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ABSTRACT 

 

Graph Isomorphism is one of the classical problems of graph theory for which no deterministic 

polynomial-time algorithm is currently known, but has been neither proven to be NP-complete. Several 

heuristic algorithms have been proposed to determine whether or not two graphs are isomorphic (i.e., 

structurally the same). In this research, we propose to use the sequence (either the non-decreasing or non-

increasing order) of eigenvector centrality (EVC) values of the vertices of two graphs as a precursor step 

to decide whether or not to further conduct tests for graph isomorphism. The eigenvector centrality of a 

vertex in a graph is a measure of the degree of the vertex as well as the degrees of its neighbors. We 

hypothesize that if the non-increasing (or non-decreasing) order of listings of the EVC values of the 

vertices of two test graphs are not the same, then the two graphs are not isomorphic. If two test graphs 

have an identical non-increasing order of the EVC sequence, then they are declared to be potentially 

isomorphic and confirmed through additional heuristics. We test our hypothesis on random graphs 

(generated according to the Erdos-Renyi model) and we observe the hypothesis to be indeed true: graph 

pairs that have the same sequence of non-increasing order of EVC values have been confirmed to be 

isomorphic using the well-known Nauty software.  
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1. INTRODUCTION 

 

Graph isomorphism is one of the classical problems of graph theory for which there exist no 

deterministic polynomial-time algorithm and at the same time the problem has not been yet 

proven to be NP-complete. Given two graphs G1(V1, E1) and G2(V2, E2) - where V1 and E1 are the 

sets of vertices and edges of G1 and V2 and E2 are the sets of vertices and edges of G2 - we say the 

two graphs are isomorphic, if the two graphs are structurally the same. In other words, two graphs 

G1(V1, E1) and G2(V2, E2) are isomorphic [1] if and only if we can find a bijective mapping f of 

the vertices of G1 and G2, such that ∀ v ∈V1, f(v) ∈  V2 and ∀ (u, v) ∈  E1, (f(u), f(v))∈  E2. As the 

problem belongs to the class NP, several heuristics (e.g., [7-9]) have been proposed to determine 

whether any two graphs G1 and G2 are isomorphic or not. The bane of these heuristics is that they 

are too time-consuming for large graphs and could lead to identifying several false positives (i.e., 

concluding a pair of two non-isomorphic graphs as isomorphic).  

 



2  Computer Science & Information Technology (CS & IT) 

 

To minimize the computation time, the test graphs (graphs that are to be tested for isomorphism) 

are subject to one or more precursor steps (pre-processing routines) that could categorically 

discard certain pair of graphs as non-isomorphic (without the need for validating further using 

any time-consuming heuristic). For two graphs G1(V1, E1) and G2(V2, E2) to be isomorphic, a 

basic requirement is that the two graphs should have the same number of vertices and similarly 

the same number of edges. That is, if G1(V1, E1) and G2(V2, E2) are to be isomorphic, then it 

implies |V1| = |V2| and |E1| = |E2|. If |V1| ≠ |V2| and/or |E1| ≠ |E2|, then we can categorically say that 

G1 and G2 are not isomorphic and the two graphs need not be processed further through any time-

consuming heuristics to test for isomorphism.  

In addition to checking for the number of vertices and edges, one of the common precursor steps 

to test for graph isomorphism is to determine the degree of the vertices of the two graphs that are 

to be tested for isomorphism and check if a non-increasing order (or a non-decreasing order; we 

will follow a convention of sorting in a non-increasing order) of the degrees of the vertices of the 

two graphs is the same. If the non-increasing order of the degree sequence of two graphs G1 and 

G2 are not the same, then the two graphs can be categorically ruled out from being isomorphic. If 

two graphs are isomorphic, then identical degree sequence of the vertices in a particular sorted 

order is a necessity. However as shown in Figure 1, it is possible that two graphs could have the 

same degree sequence in a particular sorted order, but need not be isomorphic [2]. Though very 

time-efficient, the degree sequence-based precursor step to test for graph isomorphism is 

typically considered to be erratic and not reliable (leading to false positives), especially while 

testing for isomorphism among graphs with a smaller number of vertices (like the example in 

Figure 1).  

