

Dhinaharan Nagamalai et al. (Eds) : CSE, DBDM, CCNET, AIFL, SCOM, CICS, CSIP - 2014
pp. 83–98, 2014. © CS & IT-CSCP 2014 DOI : 10.5121/csit.2014.4408

USING RELATIONAL MODEL TO STORE OWL

ONTOLOGIES AND FACTS

Tarek Bourbia and Mahmoud Boufaida

LIRE Laboratory, University Constantine 2, Algeria
{bourbia_tarek, boufaida_mahmoud}@yahoo.fr

ABSTRACT

The storing and the processing of OWL instances are important subjects in database modeling.

Many research works have focused on the way of managing OWL instances efficiently. Some

systems store and manage OWL instances using relational models to ensure their persistence.

Nevertheless, several approaches keep only RDF triplets as instances in relational tables

explicitly, and the manner of structuring instances as graph and keeping links between concepts

is not taken into account. In this paper, we propose an architecture that permits relational

tables behave as an OWL model by adapting relational tables to OWL instances and an OWL

hierarchy structure. Therefore, two kinds of tables are used: facts or instances relational tables.

The tables hold instances and the OWL table holds a specification of how the concepts are

structured. Instances tables should conform to OWLtable to be valid. A mechanism of

construction of OWLtable and instances tables is defined in order to enable and enhance

inference and semantic querying of OWL in relational model context.

KEYWORDS

Relational Model, Database, OWL, Instance, Fact, Ontology

1. INTRODUCTION

A database model defines the logical structure of database and determines in which manner data
can be stored, organized and manipulated. It is still evolving and new models are being
considered, especially in the semantic aspects. Despite this evolution, the relational model is still
the most used and none other model even made the end of the dominance of relational databases.
Its simplicity and its performances motivate research to design new models on the relational
engine by operating, mapping and transformation mechanisms, as is achieved -for instance- by
object-relational, XML[2], RDF models [6] [7].

Besides, the field of knowledge representation [20] defines the syntax of ordered symbols that are
readable and interpretable by the machine. In the same context the semantic web [9] aims to
ensure for computer to analyze data contents and their relationships. It enables structuring and
storing the web knowledge. One of the motivations considered by semantic web, through its
models, is the semantic search. In this context, ontological languages are proposed to formulate
knowledge bases to improve the retrieval in documents repositories.

The field of database model offers the best way to store data efficiently and guarantees its
persistence; the knowledge representation languages provide a rich vocabulary and a power of

84 Computer Science & Information Technology (CS & IT)

expressiveness. The combination of those two fields allows providing solutions to manage
knowledge semantically and efficiently with great performances.

The Web Ontology Language (OWL) [1] supplies for developers more than eXtensible Markup
Language (XML), Resource Description Framework (RDF) [6]. With a wide formal vocabulary,
OWL [5] is a formalism to build a knowledge base. However, if the quantity of the knowledge is
very important and the size of the OWL domain is voluminous, it will be complex to treat them
by managing a document in a simple file format. Thus, it would be beneficial to embed these
ontologies on a database management system and to manage them as databases. The proposed
approach, allows the storage of metadata and ontology instances into a persistent and optimal
way, while preserving semantics and constraints at an abstract level.

It is important in engineering to implement database based ontology onto an existing database
system. It is also interesting to integrate ontology features with an existing database model. Using
an existing infrastructure does not deprive the ontologies-based database to be native.

OWL contains three sublanguages [1]: OWL Lite, characterized by a hierarchy and a simple
mechanism of constraints; OWL DL, based on the description logic with offering a high degree of
expressiveness and ensures computational completeness and decidability; OWL Full, has a big
capacity of expressiveness, without ensuring completeness and decidability. OWL DL language
has been chosen here to express the knowledge base. It contains all the structures of OWL with
some limitations such as the separation of types (a class cannot be at the same time an individual
and a property), an important thing is to not confuse the data and the metadata.

A semantic web application requires storing and manipulating enormous data. Storing an
ontology and its instances and processing them by a user application need some mechanisms to
cope, on the one hand, with huge numbers and relations between concepts and, on the other hand,
with large amounts of instances. Relational database is a good support as repository to ensure the
persistence of ontology instances, due to its experience, performance and features. For this
reason, it has been chosen in this paper to embed OWL DL knowledge bases.

