

Jan Zizka et al. (Eds) : ICAITA, SAI, CDKP, Signal, NCO - 2015

pp. 67–79, 2015. © CS & IT-CSCP 2015 DOI : 10.5121/csit.2015.51507

DEVELOPING MULTITHREADED

DATABASE APPLICATION USING JAVA
TOOLS AND ORACLE DATABASE

MANAGEMENT SYSTEM IN INTRANET
ENVIRONMENT

Raied Salman

Computer Information Science,

American College of Commerce and Technology – Falls Church, VA, U.S.A.
raied.salman@acct.edu

ABSTRACT

In many business organizations, database applications are designed and implemented using

various DBMS and Programming Languages. These applications are used to maintain

databases for the organizations. The organization departments can be located at different

locations and can be connected by intranet environment. In such environment maintenance of

database records become an assignment of complexity which needs to be resolved. In this paper

an intranet application is designed and implemented using Object-Oriented Programming

Language Java and Object-Relational Database Management System Oracle in multithreaded

Operating System environment.

KEYWORDS

Intranet, Multithreads, OOP, ORDBMS, JDBC, Applets, Oracle, Java Programming Language.

1. INTRODUCTION

The Intranet technology has opened new areas of research for business application designers and

implementers. The application is designed using System Development Life Cycle (SDLC)

methodology [1,2,4]. The database can be stored on a database server using Oracle Database

Management System and can be processed using Java Programming language [5,6,7,8]. Java is

an object-oriented programming language. The peoples who have used structured programming

languages C, PASCAL etc. has to refuel their programming power to accept object-based

programming such as Java and C++ [10] etc. It is very difficult to decide which programming

language will lead the application for development in the future. In this paper the basic concepts

and tools are discussed which can be used to implement business applications in an intranet

environment.

68 Computer Science & Information Technology (CS & IT)

2. APPLICATION INFRASTRUCTURE FOR INTRANET ENVIRONMENT

It is understood that each database application has to apply four basic functions, INSERT,

UPDATE, RETRIEVE and DELETE on database records [1,2,3,4]. A database schema is

developed using analysis and design techniques. After further refinement this schema is

implemented using a specified RDBMS such as ORACLE [12,13,14] on the ORACLE Server.

This schema always reflects the data requirements of the organization in which it will be

implemented. These basic functions can be implemented using RDBMS selected. The main

problem is with the processing of the business applications where many more functions are

involved in addition to these four basic functions such as new calculations. The languages

provided by the DBMS are not process-oriented so the implementer has to look for a language,

which can facilitate the process implementations for business applications. Different database

development modelling strategies are discussed in this paper.

2.1 Single Tier Database Design Strategy

The earlier business applications were developed using RDBMS based on an integrated model

which consists of user interface code, application code, and database libraries. These

applications ran only on a mainframe machine connected to terminals, used to make different

queries on the databases. Figure 1 illustrates single-tier application infrastructure.

These business applications were simple but inefficient and did not work over Local Area

Networks (LANs). This model did not scale, and the application code and the user interface code

were tightly coupled to the database through database libraries. This approach did not allow

multiple instances [1,11,12,13,14] of the application to communicate with each other, so there

was often problem of contention between instances of the same business application [12,13]. In

order to eliminate some of the contentions occurring, the two-tier database design strategy was

suggested [1,2,3,4].

2.2 Two-Tier Database Design Strategy

The server technology gave birth to two-tier RDBMS models. Communication-protocol

development and extensive use of LANs and WANs [12,13,14,15] allowed the database

developers to create an application front-end that typically accessed data through a connection to

the back-end server [14,15]. Figure 2. illustrates a two-tier database design, where the client is

connected to the server through a socket [5,6,7,8,9,15] connection. The program design method is

very carefully used to accommodate all types of changes taking place in database design

strategies [10].

Business applications / client programs through user interface send SQL requests to the database

server. The server responds with the requested data to the business application / client machine

with the specified format, after the verification of these requests. The communication between

either of them and the server is managed by the library functions provided by the venders / third

party software developers [7,9,10,11]. The limitations to this application design are mentioned

below.

