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ABSTRACT 

 
This paper presents a unified architecture design of the RSA cryptosystem i.e. RSA crypto-

accelerator along with key-pair generation. A structural design methodology for the same is 

proposed and implemented. The purpose is to design a complete cryptosystem efficiently with 

reduced hardware redundancy. Individual modular architectures of RSA, Miller-Rabin Test and 

Extended Binary GCD algorithm are presented and then they are integrated. Standard 

algorithm for RSA has been used. The RSA datapath has further been transformed into DPA 

resistant design. The simulation and implementation results using 180nm technology are shown 

and prove the validity of the architecture. 
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1. INTRODUCTION 
 
The RSA algorithm [1] is a public key algorithm and is extensively in security and authentication 

applications. Being computationally intensive, use of separate crypto-accelerator hardware to 

accelerate the computations is common. The communication between the main processor (32-64 

bit) and the RSA crypto-accelerator (1024-2048 bit) requires a protocol for data exchange and a 

FIFO register bank can implemented for the same. This paper describes an architecture design for 

the RSA cryptosystem useful for both the Encryption/Decryption and for the Key-Pair Generation 

which may be required due to security. The number to be tested as prime is fed as input to the 

system and the random numbers for Miller-Rabin test are generated using Pseudo-Random 

Number Generator (PRNG). 

 

The paper is organized as follows: Section 2 introduces the basics of RSA algorithm. Section 3 

describes fundamental algorithms, with modular architecture around which the top level system 

was developed. Section 4, discusses top-level implementation. Section 5 briefs about power 

analysis attacks. In Section 6, implementation results have been shown. In Section 7, conclusion 

is drawn. 
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2. BASICS OF RSA 

 
RSA involves the use of a public key-pair {e, n} and a private key {d, n} for encryption and 

decryption respectively. Messages encrypted with the public key can only be decrypted using the 

private key. For digital signatures private key is used. The proof of the algorithm can be found in 

[1]. The steps for Key Generation and Encryption/Decryption are reproduced below: 

 

2.1. Key-Pair Generation 

 
1. Choose primes, p and q.   

2. Compute modulus n = p*q. Its length is called the key length.  

3. Compute Euler's totient function, φ(n) = (p − 1)(q − 1). 

4. Choose a public key, e, such that 1 < e < φ(n) and gcd(e, φ(n)) = 1.  

5. Determine d as d−1 ≡ e (mod φ(n)). 

 

2.2. Encryption and Decryption 

 
Cipher text(C) is obtained as a number theory equivalent to the public key (e) exponentiation of 

message (M) in modulus n 

C = Me mod {n}. 

 

 

Similarly, message can be recovered from cipher text by using private key exponent (d) via 

computing 

 

M = Cd mod {n}. 

 

3. MODULAR DESIGN ARCHITECTURES 
 
This section describes the architectures developed for various modules used in the design of RSA 

cryptosystem. 

 

3.1. Modular Multiplication 
 
The binary interleaving multiplication and reduction algorithm is the simplest algorithm used to 

implement the modular multiplication [2]. The algorithm can be obtained from the expansion, 

 

P = 2 (. . . 2 ( 2 ( 0 + A*Bk ) + A*Bk-1 ) + . . . ) + A*B1, as : 

Input: A, B 

R ← 0 

for {i = 0 to k-1} { 

 R ← 2R + A*Bk-1-i 

 R' ← R-n 

 if {[R'] >= 0} {R ← R'} 

  R' ← R-n 

 If {[R']  >= 0} {R ← R'} }. 

 

The hardware implementation of the datapath core is shown as in the Fig. 1. Signed subtractors 

have been used. The word-length of the subtractors and adders used is one and two bits more 

respectively. 
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3.2. Modular Exponentiation 
 
The binary method for computing Me (mod n) has been implemented using Left-to-Right (LR) 

algorithm. [2] 

Input: M; e; n 

if {eh-1 = 1} {C ← M} else {C ← 1} 

 

Figure 1.  Architecture of RSA Datapath 

for {i = h-2 to 0} { 

 C ← C*C (mod n) 

 if {ei = 1} {C ← C*M (mod n)} } 

 

The above algorithm is specific to the design of control unit for the RSA module. For the purpose 

of hardware optimization, it has been assumed that the MSB of exponent bit-word is always 1 i.e. 

the exponent always starts with the MSB. 

 

The datapath core of RSA, as depicted in Fig. 1, is combined with some additional digital design 

blocks for complete RSA module. The state diagram for the same is given in Fig. 2. The states s0, 

s1, s2 are used for initialization and directing the primary input into the registers. 

 

The states s4, s5 perform the binary multiplication; s5a checks the LSB of the exponent bit and if 

the LSB is HIGH it directs controller to another binary multiplication with changed inputs. The 

second binary multiplication is performed in state s9. If the LSB was LOW, the controller loops 

back to state s3. The state machine essentially performs binary modular multiplication. When the 

signal for completion of exponentiation is received, the state s11 is jumped to. 