To take benefit of the structure expressed in OWL and at the same time of the database system of
which embeds the ontology instances, this paper provides a solution to explicit a graph structured
document as OWL into relational tables with preserving constraints and relationships. It aims at
ensuring the persistence of a huge number of OWL concepts and a large amount of instances in a
native way without using the classical way of triples embedded into relational table of three
columns [17]. The objective of this work is to present a mechanism of how to store OWL
concepts and instances in relational tables while preserving the semantic and without losing data.
The main advantage of this solution is to have a specification and conception under the OWL-DL
language, a logical modelling under relational model, and a physical storage into the relational
database. Therewith the distance is close between the conceptual model and the logical model in
matters of preserving data, link and constraint. For that purpose, it could be said that this work
enters in the field of the Ontology-Based Database.

This paper is organized as follows: The following section presents the works carried out on this
subject, section (3) shows the principles of the proposed approach of how storing OWL ontology
into relational tables and section (4) details the mechanism of storing OWL ontology concepts
and facts, followed by a conclusion and some perspectives.

Computer Science & Information Technology (CS & IT) 85

2. SOME RELATED WORKS

In order to manage ontologies efficiently and to ensure a robust persistence, several knowledge
management systems have been proposed. Each work in this context uses its own strategies to
embed ontologies in a persistent data model.

Pierra et al. have proposed a database architecture model called "Ontology-Based Database"
(OntoDB) [10]. The latter defines separately the implementation of the ontology and those of
data. The solution consists of two parts: representing the primitive of the ontology model in a
meta-schema and defining, once and for all, the physical storage of ontologies from RDF triplets
by using the relational model and the object-relational one. ONTOMS [3] developed by Myung
et al. is another OWL database management system architecture, whereby the data is physically
stored in classes modeled into relational tables. It also performs complex operation as inverseOf,
symmetric, transitive and reasoning for instances. ONTOMS also evaluates the requests
expressed by OWL-QL [4]. M. Shoaib has developed ERMOS [11], a solution that provides an
efficient transformation of the OWL concepts to relational tables to store ontology and to allow
easy and fast knowledge retrieval with semantic query. JENA [18] is a framework for building
Semantic Web applications. It allows processing RDF and OWL ontology by providing a
container for collections of RDF triples. The implementation of SPARQL [8] is used in JENA to
query RDF triples. Although JENA provides interaction with OWL ontology, its OWL instances,
as well as for RDF, are based on RDF triples.

The two architectures ONTOMS and ERMOS adopt a representation in OWL, which are richer in
concepts and semantics by report of what is chosen by other work presented above. The challenge
in this kind of work is to make it possible to store ontologies in a right, coherent, scalable and
efficient way in order to retrieve knowledge by semantic inference. In the literature, the near total
of work aiming at the management of ontologies as a database use the relational model as logical
and physical model to shelter the ontology-based data.

All the precedent systems are founded on an external middleware layer that is added on top of a
database management system engine. These systems keep users far from ontology instances and
do not provide ability to interact with stored ontology facts directly.

The triplet-based approach has been used by several systems, which aim to ensure persistence of
OWL ontologies. It solves, somehow, the issue of the integration of semantics in the field of
databases, and improves the way of storing and dealing with big amounts of OWL instances.
However, the triplet-based approach presents a number of drawbacks such as:

• Losing the power of expressiveness of OWL ontology.

• Storing all triples extract from OWL ontology in the same table. This make self-join
complex and with less performance when retrieving instances

• Scanning all table triples to reach the needed triples.

Several works based on NoSQL [15] models use the structure offered by the XML language to
store data and to locate them [16]. XML represents a significant evolution of the concept of
database to store large volumes of data or documents. An XML database defines a logical model
in a XML document, and stores and retrieves the documents according to that model. The
structure in graph of the ontology language, inspired from XML, is far from the tables of the
relational model. For this purpose, there exists some works that deal with the mapping or the
correspondence of ontology model with XML tree [2]. It seems more relevant than its

86 Computer Science & Information Technology (CS & IT)

correspondence with relational table, by the fact that XML is the first pillar to build assertional
languages and ontology. Nevertheless, XML databases are built into relational engines and
applying mapping under "mapping" could lead to degrade the performances and cause data loss.

Besides, there exist other works, in the opposite direction, that aim to ensure the extraction of
ontology from relational database schema [12]. These works construct a local ontology from data
that already exist in a relational database. Their goal is not to solve problems of huge ontologies
and instances, but to deal with data stored in relational model semantically.

