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ABSTRACT 

 

The localization of wireless sensor networks is an important problem where the location of 

wireless sensors is determined using the distance between sensors. Trilateration is a geometric 

technique used to find location of points in 2D using distances. Using geometry, one can find 

the location of a point uniquely in 2D given its distance to three other points in 2D. The problem 

of finding the trilateration order of vertices even if the network of sensors is a uniquely 

localizabe is NP-Complete. The 2D localization problem is closely related to the problem of 

graph rigidity. A graph can be uniquely realized in 2D if and only if the underlying network 

graph is globally rigid. Therefore by examining the structure of the underlying graph for 

rigidity and localization guided by rigidity is another technique used in localization. 

 

We study the performance of trilateration which is based on geometry and local information to 

see if it is effected by graph rigidity which is a global property. In particular, we compare the 

performance of the trilateration on connected non-rigid networks and connected rigid networks. 

We focus on sparse networks graphs of lower radius. 

 

1. INTRODUCTION 

 
The recent advancements in wireless communication and sensing technology have resulted in 

wide deployment of sensors in applications like environmental monitoring, search and rescue, 

military surveillance, and intelligent transportation, etc [1, 2, 3]. In these types of applications, 

the knowledge of the location of each sensor is important. Due to constraints of these application, 

however it is often difficult to preset the locations of sensors before they are deployed. Therefore, 

the capability of obtaining the positions of sensors after the deployment is fundamental to the 

success of the mission of sensor networks. Most of the node localization algorithms are based on 

range measurements, through either time of arrival (TOA) [4], time difference of arrival (TDOA) 

[5], or received signal strength (RSS) [6, 7]. The problem of localization is to derive the 

geolocation of a node given a set of known locations and range measurements to these locations. 

Given the available range measures, if there is only one position for the nodes in the network, 
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then the network is localizable. Similarly, if a node has only one position that satisfies all the 

range measures relevant to it, it is localizable. 

 

Yang [8] presented conditions for node localizability using Trilateration technique. Yang et al [9] 

presented a distributed algorithm for localization which uses an extended trilateration. Wheel 

graphs are used as basic localizable subgraph and localization then extends to adjacent wheels. Li 

[10] provided a path for the mobile beacon based on depth-first search and used a variation of 

trilateration in the DREAMS technique. The geometric technique of trilateration is attractive due 

to the fact that the algorithms can be implemented as distributed algorithms. 

 

The problem of network localization is closely related to the graph rigidity. A network defined by 

a set of nodes and a set of known distances between the nodes can be localized only if the graph 

derived from the network is uniquely realizable. It has been shown [11, 12, 13] that for a graph to 

be uniquely realizable, it must be redundantly rigid and tri-connected. Jacobs [11] proposed a 

centralized polynomial algorithm to check the rigidity of a graph through pebble games. 

trilateration alone. However, these are centralized algorithms. The pebble game algorithm 

described in Section 2 is based on depth first search and therefore is not distributed. However, 

distributed algorithms are use- ful considering the nature in which the sensor networks are 

deployed in practical setting. Very often there will not be a central node that all nodes in the 

network can communicate with. Moreover in cases where nodes may move and find new 

distances to their neighbors, these new distances need not be updated to central location if a 

distributed algorithm is used for rigidity finding and hence localization. However rigidity is a 

global property of a graph and it is quite a challenge to check the rigidity property without a huge 

message complexity. 

 

In this paper we study if Trilateration performs better on rigid graphs versus random graph. Note 

that if a graph is 6-connected it is globally rigid and therefore localizable. We deal with graphs of 

low radius and low connectivity to examine if the Trilateration performs better in graphs that are 

weakly rigid. 

 

2. GRAPH RIGIDITY AND ITS RELATION TO WSN LOCALIZATION 
 

In this section, we are going to introduce the theory in network localizability and rigidity. A 

detailed description can be found in [11, 12, 13]. Let a framework p(G) be a graph G along with a 

mapping p : V →R
2   

which assigns each vertex to a point in the plane. A  finite flexing of a 

framework p(G) is a family of realizations of G, parameterized by t so that the location, ri , of 

each vertex i, is a differentiable function of t and | ri (t) − ri (t)|
2
 is constant for every (i, j) ∈ E. 

Thinking of t as time, and differentiating the edge length constraints, we have 

 

(ui − ui)( ri – rj ) = 0 for every (i, j) ∈ E                                                   (1) 

 

An assignment of velocities that satisfies Eq. 1 for a particular framework is an infinitesimal 

motion of that framework. Every framework has three trivial infinitesimal motion: two 

translations, and a rotation. If a framework has a nontrivial infinitesimal motion it is 

infinitesimally flexible. Otherwise it is infinitesimally rigid. Checking for whether a particular 

framework is rigid or not, can be determined from the property of the graph. 
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Let G = {V,E} denote a network of vertices V = {1, 2, ..., n} and for any edge (i, j) ∈ E, the 

distance between Vi and Vj is precisely known. The network localization problem is to determine 

the unique position of each node in the network given the positions of available beacons and the 

distance between each pair (i, j) ∈ E. If under the given constraints, there is only one position for 

each node, then the network is localizable. The network localization problem is closely related to 

the Euclidean graph realization problem, in which coordinates are assigned to vertices of a 

weighted graph such that the distance between coordinates assigned to nodes joined by an edge is 

equal to the weight of the edge. 

