
 

Jan Zizka et al. (Eds) : ICAITA, SAI, CDKP, Signal, NCO - 2015 

pp. 149–162, 2015. © CS & IT-CSCP 2015                          DOI : 10.5121/csit.2015.51513 

 

LEARNING SCHEDULER PARAMETERS 

FOR ADAPTIVE PREEMPTION 
 

Prakhar Ojha
1
, Siddhartha R Thota

2
, Vani M

1 
and Mohit P Tahilianni

1
 

 
1
Department of Computer Engineering,  

National Institute of Technology Karnataka, Surathkal, India 
2
Department of Information Technology,  

National Institute of Technology Karnataka, Surathkal, India 
prakharojha992@gmail.com, sddhrthrt@gmail.com, vani@nitk.edu.in, 

tahilianni@nitk.edu.in 

 

ABSTRACT 

 

An operating system scheduler is expected to not allow processor stay idle if there is any 

process ready or waiting for its execution. This problem gains more importance as the numbers 

of processes always outnumber the processors by large margins. It is in this regard that 

schedulers are provided with the ability to preempt a running process, by following any 

scheduling algorithm, and give us an illusion of simultaneous running of several processes. A 

process which is allowed to utilize CPU resources for a fixed quantum of time (termed as 

timeslice for preemption) and is then preempted for another waiting process. Each of these 

'process preemption' leads to considerable overhead of CPU cycles which are valuable resource 

for runtime execution. In this work we try to utilize the historical performances of a scheduler 

and predict the nature of current running process, thereby trying to reduce the number of 

preemptions. We propose a machine-learning module to predict a better performing timeslice 

which is calculated based on static knowledge base and adaptive reinforcement learning based 

suggestive module. Results for an "adaptive timeslice parameter" for preemption show good 

saving on CPU cycles and efficient throughput time. 

 

KEYWORDS 

 

Reinforcement Learning, Online Machine Learning, Operating System, Scheduler, Preemption   

 

 

1. INTRODUCTION 

 
Scheduling in operating systems is based on time-sharing techniques where several processes are 

allowed to run "concurrently" so that the CPU time is roughly divided into "slices", one for each 

runnable process. A single core processor, which can run only one process at any given instant, 

needs to be time multiplexed for running more processes simultaneously. Whenever a running 

process is not terminated upon exhausting its quantum time slice, a switch takes place where 

another process in brought into CPU context. Linux processes have the capability of preemption 

[8]. If a process enters the RUNNING state, the kernel checks whether its priority is greater than 

the priority of the currently running process. If this condition is satisfies then the execution is 

interrupted and scheduler is invoked to select the process that just became runnable  or any 



150 Computer Science & Information Technology (CS & IT) 

 

another process to run. Otherwise, a process is also to be preempted when its time quantum 

expires.  This type of time sharing relies upon the interrupts and is transparent to processes. 

A natural question to ask would be - How long should a time quantum last? The duration, being 

critical for system performances, should be neither too long nor too short [8]. Excessively short 

periods will cause system overhead because of large number of task switches. Consider a 

scenario where every task switch requires 10 milliseconds and the time slice is also set to 10 

milliseconds, then at least 50% of the CPU cycles are being dedicated to task switch. On the other 

hand if quantum duration is too long, processes no longer appear to be executed concurrently[15]. 

For instance, if the quantum is set to five seconds, each runnable process makes progress for 

about five seconds, but then it stops for a very long time (typically, five seconds times the 

number of runnable processes). When a process has exhausted its time quantum, it is preempted 

and replaced by another runnable process. Every time a process is pushed out to bring in another 

process for execution (referred as context switch) several other elementary operations like swap-

buffers, pipelines clearances, invalidate cache etc. take place making process switch a costly 

operation. [16] So preemption of a process leads to considerable overhead. 

As there does not exist any direct relation between timeslice and other performance metrics, our 

work proposes a machine-learning module to predict a better performing timeslice. The proposed 

adaptive time slice for preemption displays improvements in terms of the  the total time taken 

(Turnaround Time) after the submission of process to its completion, in-return creating more 

processor ticks for future. Most of present work has hard-wired classifiers which are applicable 

only to certain types of jobs. Having a reinforcement learning agent with reward-function, which 

learns over time, gives the flexibility of adapting to dynamic systems. The subsequent sections 

will briefly discuss the fundamentals of reinforcement learning framework, which strives to 

continuously improve self by learning in any new environment. 