Summarizing, storing ontology instances using a file system makes querying those instances very
difficult and with poor performances. To cope with huge ontology, most of the works in the
literature use mapping mechanisms from the ontology into relational or objects databases. And
that would not be fluent and work perfectly in terms of performance due to large ontology
vocabulary and complexity of graph. The proposed approach in this paper allows storing OWL
concepts and instances in relational tables without losing semantic, nor data, and enables users to
interact with data directly. Compared with existing methods [13] [14], the proposed approach
keeps faithfully a class hierarchy and relationship between concepts. In addition, it provides
capabilities to interact directly with instances, unlike other existing methods.

3. OVERVIEW OF THE ARCHITECTURE

The architecture of storing OWL ontology into relational tables resulted after combining some
aspects of the field of databases and those of the semantic web and knowledge representation.
This architecture is designed to allow both the efficient management of the ontology concepts and
instances, and to ensure semantic search and update regardless of the physical data structure.

The essential functions of the proposed system are (see Figure 1):

- Storing and manipulating OWL Ontology in relational model. A meta-concept table named
“OWLtable” represents the classes and relationships between classes and the properties ensure
predicates between classes and individuals. In function of this table, the OWL ontology will be
constructed and represented by a graph or an OWL expression. In fact, the unique OWL ontology
domain that exists is that stored in relational table into “OWLtable”. This way allows approaching
the semantic conceptual model and the logical model, and avoiding losing concepts that suffer the
architectures based on transformation mechanism and mapping solution.

 - Storing and manipulating ontology instances and facts. A set of relational tables represents
classes and some properties and holds individuals of the OWL ontology as tuples. The meaning of
tuples is preserved, and each instance is associated with an ontological concept stored into
“OWLtable” and referenced by both table name and attribute. Instances tables and instances have
to be conforming to the structure of OWL concepts and match with constraints. In other words,
any operation in the set of instances tables should be checked and validated with concepts
structure and constraints stored in “OWLtable”.

Computer Science & Information Technology (CS & IT) 87

Figure 1:Storing ontology architecture.

The proposed architecture consists of a native OWL database engine built on the system of a
relational database and integrated with the relational engine (definition and manipulation
language). This approach allows storing, accessing and searching on the OWL using relational
tables to ensure the persistence of data linked with OWL concepts and properties.

In fact, neither OWL document, nor OWL instances exist; what exists is their equivalent in
relational database that are “OWLtable” and instances tables. The purpose of “OWLtable” is to
define concepts of OWL ontology, and so instances tables will be an instance document to
describe an OWL individuals and facts that conforms to “OWLtable”.

The “OWLtable” contains kinds of elements like: class, object property, data type property and
constraints which give the content nature of instances tables and the hierarchy of element.

This approach allows manipulating OWL ontology in relational tables. Furthermore, accessing,
reasoning and querying OWL ontology are performed in persistence layer.

The next section details the part of how using relational tables to store ontology classes,
properties and individuals to make them ready for any actions later on.

4. STORING OWL ONTOLOGY INTO RELATIONAL TABLES

The mechanism adopted to reach the objective of managing OWL ontology in relational engine,
contains a number of actions, as is shown in Figure 2. Those actions allow having: a meta-concept
table named “OWLtable” that acts like OWL ontology; and a set of relational tables resulted from
ontological concept which embed the facts and instances of OWL ontology. For this purpose, an
ordered steps process is conceived here to create a set of relational tables that represent OWL
concepts and facts without losing hierarchy of concept, links, constraints and facts. In other
words, this set of ordered steps process ensures the correspondence between the semantic
structure of the ontology as a graph with relationships, and the syntactical logical structure in the
form of relational tables to ensure persistence of instances with the best performance possible.

Relational database

Instance table1
Instance table2
Instance tablen

Facts tables Meta-concept table

OWLtable Annotation
table

Manage OWL
ontology

Manage OWL facts

Relational engine (security, confidentiality,
privilege, indexation…)

Storing
OWL
ontology
process

Storing
OWL
facts
process

Updating
OWL
ontology
process

Updating
OWL
facts
process

88 Computer Science & Information Technology (CS & IT)

Figure 2:A Mechanism of storing OWL ontology into relational tables.

As shown in Figure (2), the creation of the meta-concept table “OWLtable” is the first step, then
filling it with class hierarchy and properties, the next step is to create the database that is a set of
instance tables obtained by parsing classes, data type properties and object properties. The set of
instances tables hold facts.

In the following subsections, a number of processes are developed with rules to detail how storing
classes and properties into a meta-concept table that keep the hierarchy and the relationships
between concepts; and how storing facts and instances into relational tables that hold the database
of OWL knowledge base. To illustrate that, an example of OWL ontology domain is used.

