonlinear statistics on image gradients. The assorted of statistics 
are closely related to various aspects of pooling strategy; the operators maximum, variance, and 
kurtosis accentuate the steepest gradients, the pixel-wise average, patch-wise average, and 
pyramid analysis merge gradients in multi-scales, and the moments based on image composition 
weigh gradients with visual saliency, while the operators minimum and vector mean attribute 
gradients to the outcome of different blur type. It is important that those statistics combination is 
“selected”' by a statistic modelling on data, more than a mere handcraft design. Nonetheless, 
perception on blur involves with high-level vision and goes beyond the proposed statistics. There 
is still substantial room to improve the measurement by incorporating high-level features. 
 

 

Figure 7 Failure cases of sharpness overesimated (top) and underestimated (bottom) in our database. 
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