Computer Science & Information Technology (CS & IT) 69

2.2.1 Limitations of the Two-Tier Database Model

i. Two-tier models are limited by the vendor-provided library [8, 9]. Switching from one

database vendor to another requires a lot of modification to the business application code

running on the client machine of the two-tier model.

ii. Version control is another issue. Updating the client-side libraries provided by the

vendors causes the database applications to be recompiled and redistributed in the

organization [9].

iii. Vendors libraries deal with low-level data manipulation. Many basic libraries deal with

fetches and updates on a single row or a column. The stored procedures can be used on

the server to enhance these operations increasing the complexity of the application

[12,13,14].

iv. All the logic required to use and manipulate the data is implemented in the business

application on the client machine, creating large client-side runtimes. This creates a fat

client [1,2,3,4].

These limitations can be fully / partially removed from the two-tier model by using a three-tier

model.

2.3 Three-Tier Database Design Strategy

In this model the client application communicates with an intermediate server that provides a

layer of abstraction from the RDBMS. Figure 3. illustrates this model.

The intermediate layer is designed to handle multiple client requests and manage the connection

to one or more database servers. The detail for this design model can be found in [1,2,3,4,14].

3. IMPLEMENTATION OF BUSINESS APPLICATION IN INTRANET

ENVIRONMENT

Business applications are mission critical applications. These have to be implemented with great

care and sense of responsibility. After the analysis of the user requirements for applications, the

implementers have to decide in addition to RDBMS, about the programming languages, which

provide the functionality of the application with minimal changes and development time if

required to install on different platforms. In the present case, Java programming language is

selected to implement such application, because it is platform free language [5,6,7,8]. A segment

of the Payroll System is implemented using Java programming language and ORACLE database

management System.

The relations / tables, which were used to explain the implementation step are given in Appendix

A.

In the Department table, Dept_No is a primary key, which has unique values for individual

records.

70 Computer Science & Information Technology (CS & IT)

The second table / relation used to implement one-to-many relationship is an Employee table.

In the Employee table, Emp_No is a primary key, and Emp_Dept_No is a foreign key to create a

one-to- many relationship between them.

The relationship between these two tables is represented in Fig. 4

Since a segment of a Payroll System is to be implemented in Java programming language, the

multithreading programming technique is used [9] to reduce the development time and other

resources.

4. DESCRIPTION OF MULTITHREADING TECHNIQUE IN JAVA

IMPLEMENTATION

The concurrency or parallelism that computers can perform is implemented through Operating

Systems primitives available to highly experienced system programmers [5,6,7]. Using Java

programming language these primitives are made available to the application programmers too.

Each application can contain threads of execution such that each thread being designated a

portion of the application that may execute with other threads concurrently. Multiple threading is

a powerful capability of Java language not available in C and C++ [5,6,7,8,9]. Java programming

includes multithreading primitives as part of the language in the form of classes such as Thread,

ThreadGroup, ThreadLocal and ThreadDeath of the java.lang package [5,6,7,8]. There are

many constructor methods related to the Thread class which play an important role in the Thread

class operations [5,6,7,8,9]. The thread life cycle is given in [5,6].

4.1 Connecting to the ORACLE Database System

It is difficult to join two different technologies such as Java based on object–orientation and

ORACLE based on Relations (tables). Tools which are used to establish the connection between

these two different technologies for Multithreaded Intranet Windows applications [5, 6]

development are given below.

4.2 Java Database Connectivity (JDBC): Application Programming Interface (API)

Java programming language offers several benefits to the developer creating front-end and

middle-ware applications for a database server. The platform-independent nature [5,6,7,8,9] and

adaptability of Java [6,7,8,9] allows a wide variety of business applications on the client

machines to connect to the database systems installed on the servers [6,7]. Enterprise JavaBeans

(EJB) provides a very scalable and robust database access and persistent layer [8, 9].

Servlets and JSP (Java Server Pages) [8,9] provide an ideal way for thin web browser clients or

any variety of other HTTP-based clients to access database resources [8, 9]. The JDBC API is

designed to allow the application developers to create Java code that can be used to access almost

any relational database without needing to continually rewrite their application code. Java

servlets, JSP pages, Enterprise JavaBeans (EJB) and Java classes or any other Java code can

use JDBC to connect to the database server [8,9].