4.1. Storing OWL Class into Relational Table

The basic concept of ontology is the class. So, the most important step and rule is to perform the
correspondent relational table to embed ontology classes. It is around class that any object
property or data type property is defined. So the first correspondence applies to the classes to
support the other concepts of OWL later on.

OWL ontology specification

Storing OWL classes

OWL graph or
OWL expression

Meta-concept OWLtable contains
class hierarchy

Storing OWL properties

Meta-concept OWLtable contains
class hierarchy and relationships

Creating relational database

Set of individual tables

 OWLtable

Instance table1

Instance table2

Instance table

OWL DB

Computer Science & Information Technology (CS & IT) 89

Figure3:The process of storing OWL classes into relational table.

The process of storing OWL classes into relational table that under the title “OWLtable” focuses
on locating every OWL class, regardless of its nature and its position in OWL graph and on
saving it with some information in order to keep hierarchical structure and type of every
relationship with another class, as is shown in Figure (3). This process is based on the following
rule:

RULE 1: for each class in OWL ontology, a record in “OWLtable” is inserted. This record
defines: that is a class concept and the super class in relationship with this class. The super class
of root classes is considered in this process as “thing”, the super class of all classes in OWL
specification [1].

EXAMPLE: the following classes presented in OWL syntax:

<owl:Class rdf:ID="Human"> …</owl:Class>
<owl:Class rdf:ID="Man"><rdfs:subClassOf rdf:resource="#Human"/></owl:Class>
<owl:Class rdf:ID="Woman"><rdfs:subClassOf rdf:resource="#Human"/></owl:Class>
<owl:Class rdf:ID="Country"> …</owl:Class>
<owl:Class rdf:ID=”Town">…</owl:Class>

are inserted in OWLtable as shown in Table(1).

Locate root classes

Insert (class=class name,
subclass=“thing”) into the list

List is empty

End process Remove duple from list

Insert class into OWLTable:
ID= ‘class name’
Concept=’class’
Relationship=’subclass’

Check class has subclass

Read direct subclasses

Insert subclasses into the list:
Insert (subclass, subclass=class) into the list

Y

Y

N

N

90 Computer Science & Information Technology (CS & IT)

Table 1:OWLtable contains hierarchical of classes.

ID Concept Relationship

Human Class Thing
Man Class Human
Woman Class Human
Country Class Thing
Town Class Thing

At the end of the process of storing OWL classes into relational table, a hierarchy of classes is
obtained from records of “OWLtable”, and it will be considered as a meta-concept table for
knowledge base. The next section is devoted to enrich the meta-concept “OWLtable” by another
important ontological concept which is “OWL property”.

4.2. Storing OWL Property into Relational Table

OWL property gives a way of describing a kind of relationship of individuals to individuals and
of individuals to data values [1]. To complete OWL graph in relational field, on the other hand, to
enrich class hierarchy already stored in the meta-concept “OWLtable”, linked classes by
predicates are treated by the process shown in Figure (4) to have a complete OWL graph in the
meta-concept table. The process deals with a number of ontological concepts: object property,
data type property, cardinality constraint.

Figure 4:The process of storing OWL property into relational table.

The process of storing OWL predicates into “OWLtable” affects the two types of relationship of
individuals: Object Property and DatatypeProperty. A number of restrictions that define property
are preserved in “OWLtable”, that are: domain, range and cardinalities. In the case of

Locate properties (onProperty) from classes

Insert property resources and its cardinality constraint as a
triple (Onproperty, mincardinalaty, maxcardinality) into the
list

List is empty

End process Remove property triple from
list

Insert object property into OWLTable:
ID= ‘propertyname’
Concept=’ObjectProperty’
Relationship= {domain} {range}
{mincardinality}{maxcardinality}{supproperty
}

Y

N

Check if property is object
property

Y

N

Insert data type property into OWLTable:
ID= ‘propertyname’
Concept=’DatatypeProperty’
Relationship= {domain} {type}
{mincardinality}{maxcardinality}

Computer Science & Information Technology (CS & IT) 91

ObjectProperty the generalization is preserved by sup property in meta-concept table. The
property definition is formulated by the expression:

Relationship= {domain} {range} {mincardinality} {maxcardinality} [{supproperty}], as is shown
in Figure (4). This process is based on these three rules:

RULE 1: for each onProperty in OWL class, a record in “OWLtable” is inserted. This record
defines: that is an onProperty concept; the relationship that details predicates by a set a restriction:
domain, range, cardinalities.

