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ABSTRACT 

 
In this paper, variability analysis was performed on the model calibration methodology between 

a multi-camera system and a LiDAR laser sensor (Light Detection and Ranging). Both sensors 

are used to digitize urban environments. A practical and complete methodology is presented to 

predict the error propagation inside the LiDAR-camera calibration. We perform a sensitivity 

analysis in a local and global way. The local approach analyses the output variance with 

respect to the input, only one parameter is varied at once. In the global sensitivity approach, all 

parameters are varied simultaneously and sensitivity indexes are calculated on the total 

variation range of the input parameters. We quantify the uncertainty behaviour in the intrinsic 

camera parameters and the relationship between the noisy data of both sensors and their 

calibration. We calculated the sensitivity indexes by two techniques, Sobol and FAST (Fourier 

amplitude sensitivity test). Statistics of the sensitivity analysis are displayed for each sensor, the 

sensitivity ratio in laser-camera calibration data 
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1. INTRODUCTION 
 
Many papers address the calibration LiDAR-camera but very few papers address the uncertainty 
and sensitivity analysis in the data fusion between a laser sensor and a camera. The interest of 
this development is to present a study of the quantification of the variability in own methodology 
results according to the input uncertainties in the calibration model of a multi-sensor platform for 
urban dimensional reconstruction tasks. 
 
Once the calibration model and data fusion are defined, the sensitivity analysis will determine the 
uncertainty in input parameters [13]. Many approaches to sensitivity analysis and uncertainty 
exist, including (1) based on sampling, that uses samples generation considering its probability 
distribution to analyze the results of its variation [7], (2) differential analysis, which is to 
approximate the model to a Taylor series and then performing an analysis of variance to obtain 
the sensitivity analysis [2], (3) Fourier amplitude sensitivity test (FAST), is based on the variation 
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of the predictions of the models and the contributions of individual variables to the variance [14], 
(4) response surface methodology (RSM) in which an experiment is designed to provide a 
reasonable response values of the model and then, determine the mathematical model that best 
fits. The ultimate goal of RSM is to establish the values of the factors that optimize the response 
(cost, time, efficiency, etc.) [11]. 
 
Generally, it can perform a sensitivity analysis in a local or global way  [13]. The local approach 
analyses the output variance with respect to the input parameters. Input parameters are altered 
within a small range around a nominal value and a particular analysis of each parameter is 
performed. This analysis only provide information based where it is calculated, since no analyses 
the entire input parameter space. Furthermore, if the model is not continuous the analysis is 
unable to be performed. On the other hand, global sensitivity approach defines the uncertainty of 
the output to the uncertainty of the input factors, by sampling Probability Density Functions 
(PDF) associated with the input parameters. For this approach, all parameters are varied 
simultaneously and sensitivity indexes are calculated on the total variation range of the input 
parameters. 

The Monte Carlo (MC) method provides a standard technique for assessing uncertainty in models 
and modeling data fusion; simulating and sampling the input variables [8,17]. The MC method 
generates pre-defined pseudo-random numbers with a probability distribution according to its 
PDF. The number of sequences to be simulated must be determined according to the 
recommendation in [4]. When a model contains too many variables, the uncertainty and 
sensitivity analysis using Monte Carlo method becomes difficult and with a high computationally 
cost. This difficulty arises because too many variables require a large number of simulations. 
 
In the Latin Hypercube Sampling (LHS) method, parameters are treated as pseudo-strata and 
numbers are distributed in proportion to the elements of each strata sample. The PDF is 
generated from the average of each stratum and must have the same distribution of the elements 
in the sample strata to be calculated under predetermined conditions. The amount of pseudo-
random numbers to be generated for the simulation is set similarly to that defined in MC. An 
analysis of the efficiency and speed of the LHS method against MC method is presented in [01]. 
 
Other methods for global sensitivity analysis are presented in [3, 9, 12]. 
 

