

Sundarapandian et al. (Eds) : CCSEA, EMSA, DKMP, CLOUD, SEA - 2014

pp. 75–84, 2014. © CS & IT-CSCP 2014 DOI : 10.5121/csit.2014.4307

TASK & RESOURCE SELF-ADAPTIVE

EMBEDDED REAL-TIME OPERATING

SYSTEM MICROKERNEL FOR WIRELESS

SENSOR NODES

Xing Kexing
1
, Zuo Decheng

2
, Zhou Haiying

3
 and HOU Kun-Mean

4

1,2,3
School of Computer Science & Technology,

Harbin Institute of Technology, Harbin, China
{xingkexin,hyzhou, zdc}@ftcl.hit.edu.cn

4
Laboratory LIMOS CNRS 6158,

University of Blaise Pascal, Clermont-Ferrand, France
kun-mean.hou@isima.fr

ABSTRACT

Wireless Sensor Networks (WSNs) are used in many application fields, such as military,

healthcare, environment surveillance, etc. The WSN OS based on event-driven model doesn’t

support real-time and multi-task application types and the OSs based on thread-driven model

consume much energy because of frequent context switch. Due to the high-dense and large-

scale deployment of sensor nodes, it is very difficult to collect sensor nodes to update their

software. Furthermore, the sensor nodes are vulnerable to security attacks because of the

characteristics of broadcast communication and unattended application. This paper presents a

task and resource self-adaptive embedded real-time microkernel, which proposes hybrid

programming model and offers a two-level scheduling strategy to support real-time multi-task

correspondingly. A communication scheme, which takes the “tuple” space and “IN/OUT”

primitives from “LINDA”, is proposed to support some collaborative and distributed tasks. In

addition, this kernel implements a run-time over-the-air updating mechanism and provides a

security policy to avoid the attacks and ensure the reliable operation of nodes. The performance

evaluation is proposed and the experiential results show this kernel is task-oriented and

resource-aware and can be used for the applications of event-driven and real-time multi-task.

KEYWORDS

WSN, event-driven, thread-driven, scheduling strategy, over-the-air, security

1. INTRODUCTION

Wireless sensor networks (WSN) have gained a great development in recent years. Many WSN

applications are emerging rapidly and being applied in different scenarios. Unlike traditional

embedded devices, the sensor nodes have many resource constraints, such as limited energy, short

communication range, low bandwidth, and limited processing memory. In addition, sensor nodes

are generally deployed large-scaly and far from human access. Thus, the characteristics of WSN

applications bring some challenges for designing an OS on sensor nodes, described as follows:

1. To reduce power consumption and memory requirements for resource-constrained nodes.

2. To support Multi-task in view of diversity of WSN applications.

76 Computer Science & Information Technology (CS & IT)

3. To update codes remotely and dynamically.

4. To provide security services in resource-constrained nodes

This paper presents a novel task and resource self-adaptive real-time microkernel for wireless

sensor nodes. The kernel provides a hybrid programming model, which combines the benefits of

Event-driven and Thread-driven model. Correspondingly, the kernel adopts event & thread 2

level strategies aimed at supporting real-time multi-task. Moreover, to make the nodes capable of

coping with new tasks and then adjusting their behaviours in different environments, the kernel

provides an over-the-air reprogramming mechanism to update the code of the OS dynamically.

The kernel also provides a security service to avoid the attacks and ensure the normal operation of

nodes.

The rest of this paper is organized as follows: Section 2 discusses the related work on WSN OS

design. Section 3 describes the kernel in detail, including its architecture, hybrid programming

model, scheduling strategy, the run-time updating mechanism and its security policy. In Section 4,

we evaluate the performance and overheads, and draw the conclusions. Finally, we will give a

brief conclusion in Section 5.

2. RELATED WORK

At present, there are two different research methodologies for WSN OS: one is to streamline the

general RTOS(such as the µC/OS-II[1], VxWorks[2], Windows CE[3]) but they are not suitable

for resource-constrained nodes. Another is to develop a dedicated OS according to the

characteristic of WSN, such as TinyOS[4], SOS[5], MantisOS[6], and Contiki[7]. But most of

dedicated WSN OS are built on network protocols without supporting multi-task and event-driven

at the same time.

2.1. Architecture

The kernel architecture has an influence on the size of the OS kernel as well as on the way it

provides services to the application programs. For resource-constrained sensor nodes, we must

take the performance and flexibility into consideration at same time.

A WSN OS should have an architecture that results in a small kernel size, hence small memory

footprint. The architecture must be flexible, that is, only application-required services get loaded

onto the system [8].The followings are the feature analyses of three mainstream architectures [9],

as described in Table 1.

Table 1. Features of 3 mainstream architectures.

Architectures Features

Monolithic
• a single image for the node

• not suitable for frequent changes

Modular

• Organized as independent module

• fits well in reconfiguration

• extra overhead of loading and unloading modules

Virtual machine
• whole network of nodes is a single entity

• gives flexibility in developing applications

Computer Science & Information Technology (CS & IT) 77

2.2. Programming Model

An appropriate programming model not only facilitates software development but also promotes

good programming practices [10]. The issue between event-driven mode and thread-driven model

has been discussed in the WSN field for years. Table 2 shows the advantages and disadvantages

of event-driven and thread-driven model with its corresponding OSs [11].