Following sections in this paper are organized as follows: Section 2 gives an overview of the 

related previous works and Section 3 explains the theory of our reinforcement learning 

framework. Section 4 shows how we approach the problem in hand by proposing a novel design, 

integrate RL modules and run simmulations and then followed by implementation details of 

knowledge base created and self-learning systems in Section 5. The results and analysis of our 

system’s performace is evaluated in Section 6 followed by conclusions and discussions in Section 

7. 

2. RELATED WORKS 

 
Attempts have been made to use historical-data and learn the timeslice parameter, which judges 

the preemption time for a given process, and make it more adaptive. Below section briefly 

discusses earlier works in relevant fields by applying machine learning techniques to CPU 

resources and Operating system parameters. 

To remember the previous execution behaviour of certain well-known programs, [10] studies the 

process times of programs in various similarity states. The knowledge of the program flow 

sequence (PFS), which characterizes the process execution behaviour, is used to extend the CPU 

time slice of a process. They also use thresholding techniques by  scaling some feature to 

determine the time limit for context switching. Their experimental results show that overall 

processing time is reduced for known programs.  Works related to Thread schedulers on multi 



Computer Science & Information Technology (CS & IT)                                151 

 

core systems, using Reinforcement learning, assigns threads to different CPU cores [6], made a 

case that a scheduler must balance between three objectives: optimal performance, fair CPU 

sharing and balanced core assignment. They also showed that unbalanced core assignment results 

in performance jitter and inconsistent priority enforcement. A simple fix that eliminates jitter and 

presents a scheduling framework that balances these three objectives by algorithm based on 

reinforcement learning was explored.  

The work in [7] has addressed similar problem based on making fixed classifiers over hand 

picked features. Here timeslice values were tried against several combination of attributes and 

patterns emerged for chosing better heuristic. However, their approach was compatible to only 

few common processes like random number generation, sorting etc. and unlike our work, not 

universally adaptive for any application. Reward based algorithms and their use in resolving the 

lock contention has been considered as scheduling problem in some the earlier works[2]. These 

hierarchal spin-locks are developed and priority assigned to processes to schedule the critical-

section access. 

Application run times are predicted using historical information in [1]. They derive predictions 

for run times of parallel applications from the run times of similar applications that have executed 

in the past. They use some of the following characteristics to define similarity: user, queue, load 

leveler script, arguments, network adapter, number of nodes, maximum run time, submission 

time, start time, run time. These characteristics are used to make a template which can find the 

similarity by matching. They use genetic algorithms (GA), which are are well known for 

exploring large search spaces, for identifying good templates for a particular workload.  

Statistical Regression methods, which work well on numeric data but not over nominal data, are 

used for prediction [5]. An application signature model for predicting performance is proposed in 

[4] over a given grid of resources. It presents a general methodology for online scheduling of 

parallel jobs onto multi-processor servers, in a soft real-time environment. This model introduces 

the notion of application intrinsic behaviour to separate the performance effects of the runtime 

system from the behaviour inherent in the application itself. Reinforcement Learning is used for 

tuning its own value function which predicts the average future utility per time step obtained 

from completed jobs based on the dynamically observed state information. From this brief review 

of related literature, we draw the following conclusions: 

• It is possible to profitably predict the scheduling behaviour of programs. Due to the 

varied results in all above discussed works, we believe that the success of the approach 

depends upon the ML technique used to train on previous programs execution behaviour. 

• A suitable characterization of the program attributes (features) is necessary for these 

automated machine learning techniques to succeed in prediction. 

In specific to using reinforcement learning in realms of scheduling algorithms, most of the work 

is concentrated around ordering the processes like to learn better permutations of given list of 

processes, unlike our work of parameter estimation. 

 

 



152 Computer Science & Information Technology (CS & IT)

 

3. REINFORCEMENT LEARNING

Reinforcement learning (RL) is a collection of methods for approximating optimal solutions to 

stochastic sequential decision problems [6]. An RL system does not require a teacher to specify 

correct actions, instead, it tries different actions and observes their consequences to determine 

which actions are best. More specifically, in any RL framework, a learning agent interacts with 

its environment over a series of discrete time steps 

the agent observes the environment state 

environment to transition to a new state 

system, the next state and reward depend

stochastic manner. To clarify notation used below, in a system with discrete number of states,

the set of states. Likewise, A is the set of all possible actions and 

available in states. The objective of the agent is to learn to maximize the expected value of 

reward received over time. It does this by learning a (possibly stochastic) mapping from states to 

actions called a policy. More precisely, the objective is to cho

maximize the expected return R, given by, 

where γ is the discount-rate parameter in range [0,1] , which allows the agent to trade

the immediate reward and future possible rewards.