RULE 2: the type of onProperty is procured from property statement by checking each ID. There
are two types: ObjectProperty and DatatypeProperty.

RULE 3: The super property of ObjectProperty is considered in this process and is added at the
end of relationship expression:

Relationship= {domain} {range} {mincardinality} {maxcardinality}{supproperty}.

As an example, consider the following set of statements about properties presented in OWL
syntax:

<!--classes definition-->

<owl:Classrdf:ID=" Human ">
<rdfs:subClassOf><owl:Restriction><owl:onPropertyrdf:resource=”#HasFriend”>
<owl:mincardinality rdf:datatype="&xsd:int">0< /rdfs:mincardinality>
</owl:Restriction>< /rdfs:subClassOf>
<rdfs:subClassOf><owl:Restriction><owl:onPropertyrdf:resource=”#HasFather”>
<owl:cardinality rdf:datatype="&xsd:int">1< /rdfs:cardinality>
</owl:Restriction>< /rdfs:subClassOf>
<rdfs:subClassOf><owl:Restriction><owl:onPropertyrdf:resource=”#HasSpouse”>
<owl:maxcardinality rdf:datatype="&xsd:int">1< /rdfs:maxcardinality>
</owl:Restriction>< /rdfs:subClassOf>
<rdfs:subClassOf><owl:Restriction><owl:onPropertyrdf:resource=”#name”>
<owl:cardinality rdf:datatype="&xsd:int">1< /rdfs:cardinality>
</owl:Restriction>< /rdfs:subClassOf>
<rdfs:subClassOf><owl:Restriction><owl:onPropertyrdf:resource=”#Mail”>
<owl:mincardinality rdf:datatype="&xsd:int">0< /rdfs:mincardinality>
</owl:Restriction>< /rdfs:subClassOf></owl:Class>………………

<!--object properties definition-->

<owl:ObjectProperty rdf:ID=" HasFriend ">
<rdfs:domain rdf:resource="#Human"/>
<rdfs:range rdf:resource="#Human"/></owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="HasFather">
<rdfs:domain rdf:resource="#Human"/>
<rdfs:range rdf:resource="#Man"/></owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="HasSpouse">
<rdfs:domain rdf:resource="#Human"/>
<rdfs:range rdf:resource="#Human"/></owl:ObjectProperty>…………

 <!--data type properties definition-->

92 Computer Science & Information Technology (CS & IT)

<owl:DatatypeProperty rdf:ID="name">
<rdfs:domain rdf:resource="#Human"/>
<rdfs:range rdf:resource="&xsd:string"/></owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="mail">
<rdfs:domain rdf:resource="#Human"/>
<rdfs:range rdf:resource="&xsd:string"/></owl:DatatypeProperty>……….

Those properties are inserted in OWLtable as shown in Table(2).

Table 2:OWLtable contains hierarchical of classes.

ID Concept Relationship

Human Class Thing
Man Class Human
Woman Class Human
Country Class Thing
Town Class Thing
HasFriend ObjectProperty {Human}{Human}{0}{unlimited} {does

not exist}
HasFather ObjectProperty {Human}{Man}{1}{1} {does not exist}
HasSpouse ObjectProperty {Human}{Human}{0}{1} {does not exist}
Name DatatypeProperty {Human}{String}{1}{1}
Mail DatatypeProperty {Human}{String}{0} {unlimited}

At the end of the process of storing OWL property into meta-concept “OWLtable”, a complete
OWL graph is embedded in relational database with its class hierarchy and all predicates. The
next section presents the way of storing facts and defines instances relational tables that are
conform to “OWLtable”.

4.3. Storing OWL Facts into Relational Tables

OWL data type properties give “facts” that link individuals to data values [1]. Facts typically are
statements indicating class membership of individuals and property values of individuals. In
relational model [19], a table is a set of tuple (individual) that have the same attributes (table
membership). A tuple usually represents an object and information about that object. All the data
referenced by an attribute are in the same domain and conform to the same constraints. So by
analogy, for each class that has individuals and property values of individuals, a relational table,
given the same name of the class with attributes which are no longer than OWL data type
properties, is the suitable container to ensure persistence of OWL instances in relational models,
as is shown in Figure (5). Besides, to keep relationships and predicates between classes a
relationship table, given the same name of the property and foreign keys attribute will be
necessary to ensure the relationship between relational tables obtained from parsing OWL data
type properties, as is shown in Figure (6).