 

Figure 1: Example for Two Non-Isomorphic Graphs with the Same Degree Sequence, but Different 

Eigenvector Centrality (EVC) Sequence 
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Centrality metrics are one of the commonly used quantitative measures to rank the vertices of a 

graph based on the topological structure of the graph [3]. Degree centrality is one of the primitive 

and typically used centrality metrics for complex network analysis; but, in addition to the 

weakness illustrated in Figure 1 and explained in the previous paragraph, it is also evident from 

Figure 1 that degree centrality-based ranking of the vertices could result in ties (i.e., the technique 

has weak discrimination power) among vertices having the same degree (as the degree centrality 

values are integers) and it may not be possible to unambiguously rank the vertices; for graphs of 

any size, it is likely that more than one vertex may have the same degree (ties). Eigenvector 

centrality (EVC) is a well-known centrality measure in the area of complex networks [4]. The 

EVC of a vertex is a measure of the degree of the vertex as well as the degree of its neighbors 

(calculations of EVC values is discussed in Section 2). For example: if two vertices X and Y have 

degree 3, but if all the three neighbors of X have a degree 2 and if at least one of the neighbors of 

Y have degree greater than 2 and others have degree at least 2, then the EVC of Y is guaranteed to 

be greater than the EVC of X. In general, the EVC of a vertex not only depends on the degree of 

the vertex, but also on the degree of its neighbors. For a connected graph, the EVC values of the 

vertices are positive real numbers in the range (0...1) and are more likely to be different from 

each other, contributing to the scenario of unambiguous ranking of the vertices as much as 

possible (the EVC technique has a relatively stronger discrimination power compared to the 

degree-based technique). 

 

With respect to Figure 1, we notice that the non-increasing order listings of the EVC values of the 

vertices for the two graphs are not the same. The discrepancy is obvious in the largest EVC value 

of the two sequences itself. The largest EVC value for a vertex in the first graph is 0.4253 and the 

largest EVC value for a vertex in the second graph is 0.3941. The example in Figure 1 is a 

motivation for our hypothesis to use the EVC values as the basis for deciding whether or not two 

graphs could be isomorphic.  

The rest of the paper is organized as follows: Section 2 explains the procedure to determine the 

Eigenvector Centrality (EVC) values of the vertices. In Section 3, we propose the use of the 

Eigenvector Centrality (EVC) measure as the basis of the precursor step to determine whether or 

not two graphs are isomorphic. In Section 4, we test our hypothesis on random network graphs 

(generated according to the Erdos-Renyi model [5]) with regards to the application of the EVC 

measure for detecting isomorphism among graphs. Section 5 discusses related work. Section 6 

concludes the paper. Throughout the paper, the terms 'node' and 'vertex' as well as 'edge' and 'link' 

are used interchangeably. They mean the same. 

2. EIGENVECTOR CENTRALITY 

The Eigenvector Centrality (EVC) of a vertex is a measure of the degree of the vertex as well as 

the degree of its neighbors. The EVC of the vertices in a network graph is the principal 

eigenvector of the adjacency matrix of the graph. The principal eigenvector has an entry for each 

of the n-vertices of the graph. The larger the value of this entry for a vertex, the higher is its 

ranking with respect to EVC. We illustrate the use of the Power-iteration method [6] (see 

example in Figure 2) to efficiently calculate the principal eigenvector for the adjacency matrix of 

a graph. The eigenvector Xi+1 of a network graph at the end of the (i+1)
th
 iteration is given by: 

i

i
i

AX

AX
X =

+1 , where ||AXi|| is the normalized value of the product of the adjacency matrix A of 

a given graph and the tentative eigenvector Xi at the end of iteration i. The initial value of Xi is the 
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transpose of [1, 1, ..., 1], a column vector of all 1s, where the number of 1s correspond to the 

number of vertices in the graph. We continue the iterations until the normalized value ||AXi+1|| 

converges to that of the normalized value ||AXi||. The value of the column vector Xi at this 

juncture is declared the Eigenvector centrality of the graph; the entries corresponding to the 

individual rows in Xi represent the Eigenvector centrality of the vertices of the graph. The 

converged normalized value of the Eigenvector is referred to as the Spectral radius. 