2. MODEL ACQUISITION PLATFORM 

 
The goal is geometrically model our multi-sensors platform behaviour (Fig. 1). Consists by a 
Velodyne HDL-64E laser scanner, a Point Grey Ladybug2 multi-camera system. 
 
2.1. LiDAR model 

To calculate the LiDAR extrinsic parameters, the methodology presented in [5] was 
implemented. The three-dimensional data is modeled as an AllPointCloud = f(r, �, �) with 
respect to origin, where r is the radius of the surface, � colatitude or zenith angle, and � 
azimuthal angle on the unit sphere. The development of the mathematical model for the captured 
3D points is based on the transformation of the spherical coordinates for each position of the 
unitary sphere onto cartesian coordinates. The key point of this transformation is that every 
involved parameter includes a perturbation as defined in Eq. 1. 
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Figure 1 Sensor platform composed of LiDAR Velodyne HDL-64E (L), Ladybug2 (LB) and GPS. Ladybug 
spherical digital video camera system has six cameras (C). ��, ��	
 represent translation and rotation of the 

LiDAR and six camera frames of the Ladybug2. 

 

 

 

Figure 2  LiDAR Velodyne HDL-64E configuration. 
 

2.2. Multi-camera model 

To get the intrinsic parameters we followed the calibration methodology presented in [18]. A 
camera is modeled by the usual pinhole camera model: The image �� of a 3D point � is formed 
by an optical ray from � passing through the optical center C and intersecting the image plane. 
The relationship between the 3D point � and its image projection �� is given by Eq. 2. 
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where s is a scale factor, ���� , ���� are the extrinsic parameters and represent the rigid 
transformation between a point in the LiDAR frame L to the camera frame C, �� is the intrinsic 
camera parameters matrix, where (��, ��) are the principal point coordinates in the image, focal 
length f, −��� = �  !" �#� = $ are the image scale factors in the axis u y v. The %�� is the 
projection matrix. 

2.3. LiDAR-camera calibration 

The extrinsic transformation between the LiDAR and the camera frame was computed using Eq. 
3. 

 

where R and T represents de rotation and translation respectively, C and L are the camera and 
LiDAR and W represents the word frame. 
 
The pattern acquired by the LiDAR is transformed onto the image frame using the extrinsic 
parameters ����& , ���&�. This transformation allows us to reference in the camera the points 
acquired by the LiDAR. The projection is completed using the intrinsic camera parameters �� , 
Fig. 3. 
 

 
Figure 3 The red points are acquired by the LiDAR and projected onto the image. 

3. SENSITIVITY ANALYSIS 

Two techniques were used for analysis, Sobol and FAST. The advantages that are: (1) parameters 
are evaluated throughout its range of variation, (2) estimating the expected values and the 
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variance of each parameter is calculated directly, (3) calculate the contribution that each 
parameter has on the global sensitivity, (4) determine the effects of the interaction between the 
parameters in the sensitivity analysis, and (5) no modifications are required in the calibration 
model for the analysis. 

3.1. Sobol 

Suppose the model is given by ' = �((), (*, … , (,), where (- are independent input parameters, 
Y is the model output. Using dispersion analysis by [1], f can be linear or nonlinear, and the 
sensitivity analysis evaluates the contribution of each parameter (- in the variance of Y. This 
study is known as analysis of variance (ANOVA). For sensitivity indices for each parameter 
independently V variance model is decomposed as: 

 V = / V00
+ / 2-,3 

043
+ / 2-,3,504345

+ ⋯ + V7  (4) 

where 2, = 2 89:';(- , (3, … , (,<= − 2- − 23 − ⋯ − 2,. As a rule, the Eq. 4 has a total of terms 

∑:?), + ?** + ⋯ + ?,,< = 2, − 1. Sensitivity analysis indices are computed: 

 S0C,-D,…,-E = V0C,-D,…,-EV     (5) 

where F), F*, ⋯ , F, are the input parameters. Then, all the sensitivity indexes that allow us to 
observe the interaction between inputs and nonlinearity must meet the condition: 