Computer Science & Information Technology (CS & IT) 93

Figure 5:Process of creating relational tables to embed data type properties.

Add all OWL datatype properties statements
into list

List is empty

End process Remove one data type property
statement form list

Extract domain class name from data
type property statement

Check the existence of relational
table has this class name

Create a relational table named as the domain
class name

Type the created attribute under the range of
data type property statement

Y

Y

N

N

Set an attribute in the domain class table
according to data type property

Set a CID:PK attribute in this new relational
table

Extract cardinality constraint from Onproperty
inherent of this data type property statement

cardinality=1 or
maxcardinality=1

maxcardinality>1

T

F

T Create a relational table named as the data type
property ID

Set a FK attribute in this new relational table
linked to PK of domain class table

Type the created attribute under the range of
data type property statement

Set an attribute in this relational table
according to data type property

94 Computer Science & Information Technology (CS & IT)

Figure 6:Process of creating relational tables to embed object properties.

After building the meta-concept table “OWLtable” that describe the ontology, the process of
storing facts into relational table is founded on how OWL data type properties are grouped then
embedded in relational table as attributes (Figure 5); and how OWL object properties are
embedded in relational table as attributes with foreign key feature (Figure 6). The outcome
relational tables are the repository of each part of fact. The semantic of each part is preserved in
“OWLtable” and its correspondent attribute in tables. The mechanism, proposed here, to
guarantee to have the appropriate environment to store and preserve OWL instances and facts in
relational domain is based on six rules:

RULE 1: for each data type property statement, a relational table is created according to the
domain class name if it has not been created by another data type property.

RULE 2: OWL classes must be unambiguously identifiable when using relational tables to store
their facts. A class identifier CID for each OWL class is added as a primary key in its
correspondent relational table.

The relational table obtained is shown in Table3:

Set an FK attribute in the domain class
table according to object property linked
to PK attribute of range class table

Extract cardinality constraint from Onproperty
inherent of this object property statement

cardinality=1 or
maxcardinality=1

maxcardinality>1

T

F

T

Create a relationship table named as the
object property ID

Set two foreign key attributes in this
relationship table.
FK1=PK of domain class table
FK2=PK of range class table

Add all OWL object properties
statements into list

List is empty

End process Remove one object property
statement form list

Extract domain and range class names from
object property statement

Y

N

Computer Science & Information Technology (CS & IT) 95

Table 3:Domain class table.

Humain (table name)

Attribute Data type
CID PK
......

RULE 3: If a cardinality constraint restricts an instance of a class to have at most one
semantically value for a data type property, an atomic elementary attribute is set in the relational
table that corresponds a domain class of this data type property statement.

EXAMPLE:

<owl:Classrdf:ID="Human">
<rdfs:subClassOf><owl:Restriction>
<owl:OnProperty rdf:resource="#name"/>
<owl:cardinality rdf:datatype="&xsd:int">1<rdfs:cardinality />
 <owl:Restriction/><rdfs:subClassOf />……..
<owl:DatatypeProperty rdf:ID="name">
<rdfs:domain rdf:resource="#Human"/>
<rdfs:range rdf:resource="&xsd:string"/></owl:DatatypeProperty>…..

The obtained relational table is shown in Table (4).

Table 4:Domain class table.

Human (table name)

Attribute Data type
CID PK
Name String
......

RULE 4: If a cardinality constraint restricts an instance of a class to have semantically more than
one value for a data type property, a relational table is created and named as the data type
property ID. A Foreign Key attribute is added in this new relational table linked to Primary Key
(CID) of domain class table.

EXAMPLE:

<owl:Classrdf:ID="Human">
<rdfs:subClassOf><owl:Restriction><owl:onPropertyrdf:resource=”#Mail”>
<owl:mincardinalityr df:datatype="&xsd:int">0< /rdfs:mincardinality>
</owl:Restriction>< /rdfs:subClassOf></owl:Class>………………
<owl:DatatypeProperty rdf:ID="mail">
<rdfs:domain rdf:resource="#Human"/>
<rdfs:range rdf:resource="&xsd:string"/></owl:DatatypeProperty>…..

The relational tables obtained are shown in Figure (7).

96 Computer Science & Information Technology (CS & IT)

Figure 7:Multi value data type property

RULE 5: If a cardinality constraint restricts individuals of a class to have semantically more than
individual for an object property, a relationship table named as the object property ID, is created.
Two foreign key attributes are added in this relationship table to link individuals of domain class
table to ones of range class table.