Computer Science & Information Technology (CS & IT) 71

4.3 The JDBC API Characteristics

Recently developed Java Development Kit version 1.4 (JDK 1.4) contains JDBC 3.0 API. It is

composed of the java.sql and javax.sql packages.

i. The JDBC interface provides application developer with a single API that is uniform and

database independent [9]. Its database independence is due to the availability of a set of

Java interfaces that are implemented by a driver [9]. The driver is used to translate the

standard JDBC calls into specific calls required by the RDBMS it supports [6,7,8,9].

ii. The business application is developed only once, and then moved to the various drivers,

it means that application remains the same and only drivers are changed according to the

RDBMS [7,8,9] provided by the vendors.

iii. JDBC also provides a means of allowing developers to retain the specific functionality

that their database vendor offers.

iv. JDBC allows the application developers to pass query strings directly to the connected

driver. These query string may or may not be ANSI SQL compatible. The query depends

on the driver.

v. Every Java application (Client or J2EE) that uses JDBC must have at least one JDBC

driver, and each driver is specific to the type of RDBMS under consideration [6,7,8].

vi. JDBC is not derived from Microsoft ODBC [7,8,9]

vii. JavaSoft provides a JDBC-ODBC bridge that translates JDBC calls to ODBC calls

[6,7,8,9].

In order to connect business applications / client machines to various RDBMS on the servers,

through JDBC are discussed below, for various database design strategies.

4.4 Single-tier JDBC Database Design Strategy

In this configuration, a business application can be connected to different database servers

through JDBC interface using different drivers provided by their venders. It is illustrated in

Appendix A, Figure 5.

4.5 Multi-tier JDBC Database Design Strategy

In this configuration, a middle tier is used to handle protocols and DBMS libraries implemented

for the client sides. Through these protocols, business application can be implemented to access

the database servers by different venders in parallel or concurrently. The drivers are dependent on

the venders whereas the JDBC is independent of the drivers offered by various venders. The

details of this configuration is given in [6,7,8,9] and is illustrated in Appendix A, Fig. 6

5. THE JAVA DATABASE CONNECTIVITY (JDBC) INTERFACE LEVELS

The JDBC has two levels of API interface: Driver Layer and Application Layer, which are

discussed below:

i. Driver Layer: It handles all types of communications with a specific driver during

implementation to the application layer.

72 Computer Science & Information Technology (CS & IT)

ii. Application Layer: This layer is used by the business application developer to make

calls to the database via SQL queries and retrieve the results to these queries.

The application developer is not concerned with the details of the implementation of these layers.

It is necessary to understand the Driver layer, and how some of the objects that are used in the

Application layer are created by the driver in use [1,3,6,8]. Every driver must implement four

main interfaces and one class that create connection between the Driver and Application layers.

5.1 The Driver layer and Driver Interface

Each vendor supplies a driver class called DriverManager class which controls the Application

layer through the driver as an interface. Driver Manager class also performs: loading and

unloading of drivers and making connections using drivers. It also performs some functions on

database for login and login times out [6].

a- Driver Interface

It is important to note that every JDBC application must have at least one JDBC driver. This

interface permits the DriverManager and JDBC Application layer to exist independently of the

database being used. This interface implements JDBC driver [6,7,8,9]. Drivers use a string

referred to as a URL with a purpose to separate the application developer from the driver

developer. The syntax for such URL for JDBC driver is given as

 String url = jdbc: <subprotocol>:<subname>

Where <subprotocol> is the type of the driver, and <subname> provides the network-encoded

database name on the server, as in

String url = “jdbc:oracle:Depts”
In this example, the driver type is oracle driver, and the subname is a local database host called

Depts.

The application developer can also include the location of the database host or instance of the

database, the specific port, and user information (user-name, user-password) as in the following

example:

String url = “jdbc: oracle: thin: @dbserver:1521: infs” ;
In this statement, the name of the driver is oracle driver, the name of the database server is

dbserver, the port is 1521 and database instance is infs.

 The following two statements describe the user name and password of the user.

String User = “user_name”;

String Password = “user_password”;
The driver interface has two important methods from practical point of view [6,7,8,9]:

i- public Connection connect (String url, String User, String Password) throws

SQLException.

In order to return the object of Connection type, the String url must match the url of the JDBC

driver otherwise no connection will be established. The strings User and Password are also

matched with those stored on the database server, dbserver, with instance infs on the thin client

with port 1521. Since it is public method, the object returned can be used by other classes. If

these matches are invalid, it will throw an SQLException indicating that no connection object is

returned.