Fig.1 Concept of Reinforcement 

Two common solution strategies for learning an optimal policy are to approximate the optimal 

value function, V*, or the optimal action

each state to the maximum expected return that can be obtained starting in that state and 

thereafter always taking the best actions. With the optimal value function and knowledge of the 

probable consequences of each action from each state, the agent can choose an o

For control problems where the consequences of each action are not necessarily known, a related 

strategy is to approximate Q*, which maps each state and action to the maximum expected return 

starting from the given state, assuming that the s

are chosen thereafter. Both V* and Q* can be defined using 

      

                                                                   

where s' is the state at next time step, P

reward. 

Computer Science & Information Technology (CS & IT) 

EARNING FRAMEWORK 

Reinforcement learning (RL) is a collection of methods for approximating optimal solutions to 

stochastic sequential decision problems [6]. An RL system does not require a teacher to specify 

, instead, it tries different actions and observes their consequences to determine 

which actions are best. More specifically, in any RL framework, a learning agent interacts with 

its environment over a series of discrete time steps t = 0, 1, 2, 3. . . Refer Figure.1. At each time 

the agent observes the environment state st , and chooses an action at , which causes the 

environment to transition to a new state st+1, and to reward the agent with rt+1 . In a Markovian 

system, the next state and reward depend only on the current state and present action taken, in a 

stochastic manner. To clarify notation used below, in a system with discrete number of states,

is the set of all possible actions and A(s) is the set of actions 

vailable in states. The objective of the agent is to learn to maximize the expected value of 

reward received over time. It does this by learning a (possibly stochastic) mapping from states to 

actions called a policy. More precisely, the objective is to choose each action at so as to 

, given by,  

 

rate parameter in range [0,1] , which allows the agent to trade

the immediate reward and future possible rewards. 

 

Fig.1 Concept of Reinforcement learning depicting iteraction between agent and environment

Two common solution strategies for learning an optimal policy are to approximate the optimal 

value function, V*, or the optimal action-value function, Q*. The optimal value function maps 

e to the maximum expected return that can be obtained starting in that state and 

thereafter always taking the best actions. With the optimal value function and knowledge of the 

probable consequences of each action from each state, the agent can choose an optimal policy. 

For control problems where the consequences of each action are not necessarily known, a related 

strategy is to approximate Q*, which maps each state and action to the maximum expected return 

starting from the given state, assuming that the specified action is taken, and that optimal actions 

are chosen thereafter. Both V* and Q* can be defined using Bellman -equations as   

                                                                   (2) 

where s' is the state at next time step, P
a
ss' is its probability of transission and R

a
ss' is the associated 

Reinforcement learning (RL) is a collection of methods for approximating optimal solutions to 

stochastic sequential decision problems [6]. An RL system does not require a teacher to specify 

, instead, it tries different actions and observes their consequences to determine 

which actions are best. More specifically, in any RL framework, a learning agent interacts with 

. At each time t, 

, which causes the 

. In a Markovian 

only on the current state and present action taken, in a 

stochastic manner. To clarify notation used below, in a system with discrete number of states, S is 

is the set of actions 

vailable in states. The objective of the agent is to learn to maximize the expected value of 

reward received over time. It does this by learning a (possibly stochastic) mapping from states to 

ose each action at so as to 

rate parameter in range [0,1] , which allows the agent to trade-off between 

learning depicting iteraction between agent and environment 

Two common solution strategies for learning an optimal policy are to approximate the optimal 

value function, Q*. The optimal value function maps 

e to the maximum expected return that can be obtained starting in that state and 

thereafter always taking the best actions. With the optimal value function and knowledge of the 

ptimal policy. 

For control problems where the consequences of each action are not necessarily known, a related 

strategy is to approximate Q*, which maps each state and action to the maximum expected return 

pecified action is taken, and that optimal actions 

 

is the associated 



Computer Science & Information Technology (CS & IT)                                153 

 

4. OUR APPROACH 

 
4.1. Problem formulation 

 
In this paper, we want to study the application of machine-learning in operating systems and 

build learning modules so as to make the timeslice parameter flexible and adaptive. Our aim is to 

maintain the generality of our program so that it can be employed and learned in any 

environment. We also want to analyze how long it takes for a module to learn from its own 

experiences so that it can be usefully harnessed to save time. Our main approach is to employ 

reinforcement learning techniques for addressing this issue of continuous improvement. We want 

to formulate our learning through the reward-function which can self-evaluate its performance 

and improve overtime.  

Our prime motivation is to reduce the redundant preemptions which current schedulers do not 

take into account. To explain using a simple example, suppose a process has a very little burst 

time left and it is swapped due to the completion of its timeslice ticks, then the overhead of 

cache-invalidation, pipeline clearing, context switching etc. reduces the efficiency. Hence having 

a flexible timeslice window will prevent the above scenario. This would also improve the total 

time taken after the submission of process to its completion, in-return creating more processor 

ticks for future. 