EXAMPLE:

<owl:Classrdf:ID="Human">
<rdfs:subClassOf><owl:Restriction><owl:onPropertyrdf:resource=”#HasFriend”>
<owl:mincardinalityrdf:datatype="&xsd:int">0< /rdfs:mincardinality>
</owl:Restriction>< /rdfs:subClassOf></owl:Class>………………
<owl:ObjectProperty rdf:ID=" HasFriend ">
<rdfs:domain rdf:resource="#Human"/>
<rdfs:range rdf:resource="#Human"/></owl:ObjectProperty>
The obtained relational tables are shown in Figure (8).

Figure 8:Relationship table

RULE 6: If a cardinality constraint restricts the individuals of a class to have at most one
semantically individual for an object property, a foreign key attribute is added in the domain class
table according to object property linked to the primary key attribute of range class table.

EXAMPLE:

<owl:Classrdf:ID="Human">
<rdfs:subClassOf><owl:Restriction><owl:onPropertyrdf:resource=”#live”>
<owl:cardinality rdf:datatype="&xsd:int">1< /rdfs:cardinality>
</owl:Restriction>< /rdfs:subClassOf></owl:Class>………………
<owl:ObjectProperty rdf:ID="live">
<rdfs:domain rdf:resource="#Human"/>
<rdfs:range rdf:resource="#Town"/></owl:ObjectProperty>

The obtained relational tables are shown in Figure (9).

Human

Attribute Data type
CID PK
name String
 …… ….

HasFriend

Attribute Data type
CID FK
CID FK

 mincardinality=0,
maxcardinality=unbounded

Human

Attribute Data type
CID PK
name String
 …… ….

Mail

Attribute Data type
CID FK
mail String

 mincardinality=0,
maxcardinality=unbounded

Computer Science & Information Technology (CS & IT) 97

Figure 9:Object property foreign key

5. CONCLUSIONS

In this paper, we have presented an approach that aims at storing a huge OWL ontology and big
amounts of instances in the relational engine efficiently without losing concepts neither instances.
This approach allows the use of the expressiveness power of the knowledge representation
language “OWL” as well as the facilities, and the efficiency that offer relational model. We have
defined the meta-concept table “OWLtable” that embeds faithfully class hierarchy and OWL
concepts with their relationships and constraints. A set of relational tables are created according
to class and property features in order to store OWL instances. In fact, only “OWLtable” and a set
of instances table are effective to represent natively the whole ontology. That is why users are
able to access, manage and manipulate instances directly. More complex OWL concepts such as
subproperty, value constraints and other class and property description [1] could be added into
meta-concept table to enrich the OWL specification in relational model.

In order to enable querying ontology instances that are stored in a relational database, our future
work will be focused on the refinement of the proposed architecture to integrate the mechanism of
searching both OWL instances and concepts with the mechanism of updating. The principle of
these mechanisms is based on parsing the meta-concept table “OWLtable” before any query run
on OWL instances tables. This leads to check on the one hand, the well-formed and the validity of
OWL instances tables according to “OWLtable”, and on the other hand, to check constraints and
locate properties that give a semantic dimension to the query.

REFERENCES

[1] S.Bechhofer, F.V.Harmelen, J.Hendler, I.Horrocks, D.L.McGuinness, P.F.Patel-Schneider &

L.A.Stein, (2004) “OWL Web Ontology Language Reference, W3C Recommendation”,
http://www.w3.org/TR/owl-ref.

[2] T.Bray, J.Paoli, C.M.Sperberg-McQueen, E.Maler & F.Yergeau, (2008) “Extensible Markup
Language (XML) Version 1.0. (fifth edition), W3C Recommendation”, http://www.w3.org/TR/REC-
xml.

[3] P.Myung, L.Ji-Hyun, L.Chun-Hee, L.Jiexi, O.Serres & C.Chin-Wan, (2007)“ONTOMS : An Efficient
and Scalable Ontology Management System”, Springer Advances in Databases: Concepts, Systems
and Applications, Vol. 4443/2007, pp 975-980.

[4] R.Fikes, P.Hayes & I.Horrocks, (2004) “OWL-QL-A Language for Deductive Query Answering on
the Semantic Web”, Journal of Web Semantics 2(1), pp 19–29.

[5] F.Gandon, C.F.Zucker & O.Corby, (2012) Le web sémantique: Comment lier les données et les
schémas sur le web?, Dunod, France, pp 83-131.