 

3.3. Miller-Rabin Primality test 
 
Miller-Rabin Primality test is the most widely used primality testing algorithm [3][4]. The design 

for Miller-Rabin algorithm, shown in Fig. 3, is built around the RSA module described above 

with some additional control signals. The same RSA module has been used for exponentiation 

and squaring purposes.  
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This test provides advantages over other primality tests given by the Fermat and Euler [5]. The 

algorithm is reproduced below from [4][5] in an implementation friendly, Register Transfer 

Language (RTL), format. 

 

Input: K, N 

Output: P_Cb  

For {i = 0 to K-1} { 

 D ← N-1 

 S ← 0 

 While {[D0] = 0} { 

 

 
Figure 2. State Diagram for Modular Exponentiation 
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Figure 3. Architecture for Miller-Rabin Test Algorithm 

D ← shr (D, 1)  

S ← S + 1 } 

 A ← RB (Random Base) {  RB ϵ [2, N-2]} 

 X ← AD mod (N) 

 if {[X] = 1 || [X] = N-1} {continue} 

 for {r = 1 to S - 1} { 

  X ← X2 mod (N) 

  if {[X] = 1} {P_Cb ← 0} 

  if {[X] = N-1} {continue} } 

 P_Cb ← 0 } 

P_Cb ← 1 

 
 

K is selected as per target accuracy and is sufficed at 7 for 512 bit primes and at 4 for 1024 bit 

primes [6].  

 
 

The Miller exponent block, which is a modification over PI-P/SO shift register is used to 

calculate the ‘S' and 'D' values in the algorithm. The Miller controller detects the zeros in the 

exponent using shifting. A PRNG has been used to feed the random seed value to the RSA 

module for random base number. The counter counts a RSA intermediate event as clock. Miller 

controller serves as the master control unit of the system. The signal from the Miller controller 

further controls the events/states controlled by a separate RSA module controller which acts as a 

slave control unit. 

 
 

The state diagram for Miller-Rabin primality test is given in Fig. 4. States s0, s1, s2 are used for 

initialization purposes.  State s0 enables the exponent register to take input exponent, N, which is 

the number to be tested for primality. State s1 and s2 are used to count the number of trailing 

zeros in the exponent. It is to be ascertained that the exponent bit-string must begin with the 

MSB. 
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 Figure 4. State diagram for Miller-Rabin Primality test 

After all the trailing zeros have been counted, state s3 takes a random number from instantiated 

PRNG and while the number of iterations, K, for which the Miller-Rabin test is to be run is not 

equal to zero, it calls the state s4, which performs exponentiation. 

 

When the exponentiation is complete state s6 checks the status in the miller comparator. If the 

status signal from miller comparator is “10” or “01”, the controller goes back to state s3. Status 

“10” denotes that the result from the exponentiation is equal to N-1 and status “01” denotes the 

result to be unity. 

 

For other status signals, the state s6 jumps to s7 which send a square signal to RSA module and 

performs the squaring operation in state s8. State s9 again checks the status and jumps of the 

consequent state. 

 

3.4. Extended Binary GCD Algorithm 

 
The binary GCD algorithm, also known as Stein’s algorithm, computes the GCD of non-negative 

numbers using shifts, subtraction and comparisons rather than division used in Extended 

Euclidean algorithm. The binary GCD algorithm given in [7] can be implemented as shown in 

Fig. 5. The extended version of the same algorithm for calculating modular inverse has been 

presented below, for implementation, in RTL as 

 

Inputs: A, B 

Outputs: GCD, INV_OUT 

Initialize: U ← 1; V ← 0; S ← 0; T ← 1; P ← A; 

Q ← B 

While {[B] ~= 0} { 

 If {[B] = [A]} { 

   GCD ← shl (A,[R]) 

  INV_OUT ← S } 

 Else if {[B] < [A]} { 
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  A ↔ B 

  U ↔ S  

  V ↔ T } 

  Else if {[A0] = 0 & [B0] = 0} { 

  A ← shr (A, 1) 

  A ← shr (B, 1) 

  R ← R + 1 } 

  Else if {[A0] = 0 & [B0] = 1} { 

  A ← shr (A, 1) 

  If {[U0] = 0 & [V0] = 0} { 

   U ← shr (U, 1) 

   V ← shr (V, 1) } 

  Else { 

   U ← shr (U + Q) 

   V ← shr (V – P) } } 

    Else if {[A0] = 1 & [B0] = 0} { 

  B ← shr (B, 1) 

  If {[S0] = 0 & [T0] = 0} { 

   S ← shr (S, 1) 

   T ← shr (T, 1) } 

  Else { 

   S ← shr (S + Q) 

   T ← shr (T – P) } } } 

GCD ← shl (A, [R]) 

INV_OUT ← S 

 

 

Figure 5. Architecture for BCD Algorithm 

The above extended algorithm can be implemented by augmenting the architecture given in Fig. 5 

with addition of few multiplexers, registers, subtraction units and control signals, as in Fig. 6. 