Computer Science & Information Technology (CS & IT) 73

 ii- public boolean acceptsURL(String url) throws SQLException.
This method is simply used to check whether the url is valid or not. If it is not, it will throw an

SQLException. It will not establish the connection.

The DriverManager class calls the Driver connect() method to obtain the Connection object

which is the starting point for the Application Layer. The Connection object is used to create

Statement objects that perform queries.

The DriverManager Class: As the name indicates this class is used to manage JDBC drivers.

Public Methods available in this class are:

i- public static synchronized Connection getConnection (String url, String User, String
Password) throws SQLException.

This method is used to obtain Connection object by sweeping through a vector of stored Driver

classes using url and other parameter values regarding the user of the database and his password.

This method is used to find a driver which returns a Connection object. That Driver class is used

for which the driver is found. This method can be used as an overloaded method with different

number of arguments.

ii- public static synchronized void registerDriver (java.sql.Driver driver) throws SQLException.
This method stores the information of the driver interface implementation into a vector of drivers.

It also stores information about security Context [7,8], that identifies where the driver came

from.

iii- Public static void setLogWriter(java.io.PrintWriter out).
Sets a private static java.io.PrintWriter reference to the PrintWriter object passed to the

method.

b- Registration of Drivers

When DriverManager class is loaded, a static code of this class is executed to load jdbc.drivers.

jdbc.drivers property can be used to define a list of colon-separated driver class names such as:

jdbc.drivers = oracle.jdbc.driver.OracleDriver;
Each driver name is also a class name [6,7,8], this means that class name and driver name are the

same, for example, oracle.jdbc.driver is both a driver name and a class name. The

DriverManager tries to load the driver through the current CLASSPATH given in the System

Environment of the computing machine. The DriverManager class uses the following piece of

Java program to locate, load and link the named class.

Class.forName(driver).newInstance().
In case of oracle.jdbc.driver.OracleDriver, the driver class name can be located by

Class.forName(oracle.jdbc.driver.OracleDriver);

Now use the DriverManager class method registerDriver() to register the

oracle.jdbc.driver.OracleDriver driver’s class instance as:

DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver());
When above statement is executed, a new instance of the driver class is registered. It will not

verify whether the connection is established or not. In order to establish the connection to the

database, the following method of the DriverManager class is used

// define the Connection instance

Connection sqlconn = null; // initially it is null

sqlconn = DriverManager.getConnection (url, User, Password);
Where url, User, and Password are declared as:

74 Computer Science & Information Technology (CS & IT)

String url = "jdbc:oracle:thin:@dbserver:1521:infs";

String User = “user-name”;

String Password = “user-password”;
In the url string: dbserver is the name of the Oracle Server, 1521 is port of the machine on which

this server is running and infs the instance of the Oracle Database. Other string variables are self

-explanatory. When the connection is established and validated, the Application layer can be

approached. A list of driver class names for different database management systems is given in

Table 3.

In the above table, the name of the driver is also a driver class name, for example, for Oracle

database system, the driver name Oracle.jdbc.driver.OracleDriver is also the driver class name,

any instance of this class can be defined as new Oracle.jdbc.driver.OracleDriver() using

constructor of this class [6,7,8], for example

Driver Driver_Name = new Oracle.jdbc.driver.OracleDriver();
The above statement creates a new instance of class Driver which can be registered with

DriverManager class using registerDriver() method as

DriverManager.registerDriver(Driver_Name);

5.2 Application Layer

Application Interface: In Java programming language [8, 9], the application interface provides

a means of using a general type to indicate a specific class. Three main application layer

interfaces are Connection, Statement and ResultSet classes. Each one of them is described

below:

5.2.1 The Connection Interface:

A Connection object is obtained by using the DriverManager.getConnection() method call as

Connection sqlconn = DriverManager.getConnection (url, User, Password);
where sqlconn is the Connection object returned by the called method DriverManager.get

Connection (url, User, Password);
where getConnection (url, User, Password) method uses three arguments url, User and

Password as described above.