4.2. Module Design 

Figure.2 gives an over all view of our entire system. It describes how our reinforcement learning 

agent makes use of the patterns learned initially and later on after having enough experiences it 

develops a policy of itself to use the prior history and reward-function. 

 
Fig.2 Bird’s eye view of our design and implementation pipeline 

Formally, these below steps capture the important end-to-end flow mechanism. 

 

1. Program X passes its requirements in user-space for acquiring resources from computer 

hardware. These requirements are received by our agent. 



154 Computer Science & Information Technology (CS & IT) 

 

2. Reinforcement learning agent uses its knowledge base to make decision. It uses patterns 

recognized in the initial stages to have a kick start with reasonable values and not random 

values. Later on knowledge base develops its history and reward function after sufficient 

number of experiences. 

 

3. The information is passed from the user-space to kernel-space via a system call which 

will have to be coded by us. This kernel call will redirect the resource request to our 

modified scheduler. 

 

4. The number of ticks to be allocated is found in the fields of new_timeslice and forwarded 

to CPU. And finally, CPU allocates these received orders in form of new ticks.  

 

As the intermediate system call and modified scheduler are the only changes required in the 

existing systems, we provide complete abstraction to the CPU and user-space. 

 

4.3. Modelling an RL agent 

We present here a model to simulate and understand the Reinforcement learning concepts and 

understand the updates of Bellman equation in greater depth [6]. We have created this software 

with an aim to visualize the results of changing certain parameters of RL functions and as a 

precursor for modelling scheduler. 

 

 
Fig.3 Maze showing the environment in which RL-agent interacts. 

 

• Work-Space: Checkerboard setup with a grid like maze. 

• Aim: To design an agent which finds its own way from the start state to goal state. The 

agent is designed to explore the possible paths from start state and arrive at goal state. 

Each state has four possible actions N, S, E & W. Collision with wall has no effect. 

• Description: Figure.3 depicts the maze which consists of rooms and walls. The whole 

arena is broken into states. Walls are depicted by dark-black solid blocks denoting that 

the agent cannot occupy these positions. The other blocks are number 1,2,3.....60 as the 



Computer Science & Information Technology (CS & IT)                                155 

 

possible states in which agent can be. Agent is situated at S1 at time t=0 and at every 

future action it tries to find its way to the goal state S60. 

• Reward-function: Transition to goal state gives a reward of +100. Living penalty is 0. 

Hence the agent can take as long time as it wants to learn the optimal policy. This 

parameter will be changed in case of real time schedulers. Reward Updating policy has 

Temporal difference updates with learning rate (alpha) =0.25 

Initially the agent is not aware of its environment and explores it to find out. Later it learns a 

policy to make that wise decision about its path finding. Code (made publicly available) is 

written in C language for faster excution time and the output is an HTML file to help better 

visualize the reward updates and policy learned. Results and policies learned will be described in 

later sections. 

4.4. Simulation 
 

As the scheduler resides deep in the kernel, measuring the efficacy of scheduling policies in 

Linux is difficult. Tracing can actually change the behavior of scheduler and hide defects or 

inefficiencies. For example, an invalid memory reference in the scheduler will almost certainly 

crash the system [8]. Debugging information is limited and not easily obtained or understood by  

new developer. This combination of long crash-reboot cycles and limited debugging information 

can result in a time-consuming development process. Hence we resort to a good simulator of the 

Linux scheduler which we can manipulate for verifying our experiments instead of changing 

kernel directly. 

 

LinSched: Linux Scheduler simulation 

 
LinSched is a Linux scheduler simulator that resides in user space [11]. It isolates the scheduler 

subsystem and builds enough of the kernel environment around it that it can be executed within 

user space. Its behaviour can be understood by collecting relevant data through a set of available 

APIs. Its wrappers and simulation engine source is actually a Linux distribution. As LinSched 

uses the Linux scheduler within its simulation, it is much simpler to make changes, and then 

integrate them back into the kernel. 

 

We would like to mention few of the essential simulator side APIs below, which we 

experimented over. One can utilize them to emulate the system calls and program the tasks. They 

are used to test any policy which are under development and see the results beforehand 

implementing at kernel directly. linsched_create_RTrr(...) -creates a normal task and sets the 

scheduling policy to normal. void linsched_run_sim(...) -begins a simulation. It accepts as its only 

argument the number of ticks to run. At each tick, the potential for a scheduling decision is made 

and returns when it is complete. Few statistics commands like void linsched_print_task_ stats() 

and void linsched_print_group_stats() give more detailed analysis about a task we use. We can 

find the total execution time for the task (with task_exec_time(task)), time spent not running 

(task->sched_info.run_delay), and the number of times the scheduler invoked the task (task-

>sched_info.pcount). 