[6] G.Klyne, J.J.C aroll & B.McBride, (2004) “RDF 1.1 Concepts and Abstract Syntax, W3C
Recommendation”, http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.

[7] D.Brickley & B.McBride, (2004) “RDF Vocabulary Description Language 1.0: RDF Schema, W3C
Recommendation”, http://www.w3.org/TR/2004/REC-rdf-schema-20040210/.

[8] E.Prud'hommeaux & A.Seaborne, (2008) “SPARQL Query Language for RDF, W3C
Recommendation”, http://www.w3.org/TR/rdf-sparql-query.

[9] T.Berners-Lee, J.Hendler & O.Lassila, (2001) “The Semantic Web”, Scientific American, 284 (5), pp
34-44.

Human

Attribute Data type
CID PK
name String
live FK

Town

Attribute Data type
CID PK
Town_name string

 mincardinality=1,
maxcardinality=1

98 Computer Science & Information Technology (CS & IT)

[10] H.Dehainsala, G.Pierra & L.Bellatreche, (2007) “Ontodb: An ontology-based database for data
intensive applications”. InProceedings of the 12th International Conference on Database Systems for
Advanced Applications (DASFAA'07), Lecture Notes in Computer ScienceSpringer, pp 497-508.

[11] M.Shoaib & A.Basharat, (2010) “ERMOS: An Efficient Relational Mapping for Ontology Storage”.
2010 IEEE International Conference on Advanced Management Science (ICAMS 2010), Chengdu,
China, pp 399 – 403.

[12] H. A.Santoso, S.C.Haw and Z.T.Abdul-Mehdi, (2011) “Ontology extraction from relational database:
Concept hierarchy as background knowledge”. Knowledge-Based System 24 Elseiver , pp 457-464.

[13] E.Vysniauskas & L.Nemuraite, (2006) “Transforming Ontology Representation from OWL to
Relational Database”. Information Technology And Control, Kaunas, Technologija, Vol. 35A, No. 3,
pp 333 - 343.

[14] E.Vyšniauskas, L.Nemuraitė & A.Šukys, (2010) “A hybrid approach for relating OWL 2 ontologies
and relationaldatabases”. In: P. Forbrig, H. Gunther (Eds.): Perspektives in Business Informatics
Research. Proceedings of the 9th international conference, BIR 2010, Rostock, Germany, September
29 - October 1. Berlin-Heidelberg-New York, Springer, 2010, pp 86–101.

[15] J.Han, E.Haihong, G.Le & J.Du, (2011) “Survey on nosql database,” in Pervasive Computing and
Applications (ICPCA), 2011 6th International Conference on. IEEE, pp 363–366.

[16] T.Bourbia & M.Boufaida, (2013) “Extension of Databases by semantics: XML Schema for
embedding OWL-DL Ontology”, KMIKS’ 13 International Conference on Knowledge Management,
Information and Knowledge Systems, 18-20 Avril 2013, Hammamet, Tunisia, pp 219-232.

[17] K.Wilkinson, C.Sayers, H.Kuno & D.Reynolds, (2003) “Efficient rdf storage and retrieval in jena2”.
HP Laboratories Technical Report HPL-2003-266, pp 131–150.

[18] J.J.Carroll, I.Dickinson, C.Dollin, D.Reynolds, A.Seaborne & K.Wilkinson, (2004) “Jena:
implementing the semantic web recommendations”. In WWW Alt. ’04: Proceedings of the 3th
international World Wide Web conference on Alternate track papers & posters, NY, USA. ACM
Press, pp 74–83.

[19] E.F.Codd, (1970) "A Relational Model of Data for Large Shared Data Banks". Communications of
the ACM 13 (6), pp 377–387.

[20] F. S.John, (2000) Knowledge Representation: Logical, Philosophical, and Computational
Foundations, Brooks Cole Publishing Co., Pacific Grove, CA, USA.

Authors

Tarek Bourbia is affiliated to LIRE laboratory of the university Constantine 2 in Algeria.
He received his magister degree in 2009 in database and web semantic domain. He is
preparing his PhD thesis in the field of ontological database

Mahmoud Boufaïda is a full professor in the Computer Science department of the
university Constantine 2 in Algeria. He heads the research group ‘Information Systems
and Knowledge Bases’. He has published several papers in international conferences
and journals. He has managed and initiated multiple national and international level
projects including interoperability of information systems and integration of applications
in organizations. He has been program committee member of several conferences. His
research interests include cooperative information systems, web databases and software
engineering