Typical database connection include the ability to control changes made to the actual database

stored through transactions [6,7,9]. When connection is created, it is in an auto-commit mode,

that is, there is no rollback possible. After the connection from the driver is established, the

application developer can set auto-commit to false by using setAutoCommit (boolean b) method.

After setting this method call, the Connection will support both Connection.Commit() and

Connection.rollback() method calls.

a-The Connection Class interface

The Connection class interface has the following methods:

i- Statement createStatement() throws SQLException : The Connection object will return an

object of a Statement implementation such as

Statement sqlStatement = sqlconn.createStatement(); // use sqlconn Connection instance to

create a statement

The Statement class object sqlStatement is implemented to execute a query if required and get a

single ResulSet object

Computer Science & Information Technology (CS & IT) 75

ii- PreparedStatement preparedStatement (String sql) throws SQLException: The Connection

object implementation will return an instance of PreparedStatement object which is configured

with sql string passed [8, 9]. The driver may then send the statement to the database if the driver

handles the precompiled statements; otherwise the driver may wait until the PreparedStatement

is executed by an execute() method

iii. void setAutoCommit (Boolean b) throws SQLException: This method sets a flag in the driver

implementation that enables commit/rollback (false) or make all transactions commit

immediately (true) as

sqlconn.setAutoCommit(false); // rollback all transactions

iv-void commit() throws SQLException: Makes all changes made since the beginning of the

current transaction.

v- CallableStatement preparedCall(String sql) throws SQLException: The Connection object

implementation will return an instance of a CallableStatement. CallableStatements are

optimized for handling stored procedures. The driver may then send the sql string immediately

when prepareCall() method is complete or may wait until an execute method executes.

vi- void rollback() throws SQLException: Drop all changes made since the beginning of the

current transaction.

Mainly the Connection object interface is used to create a Statement object as

Connection sqlconn ; // declare Connection object

Statement sqlStatement ; // declare Statement object

sqlconn = DriverManager.getConnection (url, User, Password); // establish connection to the

//database

sqlStatement = sqlconn.createStatement(); // create a statement object, to be used for

executing a query sent to the database server

5.2.2 The Statement Interface: Statement Class methods

This interface is used to send SQL statements (insert, delete, update , select) to the database on

the server and constructing corresponding result sets. This can also be used to create or drop

tables from the database. SQLException is thrown if there is a problem with the connection of

the database. The following methods are available with this interface [8,9].

i- ResultSet executeQuery(String sql) throws SQLException: Executes a single SQL query and

returns the results in an object of type ResultSet. This method can be used as

ResultSet rset ; // declare an object of a ResultSet

String sqlQuery = “ select * from Dept ”; // Dept is the name of the table on the

database server

rset = sqlStatement . executeQuery(sqlQuery); // a result set is created

ii- int executeUpdate(String sql) throws SQLException : This method executes a single SQL

query to return the number of rows affected rather than a set of results.

76 Computer Science & Information Technology (CS & IT)

iii- boolean execute(String sql) throws SQLException: This method can be used in the

following way:

a. To execute SQL statements that returns multiple result sets.

b. To execute for updating counts.

c. To execute stored procedures that return out and inout parameters.

This method is less commonly used in database processing than executeQuery() and

executeUpdate() methods. The methods getResultSet(), getUpdate() and getMoreResultSet() are

used to retrieve the returned data [7,8,9].

5.2.3. ResultSet Class Interface

The ResultSet interface defines the methods for accessing tables of data generated as a result of

executing a Statement [5,6,7,8,9]. ResultSet column values may be accesses in any order, that is,

they are indexed and may be selected by either the name or the number of the column. ResultSet

maintains the current position of the row, starting first row of the data returned. The next()

method moves to the next row of the data. The following program segment explains next()

method.

ResultSet rset ; // declare an object of a ResultSet

String sqlQuery = “ select * from Dept ”; // Dept is the name of the table on the

database

 //server

rset = sqlStatement . executeQuery(sqlQuery); // a result set is created

// processing of the resultset

if (rset.next()) {

 // processing statements goes here

}

The details of the ResultSet interface are discussed in [5,6,7,8,9].

6. APPLICATION INTERFACE-STRUCTURE CHART

Application interface is defined in Appendix A, Fig. 7.