 

We conducted several experiments over the simulator on normal batch of jobs by supplying it 

work load in terms of process creation. First 2 normal tasks are created with no difference and 



156 Computer Science & Information Technology (CS & IT) 

 

ambiguity (using linsched_create_normal_task(...)). We next created a job which runs on normal 

scheduler and has a higher priority by assigning nice value as -5. Similarly we experimented with 

jobs which had lower priority of +5, followed by populating another normal and neutral priority. 

On the other hand, we also verified our experiments over batch tasks which are created with low 

and high priorities. They are all computation intensive tasks which run in blocks or batches. 

(using linsched_create_batch_task(...)). And then finally one real-time FIFO task with priority 

varying in range of 50-90, and one round-robin real-time task with similar priority range. Each 

task as created is assigned with task_id which is realistic as in real linux machines. Initially all 

tasks are created one after other and then after scheduler_tick() function times out, it is called for 

taking decision on other processes in waiting/ready queue. The relevant results will be discussed 

in subsequent sections. 

 

5. IMPLEMENTATION AND EXPERIMENTS 
 

5.1. Knowledge Base Creation 
 

5.1.1. Creating Dataset 

 

To characterize the program execution behaviour, we needed to find the static and dynamic 

characteristics. We used readelf and size commands to get the attributes. We built the data set of 

approximately 80 execution instances of five programs: matrix multiplication, quick sort, merge 

sort, heap sort and a recursive Fibonacci number generator. For instance, a script ran matrix 

multiplication program of size 700 x 700 multiple times with different nice values and selected 

the special time slice (STS), which gave minimum Turn Around Time (TaT). After collecting the 

data for the above programs with different input sizes, all of them were mapped to the best 

priority value. Data of the above 84 instances of the five programs were then classified into 11 

categories based on the attribute time slice classes with each class having an interval of 50 ticks. 

 

We mapped the variance of timeslice against total Turnaround Time (TaT) taken by various 

processes like Insertion sort, Merge sort, Quick sort, Heap sorts and Matrix multiplication with 

input ranging from 1e4, 1e5, 1e6 after experimenting against all possible timeslices. 

5.1.2. Processing Dataset 

 

After extracting the features from executable filles, by readelf and size commands, we refine the 

number of attributes to only those few essential features which actually help in taking decision. A 

few significant deciding features which were later used for building decision tree are: RoData 

(read only data), Hash (size of hash table), Bss (size of uninitialized memory), DynSym (size of 

dynamic linking table), StrTab (size of string table). The less varying / non-deciding features are 

discarded. The best ranked special time slices to each instance to gauge were classified to the 

corresponding output of decision tree. The processed result was further fed as input to to the 

classifier algorithm (decision trees in our case) to build iterative if-else condition.  

 

5.1.3. Classification of Data 

To handle new incoming we have built a classifier with attributes obtained from previous steps. 

Decision tree rules are generated as the output from classification algorithm. We used WEKA 

(Knowledge analysis tool) to model these classifiers.  Most important identified features are 



Computer Science & Information Technology (CS & IT)                                157 

 

RoData , Bss and Hash . Finally groups are classified into 20 classes in ranges of timeslice. Few 

instances for Decision Tree Rules are mentioned below. 

• if {(RoData<=72) AND (bss <= 36000032) AND (bss <= 4800032) AND (bss 

<=3200032) } then class=13 

• if {(RoData<=72) AND (bss <= 36000032) AND (bss <= 4800032) AND (bss > 

3200032) } then class=2 

• if {(RoData<=72) AND (bss <= 36000032) AND (bss > 4800032) AND (bss <= 

7300032) } then class=5 

• if {(RoData<=72) AND (bss <= 36000032) AND (bss > 4800032) AND (bss > 7300032) 

AND (bss <= 2000032) } then class=3 

• if {(RoData<=72) AND (bss > 36000032) AND (bss <= 4800032) } then class=7 

• if {(RoData<=72) AND (bss <= 36000032) AND (bss > 4800032) AND (bss > 7300032) 

AND (bss > 2000032) } then class=0 

• if {(RoData<=72) AND (bss > 36000032) AND (bss <= 4800032) } then class=4 

To give a better visualization of out features, we present in Table.1 various statistics obtained for 

Heap sort with input size 3e5 and priority (nice value) set to 4. These statistics help us decide the 

lowest Turnaround Time and lowest number of swaps taken for best priority class. 