 

For a two dimensional graph with n vertices, the positions of its vertices have 2n degrees of 

freedom, of which three are the rigid body motions. Therefore graph is rigid if there are 2n − 3 

constraints. If each edge adds an independent constraint, then 2n−3 edges should be required to 

eliminate all non-rigid motions of the graph. Clearly, if any induced subgraph with n vertices has 

more than 2n−3 edges then these edges cannot be independent, which leads to the following 

Laman theorem [14]: 

 

Theorem 1 The edges of a graph G = {V,E} are independent in two dimensions if and only if no 

subgraph G′ = {V ′,E′} has more than 2n′ − 3 edges, where n′ is the number of nodes in G′. 

 

Corollary 1 A graph with 2n − 3 edges is generically rigid in two dimensions if and only if no 

subgraph G′ has more than 2n′ − 3 edges. 

 

Laman’s theorem characterizes generic rigidity. However, a direct implementation of it leads to a 

poor exponential algorithm. An efficient approach to check for rigidity is proposed in [11] based 

on a pebble game. Jacob et. al proposed Jacob’s approach uses the following formulation of 

Laman algorithm: 

 

Theorem 2 [11] For a graph G = {V,E} having m edges and n vertices, the following are 

equivalent. 

 

• The edges of G are independent in two dimensions. 

 

• For each edge (a, b) in G, the graph formed by adding three additional edges identical to 

(a, b) has no induced subgraph G′ in which m′ > 2n′ . 

 

The basic idea behind Jacob’s algorithm is to grow a maximal set S of independent edges one at a 

time. Initially, S is empty. Let’s denote these basis edges by E. A new edge is added to S if it is 

discovered to be independent of the edges existing in S.                                                  

 
Figure 1: A generically rigid graph subject to flapping transformation. The two realizations are not 

continuous in two dimension space in that the second one is obtained by a flapping of the first one. 
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To check whether an edge e is independent of edges in S, each vertex is assigned two pebbles 

initially and a temporary set S′ is created. S′ contains all the edges in S plus four copies of e. The 

pebbles can only travel via the edges in S′. If all edges in S′ can be covered by the pebbles, then 

we know that e is independent of all edges in S and e is added into S. This process is repeated 

until no more edges can be added into S. Then S is a maximal set of independent edges. If S 

contains 2n − 3 edges, then the graph is generically rigid. 

 

Having 2n − 3 independent edges ensures the generic rigidity of a graph. However, it does not 

guarantee the unique realization of the network. A discontinuous change to the positions of nodes 

may lead to another realization which satisfies all the constraints of the network, as shown in 

Figure 1. The following theorem states the condition for a network to be uniquely realizable. 

 

Theorem 3 [13] A graph G with n≥4 vertices is uniquely realizable in two dimensions if and only 

if it is redundantly rigid and tri-connected. 

 

Redundant rigidity means after removing any single edge, the remaining graph is still generically 

rigid. A tri-connected graph is a connected graph such that deleting any two vertices (and incident 

edges) results in a graph that is still connected. When a network satisfies the condition in 

Theorem 3 can be uniquely localized given at least three nonlinear beacons in a two dimensional 

space. 

 

3. TRILATERATION TECHNIQUE FOR RIGID GRAPHS 

 
As we have discussed above, a network has to be globally rigid to be localizable. In this section, 

we are going to discuss in detail the proposed approach. To get a measure of localizability of the 

network we use a modified trilateration, a well-known technique in localizability. The technique 

of trilateration is based on the fact that in 2D, the unique location of the node can be determined 

given the distances to three other nodes whose locations are already known. 

 

In iterative trilateration, we perform trilateration with starting vertices from different 

geographical parts of the graph, and choose the trilateration graph that has maximum number of 

localizable nodes. 

 

Algorithm 1  
 

1. Generate a graph that has flip rigidity 

2. Repeat the following steps up to K times 

3. Choose three starting vertices as anchors 

4. Use trilateration to annex other vertices that connected to Anchor vertices 

5. Mark the newly annexed vertices as anchors 

6. Repeat annexation of vertices until no more vertices can be annexed 

7. Count the number of annexed nodes. 

8. Go back to step 2 with three other starting vertices. 
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4. RESULTS OF SIMULATION 

 
We demonstrate that for sparse graphs, there is almost no difference in the performance of 

trilateration whether the graph is rigid or not. We implement a simulation on Matlab of multiple 

instances of graphs with 200 nodes over a ground of 100 by 100 with various radii. Figures 2 and 

3 show random and rigid network of 200 nodes respectively. 

 

 
Figure 2: A random network of 200 nodes. 

 

 
Figure 3: A rigid network of 200 nodes 

 

The simulation is performed for multiple instances of the same radius for both random network 

and rigid network. We use Pebble game algorithm to check if a graph is rigid. Figure 4 and 

Figure 5 demonstrate the number of nodes localized for random and rigid networks with iterative 

trilateration using 100 instances of graphs for the averaging. Figures 6 and 7 show the number of 

edges used in localization of the corresponding network.  
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5. CONCLUSION 

 
It can be seen that even though rigid networks in general are more localizable, for sparse graphs, 

only generic rigidity is a possibility and generic rigidity can help only marginally with 

localization. This is because rigidity is a global property of a graph but trilateration is a local 

property of a graph. Unless the global property can be translated into a collection of local 

properties, trilateration is not significantly helped by localization.  

 

This leads us believe that perhaps two different approaches to localization should be considered. 

For sparse graphs, a localization that is based on finding localizable subgraphs and for dense 

graphs global rigidity can be used. 

 

 
Figure 4: Number of nodes localized in a rigid network of 200 nodes. 

 

 
Figure 5: Number of nodes localized in a random network of 200 nodes. 
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Figure 6: Number of edges used in  localization of a rigid network of 200 nodes. 

 

 
Figure 7: Number of edges used in  localization of a rigid network of 200 nodes 
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