It depends on the programmer which threads he /she wants to run to create a concurrency, for

example, Thread-1 and Thread-2 can be executed in concurrent states to insert and display data

at the same time. Concurrency programming is a tricky job. Similarly, Thread-1 and Thread-3

can be used concurrently to update and display data in the database. Different combinations of

these threads can be used to compromise between the execution and the complexity of the code

developed for the application. In a single thread execution, activities take place in sequential

order [5,6,7,8,9]. The complete program is given in the following section. This program is used to

retrieve and display data under thread-1. The development tool used is NetBeans IDE 3.5.1. This

IDE has partially built-in Java programming document, which can be used to code the program,

thereby, minimizing the development time for business applications.

Computer Science & Information Technology (CS & IT) 77

7. DESCRIPTION OF THE PROGRAM USING A SINGLE THREAD

This program is defined as a single class jdbcDbRetrieval which extends to a class JApplet and is

running under a thread control to create a concurrency or parallelism. This program is running

under Windows Operating System to check the effect of multithreading techniques built into Java

Programming Language [6,7,8,9]. This is a unique program in itself. The other database

functions such as Insert, Update and Delete are also programmed but are not given in this paper.

Each one of them is an applet running under a single thread and coordinating the other threads

when required.

8. CONCLUSION

Java Programming Language can be used to development Distributed or Concurrent business

applications in order to decrease the development time and other resources. Java API is an

important part of the application development stage where a large number of built-in class and

their methods are available to take full advantage of Java Development Kit. It also provides a

guideline to those who are interested in developing business applications which can be run in

parallel. Using Java applications are implemented and installed on different platforms with little

or no change in the coding of the applications. To incorporate all these concepts and tools a

complete program to implement retrieval operation of the database is given in Appendix A.

REFERENCES

[1] R. Greg (2001): Principles of Database Systems with Internet and Java Applications, Addison Wesley

New York.

[2] Jeffrey A. Hoffer, Mary B. Prescott, Fred R. McFadden (2005): Modern Database Management,

Seventh Edition, Pearson-Prentice Hall, U.K.

[3] R. Peter; C. Carlos (2002): Database Systems, Fifth Edition, Course Technology, Thomson Learning,

U. K.

[4] V. Michael (2004): Database Design, Application Development and Administration, Second Edition,

McGrawHill, Toronto, Canada.

[5] H. M. Deitel; P. J. Deitel (2002): Java: How to Program, Fourth Edition, Prentice Hall, New Jersey,

U. S. A.

[6] H. M. Deitel; P. J. Deitel (2003): Java: How to Program, Fifth Edition, Prentice Hall, New Jersey, U.

S. A.

[7] H. M. Deitel; P. J. Deitel (2005): Java: How to Program, Sixth Edition, Prentice Hall, New Jersey, U.

S. A.

[8] B. Kurniawan (2002): Java for the Servlets, JSP, and EJB, Techmedia, Delhi, India.

[9] H. M. Deitel; P. J. Deitel; S. E. Santry (2002): Advanced Java 2 Platform: How to Program, Prentice

Hall, New Jersey, U. S. A.

[10] D. Cohoon (2004): Java 1.5: Program design, McGrawHill, U. K.

[11] C. Thomas Wu (2004): An Introduction to Object-Oriented Programming with Java, Third Edition,

McGraw-Hill, U. K.

[12] J. Adolph Palinski (2003): Oracle 9i Developer: Developing Web Applications with Forms Builder,

Thomson, U.K.

[13] J. Morrison; M. Morrison (2003): Guide to Oracle 9i, Thomson, U. K.

[14] M. A. Ajiz (2002): E-Commerce Systems development: Case Study, Pakistan Journal of Applied

Sciences 2 (2): pp.245-259, Lahore, Pakistan.

[15] R. Greenlaw; E. Hepp (1999): Fundamentals of the Internet and World Wide Web, McGraw-Hill,

Toronto, Canada

78 Computer Science & Information Technology (CS & IT)

Computer Science & Information Technology (CS & IT) 79

AUTHORS

Dr. Raied Salman received his second Ph.D. in computer science from the Department

of Computer Science at Virginia Commonwealth University (Richmond / USA). He

also received his first Ph.D. from Brunel University (England / UK) in Electrical

Engineering and both Bachelor degree and Master degree of Electrical Engineering

from The University of Technology (Baghdad / Iraq). His research interests include

machine learning and data mining.