 
Table.1 Statistics obtained for Heap sort with input size 3e5 showing the classifier features. 

 

Feature Name Value Feature Name Value 

User time (seconds) 0.37 Voluntary context switches 1 

Minor (reclaiming frame) page faults 743 Involuntary context switches 41 

Percent of CPU this job got 98% File system outputs 8 

Elapsed (wall clock) time (h:mm:ss) 0:00.38 Socket messages sent 0 

Maximum resident set size (kbytes) 1632 Socket messages received 0 

Signals delivered 0 Page size (bytes) 4096 

 

5.2. Self-Improving Module 

The self-learning module which is based on Reinforcement learning technique is proved to 

improve over time with its experience until converged to saturation. The input to this module is 

the group decision from the knowledge base in the previous step as the output of the if-else 

clause. Further, reinforcement learning module may give a new class if it decides from its policy 

learned over time of several running experiences. In the background this self improving module 

would explore for new classes which it could assign to a new incoming process. We modelled the 

scheduler actions as a markov decision process where decisions for assigning a new time slice 

solely based over current state and it need not have to take into account of the previous decisions. 

The policy mapping for states and their aggregate reward associated is done using the Bellman 

equations 



158 Computer Science & Information Technology (CS & IT)

 

 

  

Figure.4 shows how using an array implementation of Doubly Linked List, we generated the 

above module. Temporal difference (TD method) was used for updating the reward

experiences and time. The sense of reward for

inverse of waiting time of the process. The choice of such a reward function was 

introduced by the inverse of total turnaround time (TaT), which is the least where compared to

waiting time. This is because TaT is also inclusive of total number of swaps which in turn is 

dependent over the size of input and size of text, whereas waiting time does not depend over the 

size of input. We set the exploration vs. 

under temperature coefficient mentioned above.

Fig.4 Integration of self learning module with decision tree knowledge base.

Input to this module is the class decision from knowledge base obtained in the previous step 

which is the output of the decision tree. It outputs a new class which RL module decides from its 

policy generated over time of running. Reward sense is given by the inverse of waiting time of

the process. We have used exploration vs. 

In our experimental Setup, we used WEKA (Knowledge analysis tool) for Decision trees and 

attribute selection. For compilation of all programs we used gcc (GNU_GCC) 4.5.1 (Red

4.5.1-4). To extract the attributes from executable/binary we used readelf & size command tools. 

For graph plots and mathematical calculations we used Octave.

6. RESULTS AND ANALYSIS

 
Below we present a few test cases which characterise the general 

interaction with knowledge base and self improving module. We also analyse the effectiveness of 

integrating Static knowledge base and self

number of CPU cycles conserved. Programs were

different nice values on Linux System

time changed as the CPU allotted time

Computer Science & Information Technology (CS & IT) 

 

shows how using an array implementation of Doubly Linked List, we generated the 

above module. Temporal difference (TD method) was used for updating the reward-

experiences and time. The sense of reward for the scheduler agent was set to be a function of 

inverse of waiting time of the process. The choice of such a reward function was to avoid

inverse of total turnaround time (TaT), which is the least where compared to

This is because TaT is also inclusive of total number of swaps which in turn is 

dependent over the size of input and size of text, whereas waiting time does not depend over the 

xploration vs. exploitation constant to be 0.2 which is still flexible 

ure coefficient mentioned above. 

 
Fig.4 Integration of self learning module with decision tree knowledge base. 

lass decision from knowledge base obtained in the previous step 

which is the output of the decision tree. It outputs a new class which RL module decides from its 

policy generated over time of running. Reward sense is given by the inverse of waiting time of

xploration vs. exploitation ε-greedy constant as 0.2. 

In our experimental Setup, we used WEKA (Knowledge analysis tool) for Decision trees and 

attribute selection. For compilation of all programs we used gcc (GNU_GCC) 4.5.1 (Red

4). To extract the attributes from executable/binary we used readelf & size command tools. 

raph plots and mathematical calculations we used Octave. 

NALYSIS 

Below we present a few test cases which characterise the general behaviour of scheduler 

interaction with knowledge base and self improving module. We also analyse the effectiveness of 

integrating Static knowledge base and self-learning module by calculating time saved and 

number of CPU cycles conserved. Programs were verfified after executing multiple times with 

different nice values on Linux System. Their corresponding figures show how the turn

hanged as the CPU allotted timeslice of the process changed. 