As can be seen in the example of Figure 2, the EVC of a vertex is a function of both its degree as 

well as the degree of its neighbors. For instance, we see that both vertices 2 and 4 have the same 

degree (3); however, vertex 4 is connected to three vertices that have a high degree (3); whereas 

vertex 2 is connected to two vertices that have a relatively low degree (of degree 2); hence, the 

EVC of vertex 4 is larger than that of vertex 2. As can be seen in the example of Figure 2, the 

EVC values of the vertices are more likely to be distinct and could be a better measure for 

unambiguously ranking the vertices of a network graph. 

 

Figure 2: Example to Illustrate the Computation of Eigenvector Centrality (EVC) of the Vertices using the 

Power-Iteration Method 

 

The number of iterations needed for the normalized value of the eigenvector to converge is 

anticipated to be less than or equal to the number of vertices in the graph [6]. Each iteration of the 

power-iteration method requires Θ(V 

2
) multiplications, where V is the number of vertices in the 

graph. With a maximum of V iterations expected, the overall time complexity of the algorithm to 

determine the Eigenvector Centrality of the vertices of a graph of V vertices is Θ(V 
3
). 
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3. HYPOTHESIS 

Our hypothesis is that if a non-increasing order of listings of the EVC values of the vertices for 

two graphs G1 and G2 are not identical, then the two graphs are not isomorphic. If the non-

increasing sequence of EVC values for the two graphs is identical, we declare the two graphs to 

be potentially isomorphic and subject them to further tests for isomorphism (for confirmation). 

Thus, the technique of listing the EVC sequence of the vertices (in a non-increasing order) could 

be used as an effective precursor step before subjecting the graphs to any time-consuming 

heuristic for graph isomorphism. As the EVC values of the vertices in any random graph are 

more likely to be unique, this test would also help us to extract a mapping of the vertices between 

two graphs that have been identified to be potentially isomorphic and make it more easy for the 

time-consuming complex heuristics to test for isomorphism. We illustrate our hypothesis using an 

example in Figure 3. From the example, it is very obvious that if two graphs have an identical 

non-increasing order listing of the EVC sequence, they should have identical non-increasing 

order listing of the degree sequence; but, not vice-versa (refer example in Figure 1). If two graphs 

have a different non-increasing order of degree sequence, they cannot have the same non-

increasing order of EVC sequence and we do not need to compute the EVC values. 

 

 
 

Figure 3: Illustration of the Hypothesis: Eigenvector Centrality (EVC) to Decide Graph Isomorphism 

 

We notice from Figure 3 that the vertices corresponding to the non-increasing order of the EVC 

values in both the graphs could be uniquely mapped to each other on a one-to-one basis (bijective 

mapping). On the other hand, the non-increasing order of the degree sequence of the vertices 

merely facilitates us to group the vertices into different equivalence classes (all vertices of the 

same degree in both the graphs are said to be equivalent to each other); but, one could not arrive 

at a unique one-to-one mapping of the vertices that corresponds to the structure of the two graphs. 

We thus hypothesize that the EVC approach could not only help us to determine whether or not 

two graphs are isomorphic, it also facilitates us to potentially arrive at a unique one-to-one 

mapping of the vertices in the corresponding two graphs and feed such a mapping as input to any 
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heuristic that is used to confirm whether two graphs that have been identified to be possibly 

isomorphic (using the EVC approach) are indeed isomorphic. 