 / G- + / / G-,3 + ⋯ + G, = 1
3H- -

7

0I)
  (6) 

On the other hand, the index G-  = J&J  only shows the effect of the parameter (- in the model 

output, but not analyzes the interaction with other parameters. To estimate the total influence of 
each parameter, the total partial variance is calculated: 

 2-K�K = / 2-C,…,-E0
  (7) 

the sum is over all the different groups of indexes that satisfy the condition 1 ≤  F) <  F* < ⋯  < F, ≤  N, where one of the indexes is equal to i. Then, the total sensitivity index is given by: 

 G-K�K = V0OPO
2  

(8) 

The total sensitivity index (total variance) G-K�K represents the expected percentage of the variance 
that remains in the model output if all the parameters are known except i. It follows then 0 ≤ G- ≤  G-K�K ≤  1. The result is G-K�K and G- indicates the interaction between parameter i and the 
other ones. 
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3.2. FAST 

FAST allows generate independent sensitivity indexes for each input parameter using the same 
number of iterations. The method idea is convert Eq. 4 in a uni-dimensional integer s using the 
transformation functions R-: 
 (- = R-(sin V-N) (9) 

where N ∈  (−X, X). A good choice of the transformation R-  and frequency V- will assess the 
model in a sufficient number of points [14]. Then the expected value of Y can be approximated 
by: 

 9(') = 12X Y �(N)"N Z
[Z  

(10) 

by  

 �(N) =  �(R)(sin V)N), … , R,(sin V,N)) (11) 

So therefore, we can approximate the variance of Y as: 

 2(') = 12X Y �*(N)"N − �9(')�*
 

Z
[Z  

≈ / :�-* + ]-*< − (��* + ]�*)∞

-I[∞
 

≈ 2 /:�-* + ]-*<
∞

-I)
 

(12) 

where �- and ]- are the Fourier coefficients. The contribution of (- in the variance 2(') can be 
approximated by: 

 
-̂ ≈ /(�_`-* + ]_`-* )a

_I)
 

(13) 

where VF is related to the value R- in Eq. 11 by b = 1,2 ⋯  c. Will then M, the maximum 
harmonic. The sensitivity coefficients by the FAST method for each parameter is calculated: 

 

                                                       G- =  deJ(f) ≐ 
∑ (hij&

D klij&
D )m

inC

∑ :h&
Dkl&

D<m
&nC

 
(14) 
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4. RESULTS 

4.1. Sensitivity 

4.1.1. Ladybug2 

Were simulated 2,000 samples by MC and LHS. The camera was intrinsically calibrated by the 
method presented in [18]. Sobol was the first technique in which the camera sensitivity was 
assessed (section 3.1). The determination of global indexes (G-) and total indexes (G-K�K) according 
to equations 5 and 8 respectively, requires high computational consumption due to the high 
number of operations performed to decompose the variance of the model for each  parameters 
and the correlation between them. Fig. 4 shows six graphs, one for each distribution on which the 
sensitivity analysis was performed. It has to be emphasized that the Sobol sequence [15] (which 
generates random numbers with low discrepancy) is totally different to the Sobol method for 
calculating the sensitivity indexes described in section 3.1. 
 
Zhang's method shows that the parameter with greater global sensitivity is tz. Furthermore, also 
the parameter with greater total sensitivity is $. A similar behavior but analyzed from the error 
propagation perspective in LiDAR-camera calibration is presented in [6]. We can define that the 
parameters involved directly with the distance of the calibration pattern and image distortions 
tend to be the most relevant in the error propagation in our calibration system. This error can be 
minimized in two ways: (1) removing the image distortion and standardizing the images and (2) 
increasing the reference points in the calibration process. Furthermore, this demonstrates the 
flexibility to use a calibration approach using a pattern plane. 
 