(3) 

shows how using an array implementation of Doubly Linked List, we generated the 

-function with 

the scheduler agent was set to be a function of 

to avoid the bias 

inverse of total turnaround time (TaT), which is the least where compared to 

This is because TaT is also inclusive of total number of swaps which in turn is 

dependent over the size of input and size of text, whereas waiting time does not depend over the 

h is still flexible 

 

lass decision from knowledge base obtained in the previous step 

which is the output of the decision tree. It outputs a new class which RL module decides from its 

policy generated over time of running. Reward sense is given by the inverse of waiting time of 

In our experimental Setup, we used WEKA (Knowledge analysis tool) for Decision trees and 

attribute selection. For compilation of all programs we used gcc (GNU_GCC) 4.5.1 (RedHat 

4). To extract the attributes from executable/binary we used readelf & size command tools. 

behaviour of scheduler 

interaction with knowledge base and self improving module. We also analyse the effectiveness of 

learning module by calculating time saved and 

multiple times with 

heir corresponding figures show how the turn-around-



Computer Science & Information Technology (CS & IT)                                159 

 

Experiments show that there does not exist any direct evident relation between time slice and 

CPU utilization performance metrics. Refer Figure.5 and Figure.6 plot of TaT vs. timeslice class 

allotted. Hence it is not a simple linear function which is monotonic in nature. One will have to 

learn a proper classifier which can learn the pattern and predict optimal timeslice. Below we 

show the analysis for 900x900 matrix multiplcation and merge sort (input size 3e6). Table.2 

shows their new suggested class from knowledge base. For Heapsort (input size 6e5) and 

Quicksort (input size 1e6) we have only plotted their TaT vs. Timeslice graphs in Figure.6, 

which is similar in wavy nature as Figure.5. We have omitted explicit calculations to prevent 

redundancy in paper, as their nature is very similar to previous matrix multiplication. 

 

Effectiveness analysis for Matrix Multiplication with input size of 900x900 random matrix 

elements. 

 

• Turnaround Time (normal) - 27872216 ms 

 

• Turnaround Time (with KB)- 24905490 ms 

 

• Time saved = 2966726 ms 

 

• Time saved per second - 109879 ms 

 

• No. of clock cycles saved - 2.4MHz x 109879 

 

• No. of Lower operations saved - 109879 / (pipeline clear + context switch etc.) 

 

Fig.5 Timeslice class (unnormalized nice values) vs. Turn around time for (a)Matrix Multiplication and 

(b)Merge Sort . 

 

 

 

 

 

 

 

 



160 Computer Science & Information Technology (CS & IT) 

 

Table.2 Optimal timeslice-class decisions made by knowledge base module for Matrix multiplication of 

input 900x900 and Merge sort over input size 3e6 elements. 
 

Matrix Multiplcation Merge Sort 

Turn around time 

 (microsec) 

Timeslice class 

suggested 

Turn around time 

 (microsec) 

Timeslice class 

suggested 

24905490 16 6236901 15 

25529649 10 7067141 7 

25872445 14 7305964 18 

26151444 4 7524301 11 

26396064 6 7639436 1 

26442902 18 8055423 10 

26577882 11 8273131 4 

26800116 7 8302461 14 

26827546 5 8537245 6 

27080158 15 8569818 17 

27376257 17 9255897 16 

27484162 8 9483901 9 

27643193 12 9499732 2 

28535686 9 9660585 13 

28581739 1 9844913 8 

28900769 13 10217774 12 

 

Effectiveness analysis for Merge Sort with input size of 3e6 random array elements. 

 

• TaT (normal) - 10439931 ms and TaT(with KB)- 6236901 ms 

 

• Time saved = 4203030 ms 

 

• Time saved per second - 382093 ms 

 

• No. of clock cycles saved - 2.4MHz x 382093 

 

• No. of Lower operations saved - 382093 / (pipeline clear + context switch etc.)        

 

 
                                            (a)                                                                       (b) 

Fig.6 Timeslice class (unnormalized nice values) vs. Turn around time for (a)Heap Sort, (b)Quick Sort . 



Computer Science & Information Technology (CS & IT)                                161 

 

7. CONCLUSION 

 
From the results we can observe that the turnaround time can be optimized by reducing redundant 

context switches and also reducing the additional lower level register swaps, pipeline clearances 

etc. This in turn saves the CPU cycles which are valuable resource for runtime execution of 

subsequent jobs. A self-learning module proposed here has the potential of constantly improving 

with more experiences and is provided over a knowledge base to prevent the problem of cold-

start. We have showed the non-intuitive irregularity between decreasing turnaround time and 

increasing time slice by wave-pattern of TaT vs. class of time. The machine learning module 

identifies specific time slice for given task so that its resource usage and TaT are optimized. We 

are also currently investigating ways to address the problem of infinite horizon in reinforcement 

learning, as the scheduler may run for infinite amount of time (or very large time unit) and scores 

rewards just for the sake of its existence. The agent may actually be performing sub-optimally, 

but its prolonged existence keeps collecting rewards and show positive results. This issue can be 

addressed by refreshing the scheduler after certain time unit, but clarity is required over how to 

calculate its optimal refresh period. 