 

4. SIMULATIONS 

 

We tested our hypothesis by conducting extensive simulations on random network graphs 

generated according to the Erdos-Renyi model [5]. According to this model, the network has N 

nodes and the probability of a link between any two nodes is plink. For any pair of vertices u and v, 

we generate a random number in the range [0...1] and if the random number is less than plink, 

there is a link between the two vertices u and v; otherwise, not. We constructed random networks 

of N = 10 nodes with plink values of 0.2 to 0.8 (in increments of 0.1). We constructed a suite of 

1000 networks for each value of plink. We chose a smaller value for the number of nodes as we 

did not observe any pair of isomorphic graphs in a suite of 1000 graphs created with N = 100 

nodes for any plink value. Even for networks of N = 10 nodes, there is a high chance of observing 

pairs of isomorphic graphs only under low or high values of plink. For plink values of 0.2 and 0.3, 

the pairs of isomorphic graphs observed were typically trees (graphs without any cycles) that 

have the minimal number of edges to keep all the nodes connected. As we increase the number of 

links in the networks, the chances of finding any two distinct isomorphic random graphs get 

extremely small. On the other hand, for plink values of 0.7 and 0.8, the isomorphic graphs were 

observed to be close to complete graphs (with only one or two missing links per node from 

becoming a complete graph). 

 

 

Figure 4: Number of Isomorphic Random Graph Pairs: Degree Sequence vs. EVC Sequence Approach 

 

The success of the hypothesis is evaluated by determining the number of pairs of isomorphic 

graphs identified based on the non-increasing order of the EVC sequence vis-a-vis the degree 

sequence. As mentioned earlier, if two graphs are isomorphic, then the non-increasing order of 

listing of the EVC values of the vertices has to be identical (as the two graphs are essentially the 

same, with just the vertices labeled differently). This implies that if the non-increasing order of 

listing of the EVC values of the vertices for a pair of graphs G1 and G2 are not identical, we need 

not further subject the two graphs to any other heuristic test for isomorphism. If two graphs are 

identified to be potentially isomorphic based on the EVC sequence, we further processed those 

two graphs using the Nauty software [7] and confirmed that the two graphs are indeed isomorphic 

to each other. We did not observe any false positives with the EVC approach. The Nauty 

software [7] is the world's fastest testing software (available at: http://www3.cs.stonybrook.edu/ 

~algorith/implement/nauty/implement.shtml) to detect graph isomorphism. 
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Figure 4 illustrates the number of graph pairs that have been identified to be potentially 

isomorphic on the basis of the EVC sequence approach vis-a-vis the degree sequence approach. 

We observe that even with the degree sequence approach, for moderate plink values (0.4-0.5), the 

number of graph pairs identified to be potentially isomorphic decreases from that observed for 

low-moderate plink value of 0.3. As we further increase the plink value, the number of graph pairs 

identified to be potentially isomorphic increases significantly with both the degree sequence and 

EVC sequence-based approach, and the EVC sequence-based approach identifies a significantly 

larger number of these graph pairs (that are already identified to be potentially isomorphic based 

on the degree sequence) to be indeed potentially isomorphic and this is further reconfirmed 

through the Nauty software. For low-moderate plink values, we observe the degree sequence-based 

approach to identify an increasingly larger number of graph pairs to be potentially isomorphic, 

but they were observed to be indeed not isomorphic on the basis of the EVC sequence approach 

as well as when tested using the Nauty software. This vindicates our earlier assertion (in Section 

1) that the degree sequence-based precursor step is prone to incurring a larger number of false 

positives (i.e., erratically identifying graph pairs as isomorphic when they are indeed not 

isomorphic).  

 

5. RELATED WORK 

 

Though centrality measures have been widely used for problems related to complex network 

analysis [3], the degree centrality measure is the only common and most directly used centrality 

measure to test for graph isomorphism [1]. The other commonly used centrality-based precursor 

step to test for the isomorphism of two or more graphs is to find the shortest path vector for each 

vertex in the test graphs and evaluate the similarity of the shortest path matrix (an ensemble of 

the shortest path vectors of the constituent vertices) of the test graphs. Since the one-to-one 

mapping between the vertices of the test graphs is not known a priori, one would need a time-

efficient algorithm to compare the columns (shortest path vectors) of two matrices for similarity 

between the columns. The closeness centrality measure [3] is the centrality measure that matches 

to the above precursor step. Both the degree and closeness centrality measures have an inherent 

weakness of incurring only integer values (contributing to their poor discrimination of the 

vertices) and it is quite possible that two or more vertices have the same integer value under 

either of these centrality measures and one would not be able to obtain a distinct ranking of the 