The second technique implemented for sensitivity analysis of the camera was FAST. This 
technique gives us the first order indexes G- by Eq. 14. Table I shows the sensitivity quantified by 
FAST. It is noted that the parameter tz is the more sensitive one. Just as the Sobol method, depth 
is important. Using a pattern with more corners can reduce this condition. These results confirm 
experiments made empirically by [16] and also the behaviour shown in Figure 4. 

 
 

Figure 3 Zhang's calibration method analyzed by Sobol technique, blue bars are the global sensitivity (op) 
and red bars are the total sensitivity opqrq. Simulated data by MC and LHS with six different distributions. 
The most relevant parameters are tz and s, i.e. with more sensitive. Table I shows the number parameters 
reference. 
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Table 1 Sensitivity analysis by FAST method according to Eq. 14. It is noted that tz and ty 
parameters are the most sensitive. Only tz parameter agrees with the analysis by the Sobol 
method, marking a tendency to introduce error in the camera calibration. 
 

Reference Parameter Sensitivity index 

1 tx 0.0130 

2 ty 0.1108 

3 tz 0.5998 

4 wx 0.0380 

5 wy 0.0329 

6 wz 0.0960 

7 � 0.0081 

8 $ 0.0619 

9 u0 0.0031 

10 v0 0.0363 

 

4.1.2. LiDAR 

The LiDAR sensitivity indexes by Sobol method was calculated as the camera. Figure 5 shows 
the global (G-) and total (G-K�K) indexes. It can be seen, that the parameters � and t� are 
introducing greater uncertainty in the calibration model. The � parameter corresponds to the 
LiDAR orientation angle, and is related to the mechanical rotation, while t� is a correction of the 
orientation of each LiDAR laser, because not all of them are in a single plane. Variations in � and t� parameters induce measurement errors because the LiDAR is oriented at a single plane, when 
actually LiDAR lasers are register a near plane. 

 

Figure 4  LiDAR sensitivity analysis by Sobol method, blue bars are the global sensitivity(op) and red bars 
are the total sensitivity (opqrq). Simulated data by MC and LHS with six different distributions. The most 
relevant parameters are u and vu, i.e. with more sensitive. Table II shows the number parameters reference 
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Through the FAST technique, sensitivity indexes match to Sobol technique as shown in Table II. 
The � and t� are the most sensitive parameters and introducing more noise in the model, and 
hence increase the output uncertainty error in the calibration values. 
 
Table 2 Sensitivity analysis by FAST technique according to equation 14. It is noted that u and vu parameters are the most sensitive to introduce error into the laser sensor calibration. 
 

Reference Parameter Sensitivity index 

1 ds 0.0140 

2 � 0.4137 

3 � 0.0004 

4 2wx�  0.0160 

5 ywx� 0.000 

6 t"N 0.0006 

7 t�  0.5552 

8 t�   0.000 

 
4.2. Uncertainty 

4.2.1. Ladybug2 

The uncertainty analysis was conducted to determine the nominal values of the model's error, 
according to the preliminary sensitivity analysis. Results obtained from a LHS simulation are 
shown in Table III in which we computed the extrinsic parameters ��, ��z{   and the intrinsic 
parameters, image center (��, ��), focal length (�, $). 
 

Table 3 Extrinsic-intrinsic uncertainty camera parameters 
 

 Mean Std 

Translation (mm) |}~}�}�� �−125.82−21.50339.43 � �0.00120.00170.0075� 

Rotation (rad) � ����bF}�ℎ� � � �−2.22−2.14−2.13� �3.884.374.44� × 10[� 

Focal (mm) (551,34,550.81) (0.0013,0.0014) 

Image center (px) (388.61,506.62) (0.0025, 0.0029) 

 
Fig. 6 shows graphics simulated uncertainty calculation. Both series of intrinsic and extrinsic 
parameters exhibit a linear behaviour. Uncertainties were obtained when normal distribution �(0, �) Gaussian noise was added to feature points extracted from the pattern(corners). � 
parameter was the result of projecting real-world pattern feature point coordinates’ on image 
plane, its value was 10 pixels. Average error for our projection algorithm was then calculated by 
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measuring the differences between extracted feature points of the whole set of images and those 
of the real pattern, this error was calculated to a value of 0.25 pixels. Figure 6(a) shows the Z axis 
error tends to increase more than the other axes. Figure 6(c) shows that the error is stable and 
incremental for both axes while noise increases. 
 