 

REFERENCES 
 

[1] Warren Smith, Valerie Taylor, Ian Foster, Predicting Application Run-Times Using Historical 

Information”, Job Scheduling Strategies for Parallel Processing, IPPS/SPDP‘98 Workshop, March, 

1998. 

[2] Jonathan M Eastep, “Smart data structures: An online ML approach to multicore Data structure”, 

IEEE Real-Time and Embedded Technology and Applications Symposium 2011. 

[3] M. John Calandrino , documentation for the main source code for LinSched and author the 

linux_linsched files LINK: http://www.cs.unc.edu/~jmc/linsched/ 

[4] D. Vengerov, A reinforcement learning approach to dynamic resource scheduling allocation, 

Engineering Applications of Artificial Intelligence, vol. 20, no 3, p. 383-390, Elsevier, 2007. 

[5] Richard Gibbons, A Historical Application Profiler for Use by Parallel Schedulers, Lecture Notes on 

Computer Science, Volume : 1297, pp: 58-75, 1997. 

[6] Richard S. Sutton and Andrew G. Barto. , Reinforcement Learning: An Introduction. A Bradford 

Book. The MIT Press Cambridge, Massachusetts London, England. 

[7] Atul Negi, Kishore Kumar. P, UOHYD, Applying machine learning techniques to improve Linux 

process scheduling 2010. 

[8] Internals of Linux kernel and documentation for interface modules LINK: 

http://www.faqs.org/docs/kernel_2_4/lki-2.html 

[9] D. Vengerov, A reinforcement learning framework for utility-based scheduling in resource- 

constrained systems, Future Generation Compute Systems, vol. 25, p. 728-736 Elsevier, 2009. 

[10] Surkanya Suranauwarat, Hide Taniguchi, The Design, Implementation and Initial Evaluation of An 

Advanced Knowledge-based Process Scheduler, ACM SIGOPS Operating Systems Review, volume: 

35, pp: 61-81, October, 2001. 

[11] Documentation for IBM project for real scheduler simulator in User space LINK: 

http://www.ibm.com/developerworks/library/l-linux-schedulersimulator/ 

[12] Tong Li, Jessica C. Young, John M. Calandrino, Dan P. Baumberger, and Scott Hahn , LinSched: 

The Linux Scheduler Simulator  Research Paper by Systems Technology Lab Intel Corporation, 2008 

[13] McGovern, A., Moss, E., and Barto, A. G. (2002). Building a basic block instruction scheduler with 

reinforcement learning and rollouts. Machine Learning, 49(2/3):141– 160. 

[14] Martin Stolle and Doina Precup , Learning Options in Reinforcement Learning Springer-Verlag 

Berlin Heidelberg 2002 

[15] Danie P. Bovet, Marc, Understanding the Linux Kernel, 2nd ed, O‘ Reilly and Associates, Dec., 

2002. 



162 Computer Science & Information Technology (CS & IT) 

 

[16] Modern Operation System Scheduler Simulator, development work for simulating LINK: 

http://www.ontko.com/moss/ 

[17] Andrew Marks, A Dynamically Adaptive CPU Scheduler, Department of Computer Science, Santa 

Clara University, pp :5- 9, June, 2003. 

 

AUTHORS 

 
Prakhar Ojha, student of the Department of Computer Science Engineering at National 

Institute of Technology Karnataka Surathkal, India. His areas of interest are Artificial 

Intelligence, Reinforcement Learning and Application of knowledge bases for smart 

decision making. 

 

 

Siddhartha R Thota, student of the Department of Information Technology at National 

Institute of Technology Karnataka Surathkal, India. His areas of interest are Machine 

Learning, Natural language processing and hidden markov model based Speech 

processing. 

 

 

Vani M is a Associate Professor in the Computer Science Engineering Department of 

NITK. She has over 18 years of teaching experience. Her research interest includes 

Algorithmic graph theory, Operating systems and Algorithms for wireless sensor 

networks.  

 

 

Mohit P Tahiliani is a Assistant Professor in the Computer Science Engineering 

Department of NITK. His research interest includes Named Data Networks, TCP 

Congestion Control, Bufferbloat, Active Queue Management (AQM) mechanisms and 

Routing Protocol Design and Engineering. 

  

   