vertices (i.e., unique values of the centrality scores) to detect for graph isomorphism. The 

eigenvector centrality measure incurs real numbers as values in the range (0...1) and has a much 

higher chance of incurring distinct values for each of the vertices of a graph. Though there could 

be scenarios where two or more vertices have the same EVC value, a non-increasing or non-

decreasing order listing the EVC values of the vertices of two different graphs is more likely to 

be different from each other if the two graphs are non-isomorphic. As the complexity of the graph 

topology increases (as the number of vertices and edges increases), we observed it to be 

extremely difficult to generate two random graphs that have the same sequence (say in the non-

increasing order) of EVC values for the vertices and be isomorphic. 

 

As mentioned earlier, graph isomorphism is one of the classical problems of graph theory that has 

not been yet proven to be NP-complete, but there does not exist a deterministic polynomial time 

algorithm either. Many heuristics have been proposed to solve the graph isomorphism problem 

(e.g., Nauty [7], Ullmann algorithm [8] and VF2 [9]), but all of them take an exponential time at 

the worst case as most of them take the approach of progressively searching for all possible 

matching between the vertices of the test graphs. To reduce the search complexity, the heuristics 
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could use precursor steps like checking for identical degree sequence for the vertices of the test 

graphs. It would be preferable to use precursor steps that contribute to fewer false positives, if not 

none. This is where our proposed approach of using the eigenvector centrality (EVC) fits the bill. 

We observe from the simulations that all the graphs identified to be isomorphic (using the EVC 

approach) are indeed isomorphic. Thus, the EVC sequence-based listing of the vertices could be 

rather used as an effective precursor step to rule out graph pairs that are guaranteed to be not 

isomorphic, especially when used with the more recently developed time-efficient heuristics that 

effectively prune the search space (e.g., the parameterized matching [10] algorithm).   

The eigenvector centrality (EVC) measure falls under a broad category of measures called "graph 

invariants" that have been extensively investigated in discrete mathematics [11-12], structural 

chemistry [13-14] and computer science [15]. These graph invariants can be classified to be 

either global (e.g., Randic index [16]) or local (e.g., vertex complexity [17]) as well as be either 

information-theoretic (statistical quantities) [18-19] or non-information-theoretic indices [20]. 

With the objective of reducing the run-time complexity of the heuristics for graph isomorphism, 

weaker but time-efficient precursor tests (measures with poor discrimination power like the 

degree sequence) were rather commonly used. Sometimes, a suite of such simplistic graph 

invariants were used [21] and test graphs observed to be potentially isomorphic based on each of 

these invariants were considered for further analysis with a complex heuristic. The discrimination 

power of the weaker graph invariants also vary with the type of graphs studied [21]. To the best 

of our knowledge, the discrimination power of the more complex graph invariants - especially 

those based on the spectral characteristics of a graph (like that of the Eigenvector Centrality), is 

yet to be analyzed. Ours is the first effort in this direction.  

6. CONCLUSIONS 

The high-level contribution of this paper is the proposal to use the Eigenvector Centrality (EVC) 

measure to detect isomorphism among two or more graphs. We propose that if the non-increasing 

order (or non-decreasing order) of listing the EVC values of the vertices of the test graphs are not 

identical, then the test graphs are not isomorphic and need not be further processed by any time-

consuming heuristic to detect graph isomorphism. This implies that if two or more graphs are 

isomorphic to each other, their EVC values written in the non-increasing order must be identical. 

We test our hypothesis on a suite of random network graphs generated with different values for 

the probability of link and observed the EVC approach to be effective: there are no false 

positives, unlike the degree sequence based approach. The graph pairs that are observed to have 

an identical EVC sequence are confirmed to be indeed isomorphic using the Nauty graph 

isomorphism detection software. We also observe it to be extremely difficult to generate 

isomorphic random graphs under moderate values for the probability of link (0.4-0.6); it is rather 

relatively more easy to generate isomorphic random graphs that are either trees (created when the 

probability of link values are low: 0.2-0.3) or close to complete graphs (created when the 

probability of link values are high: 0.7-0.8). 
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