  

The state diagram for Extended Binary Greatest Common Divisor (EBGCD) is given in Fig. 7. 

State s0 is the initialization state in which the inputs A & B are read in the various registers. In  
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Figure 6. Additional structures required for Extended Binary GCD algorithm 

state s1, the values and LSBs of both the inputs are compared. When LSBs of both A and B are 

LOW, the state s1 jumps to s3. The registers of both the inputs are right shifted and a counter is 

incremented. 

 

When LSB of only either of the input is LOW, the state s4 or s5 are traversed to. The states s4, 

s4a, s4b, s4c and s5, s5a, s5b, s5c are used to perform the required computations. The states s6 

through s6d operate when LSBs of both the inputs are HIGH. When both the inputs are equal, the 

state s1 jumps to s2 or s2b depending on whether the count for bit-shifts is zero or not. The state 

s2a and s2 are used to left-shift the output required number of times. 

 

When value of B is less than A, the signal from the comparator to various MUXs goes HIGH and 

the interchange between various register is performed within that clock cycle. 

 

 Figure 7. State diagram of Extended Binary GCD Algorithm 
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The Fig. 8 gives the complete architecture of the Extended Binary GCD algorithm. The signals 

from the comparator and EBGCD controller are used to control the data flow inside the register 

loops. 

 

 
 

Figure 8. Detailed Architecture of Extended Binary GCD Algorithm 

 

4. TOP-LEVEL DESIGN 
 
After the individual design is completed for various modules, these are integrated in top-level 

design of RSA cryptosystem. 

 

The cryptosystem can be run in either of the two modes: 

(i) RSA encryption/ decryption (RSA mode) and, 

(ii) Key-Pair Generation (GKP mode). 

 

The design of the complete cryptosystem as implemented is shown in Fig. 9. The modes are 

controlled by GKP_RSAb control input. The system has an EXPONENT_BIT_CNTR counter 

which counts the intermediate RSA event and sends the signal for RSA completion. The input to 

the counter is number of bits of exponent bit-word that are to be used for exponentiation. The 

number for primality test may be supplied from memory or True-RNG as input. 

 

During RSA computation, the controller after enabling the RSA module and directing the input 

MUXs to feed from Primary inputs waits for a signal from RSA module for completion. A signal 

from the exponent bit counter is sent to RSA module to indicate last bit the exponentiation. 

 

During generation, the top system controller runs the Miller-Rabin controller twice to obtain two 

primes. In case the test fails and the random number is composite, the system keeps on taking the 

random numbers as input till both the prime numbers are determined. The product of primes and 

their Euler totient function are computed in two cycles using single combinational multiplier. The 

values computed are fed in to the EBGCD module the output of which is compared to the unity. If 

the output is not unity, another random number is taken as input. If the result is unity, the random 

number taken as input serves as the public key and the modular  
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Figure 9. Top-level Architecture of RSA Cryptosystem 

inverse output from the EBGCD module serves as the private key with modulus being the product 

of the primes.  

 

The Miller PRNG has been used to generate a public key exponent; however, desired key may be 

provided externally with use of an additional multiplexer. The unity comparator block is 

implemented by a using a series of the OR gates. 

 

5. POWER ANALYSIS RESISTANCE 
 
Power analysis attacks exploit the fact that the instantaneous power consumption of a 

cryptographic device depends on the data it processes and the operations it performs. 

 

Simple power analysis (SPA) involves directly interpreting power consumption measurements 

collected during cryptographic operation. Differential power analysis (DPA) attacks, which 

require large number of power traces for analysis, are used due to the fact that these do not 

require detailed knowledge about the attacked device.  

 

In CMOS technology, it is a fact that transitions are affiliated and determined by statistics of gate 

inputs and previous outputs, to the differing way energy is consumed between a 0→VDD and 

VDD→0 transitions. 

 

To counter DPA, the device needs to be built in such a way that every operation requires 

approximately the same amount of energy, or it can be built in such a way that the power 

consumption is more or less random. To the effect of first technique a custom EDA flow was 

developed for transforming the synthesized design into a design compliant to Differential Power 

Balancing DPA resistant technique called Delay Insensitive Minterm Synthesis-3 (DIMS-3) [8]. 

Fig. 10 shows the typical transformation methodology used for improving the DPA resistance of 

the RSA datapath. 
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6. IMPLEMENTATION 

 

Figure 10. Delay Insensitive Minterm Synthesis-3 compliant transformation 

This work describes the architecture of RSA cryptosystem built with the individual modules in 

the beginning to the top-level system in the end. The code of the described architecture was 

written in VHDL. The code for 8-bit system was synthesized and simulated using Tower 180nm 

digital library in Synopsys tools. 