 
Figure 5 Simulated camera parameters performance. Ordinate axis represents the standard deviation of 

2,000 iterations using LHS simulation. 
 

4.2.2. LiDAR 

Table IV shows the uncertainty on extrinsic parameters with respect to the world frame. Using a 
LHS simulation, noise was added to the feature points to evaluate the behaviour of error in these 
two parameters. 
 

Table 4 Uncertainty on extrinsic LiDAR parameters ��, ���	    

 

 Mean Std 

Translation (mm) |}~}�}�� �−515.29165.62−39.06 � �−1.581.08−1.92� 

Rotation (rad) � ����bF}�ℎ� � � �0.551.511.52� �0.0150.0110.012� 
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4. CONCLUSIONS 

 
Variability analysis in the LiDAR-camera calibration is compute. We estimate the relationship 
between the input and the output quantity in a implicit form. The sensitivity of the calibration 
depends on the measurements quality, the model used, the calibration method and the conditions 
under which it is performed. A sensitivity analysis was performed on models of individual 
calibration of a multi-camera system and a laser sensor. Two techniques are presented for this 
analysis. Sobol technique, which is based on the decomposition analysis of the variance for each 
input parameter into the model. And the FAST technique, which uses a Fourier series to represent 
a multivariable function in the frequency domain using a single variable frequency. For each one 
of these techniques, we simulated data by two methods: (1) Monte Carlo method and (2) Latin 
Hypercube sampling method. Since each parameter in the calibration has its own probability 
distribution, and wanting to generalize the sensitivity analysis, the data were simulated with 6 
different types of distributions to cover a higher outlook in this analysis.  
 
It was shown that the parameters tz and $ are the most sensitive in the calibration camera model. 
Sensitivity tests for the calibration method presented in [18] were performed. It was concluded 
that the parameters involved in the distance between the camera and the calibration pattern 
(depth) are the most likely to introduce error in the final values of camera calibration, as also 
concluded in uncertainty analysis in [6] Now that the system behaviour is known, we can pay 
more attention to characterize the uncertainty in these parameters. LHS method tends to calculate 
more stable results, i.e. with less variability. On the other hand, it is true that Sobol and FAST 
techniques allows an extensive sensitivity analysis. The downside is while more parameters the 
model has more computation time is required to decompose the variance. In our case, the more 
suitable methodology to simulate data to perform a sensitivity analysis is LHS. In the LiDAR 
calibration, the parameters � and t� are introducing greater uncertainty in the calibration model. 
The � parameter corresponds to the LiDAR orientation angle, and is related to the mechanical 
rotation, while t� is a correction of the orientation of each LiDAR laser. Variations in � and t� 
parameters induce measurement errors because the LiDAR is oriented at a single plane, when 
actually LiDAR lasers are registering a near plane. 
 
On the other hand, the uncertainty analysis shows a deviation as small as 0.003 mm on the 
translation vector it has been shown that the proposed calibration method is robust and reliable a 
very small rotation deviation in the order of micro radians has also been obtained. These results 
contribute to a high level of measurement confidence, despite the complicated working 
conditions in which our platforms is used. One can now rely on maintaining an acceptable error 
propagation and uncertainty range in future data fusion operations and 3D texturization. Capture 
platform has been designed to digitize urban environments, which are mainly a set of planes. For 
a plane reconstruction (e.g. front of a house) located at 4 meters or less from the system we found 
a reconstruction error of 2 cm.  
 
In future works, using some other calibration methods, we expect to be able to minimize this 
error propagation and uncertainty. Mainly by using data from different calibration instruments. 
At the end we will be able of compensating the error in 3D reconstruction. 
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