 

6.1. Simulation Results 
 
Fig. 11 and Fig. 12 show the simulation result of the above said architecture for RSA 

encryption/decryption. Though both of figures use the same input bit-strings, their 

EXP_CNTR_DATA_S input to EXPONENT_BIT_CNTR is different. Thus, in Fig. 11, effective 

exponent is 74(“1001010”) and in Fig. 12 effective exponent is 37(“100101”). 

Fig. 13 shows the output sequencing of private key and modulus, when the system is used for key 

pair generation with primes 11 and 13.  

 

Fig. 14 and Fig. 15 show the power signatures for a computation of Differential Power Balancing 

DIMS-3 compliant RSA datapath transformed using custom EDA flow at positive and negative 

clock edges respectively.  

 

 
 

Figure 11. Simulation of RSA Cryptosystem for RSA Encryption/Decryption with Exponent bits 

count = 7 
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Figure 12. Simulation of RSA Cryptosystem for RSA Encryption/Decryption with Exponent bits 

count = 6 
 

 
 

Figure 13. Output sequence of private key and modulus during Key-Pair generation 

 

 

 

Figure 14. Power signature comparison between pre-transformed (left) and post-transformed 

(right) RSA datapath for various input 
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Figure 15. Power signature comparison between pre-transformed (left) and post-transformed 

(right) RSA datapath for various input 

 

6.2. Implementation Results 

 
Table I, II & III present the implementation results of synthesis of the RSA cryptosystem 

architecture in the 180nm Static digital CMOS library. Table I gives the count of the 

combinational and non-combinational cells implemented in the system. Table II enlists the area 

requirements of various design units the system. Table III gives the timing requirements of the 

core RSA module. E0 and E1 represent the number of 0’s and 1’s in exponent bit-word and N is 

the key length of the RSA. Table IV compares the area and cells required for optimized design to 

that for DIMS-3 compliant DPA resistant RSA datapath. Further, this work presents the results of 

the RSA datapath transformed into Differential Power Balanced DIMS-3 DPA resistance 

compliant design. The results of both the pre-transformed and post-transformed designs are 

presented for comparison. 

 

Table I. 8-bit RSA cryptosystem cell count 

 

CELL TYPE CELL COUNT 

combinational cells 1191 

non-combinational 316 

 

Table II. Area report of modules for 8-bit RSA 

 

DESIGN UNIT AREA AREA % 

Rsa_System 4113 100.0 

Sys_Controller 250 6.1 

Sys_Datapath 3863 93.9 

Sys_Datapath/Comparator_Unit 22.25 0.5 

Sys_Datapath/Controller_Unit 616 15 

Sys_Datapath/Counter_Unit 47 1.1 

Sys_Datapath/Enc_Data_Reg 56 1.4 

Sys_Datapath/Exponent_Unit 86.5 2.1 

Sys_Datapath/Exp_Cntr_Unit 56 1.4 

Sys_Datapath/Gcd_Inv_Unit 1488.25 36.2 

Sys_Datapath/Multiplier_Unit 68 1.7 

Sys_Datapath/Prng_Unit 106 2.6 

Sys_Datapath/Rsa_Unit 856.5 20.8 

Sys_Datapath/Unity_Unit 1.75 0.0 
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Table III. Timing requirements 

MODULE CLKs 

RSA Module 3+E0(4+N)+E1(8+2N) 

Table IV. Area Reports for pre-transformed and post-transformed RSA module designs 

******************************* 

Report : area 

Design : RSA_DATAPATH (PRE-

TRANSFORM) 

******************************* 

Number of ports:  37 

Number of nets:   191 

Number of cells:  142 

Number of combinational cells: 118 

Number of sequential cells:    24 

Number of macros: 0 

Number of buf/inv:    28 

Number of references: 14 

 

Combinational area:        204.500000 

Buf/Inv area:               14.000000 

Non-combinational area:     126.000000 

Net Interconnect area:      69.138399 

 

Total cell area:           330.500000 

Total area:                399.638399 

****************************** 

********************************* 

Report : area 

Design : RSA_DATAPATH (POST-

TRANSFORM) 

********************************* 

Number of ports:  40 

Number of nets:   1520 

Number of cells:  1497 

Number of combinational cells: 1449 

Number of sequential cells:    48 

Number of macros:  0 

Number of buf/inv:    95 

Number of references: 13 

 

Combinational area:       2316.500000 

Buf/Inv area:               57.500000 

Non-combinational area:     306.000000 

Net Interconnect area:    1374.814115 

 

Total cell area:          2622.500000 

Total area:               3997.314115 

*********************************** 
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