Table 2. Event-driven vs.Thread-driven

Model advantages disadvantages OS

Event-

driven

• Concurrency with low

resources

• Inexpensive scheduling

• Complements the way

networking protocols work

• Highly portable

• Event-loop is in control

• Can’t be preempted and do

not support multi-task

• Bounded buffer producer

consumer problem

Tiny

OS,

SOS,

Contik

Thread-

driven

• Eliminates bounded buffer

problem

• Automatic scheduling

• Real-time performance

• Simulates parallel execution

• Complex shared memory

• Expensive context switches

• Complex stack analyze

Contiki

Mantis

OS

2.3. Run-time Remote-updating

Due to the dense and large-scale deployment of the sensor nodes, we should provide a mechanism

to update nodes over-the-air: collecting nodes to apply updates is often tedious or even dangerous

[12]. Remote code-update schemes for sensor nodes meet two key challenges: (1) resource

consumption and (2) integration into the system architecture. Existing approaches can be

classified into three main categories.

Full-Image Replacement: These techniques such as XNP [14] or Deluge [15] operate by

disseminating a new binary image of an application and the OS in the network. However,

frequent full image replacements result in huge energy consumption and short-life of sensor node.

Virtual Machines (VM): VMs can reduce the energy-cost of disseminating new functionality in

the network as VM code is commonly more compact than native code [16]. However, as

mentioned in architecture, it is hard to be realized on a resource-constrained sensor node.

Dynamic Module Loading: It is also called the incremental update. Unlike the full image

replacement, the kernel will not be modified and just add e new or remove modules, such as

Contiki, SOS and TinyOS. This mechanism can reduce the updating code size and energy-

consumption.

78 Computer Science & Information Technology (CS & IT)

2.4. Security Guarantee

WSNs suffer from many constraints, including low computation capability, small memory,

limited energy resources, susceptibility to physical capture, and the use of insecure wireless

communication channels. These constraints make security in WSNs a challenge.

At present, the researches on security are classified into five categories: cryptography, key-

management, secure routing, secure data aggregation, and intrusion detection. Among them,

cryptography and key-management are regarded as the core issues in WSN security.

3. TASK & RESOURCE SELF-ADAPTIVE OPERATING SYSTEM DESIGN

3.1. Microkernel Design

3.1.1. Architecture

As the kernel is task and resource self-adaptive, we must take the performance and the flexibility

into consideration at the same time. So the kernel takes the modular structure based on its

requirement as illustrated.

Figure 1. Architecture of task-oriented and resource-aware operating system

Figure 1 shows the kernel structure of task and resource self-adaptive WSN OS. The hardware

driver is isolated from the kernel. Applications can also access kernel function by API and system

call. Moreover, Applications are loaded as modules for processing the specific task. By this way,

the node can adapt to the environment automatically.

3.1.2. Hybrid programming model

As mentioned in section 2, the event can’t be preempted and doesn’t support real-time multi-task.

And thread-driven model consumes much energy on context switching .The kernel integrates

advantages of the event-driven and thread-driven model and proposes a hybrid programming

model. The kernel is defined as a set of events, and an event is then defined as a set of threads, as

shown in Equation 1 and 2

K={Ei:i=1,2,···,n; E1→E2···→En} (1)

 Ei={Ti,j: j=1,2, ···,n;Ti,1//Ti,2 //···//Ti,n} (2)

The K is an instance of the kernel, E represents an event and T is a thread. The symbol ‘→’

indicates the precedence operation and ‘//’ indicates the concurrent operation.

The feature of the hybrid programming model is that the node can easily switch operation mode

between two typical programming models according to the kind of task. If we set the event

number equal 1, the kernel runs in the manner of multi-thread model, shown in Figure 2. While if

event contains a single thread, the kernel runs in the manner of event-driven model.

Computer Science & Information Technology (CS & IT) 79

The kernel is task self-adaptive automatically to work in different modes, thus the scopes of

applications will be greatly extended.

Figure 2. Switch to the thread-driven mode &Switch to Event-driven mode

3.1.3. Communication Scheme

From the view of operating system, the communication refers to two parts: internal

communication in single node and the communication between nodes. In addition, most of WSN

OS is designed for a single node without supporting communication in distributed network.

Therefore, the kernel proposes a scheme to unify the inter-process communication and

communication between nodes. This scheme is based on “tuple space”, a thought from a parallel

programming language “Linda” [17], through “In / Out” system primitives to achieve the

communication of inter-event, inter-thread, event/thread-peripherals and inter-CPU, as shown in

Figure 3. Each “tuple” is identified by one numeric identifier, which can be assigned to the local

or distributed buffer. And user can customize it automatically.

Figure 3. Tuple-based unified communication scheme

3.1.4. Scheduling strategy.

Based on hybrid programming model and tuple space, the kernel offers a two-level scheduling

strategy: ‘event-driven’ (scheduling for events) and ‘priority-based preemptive’ (scheduling for

threads).

Event management

Each event is associated with a unique tuple identified by a numeric identifier. A tuple has its

private buffer space which is used for storing messages or signals received from hardware or

software interrupts. Each event has also a priority level which is adapted automatically to the

message number of the event tuple according to the event priority. The priority of the event can

be pre-defined by programmer, as shown in (3)

 Event_next = select_event(tuple_msg_num, priority) (3)

The strategy is sensitive to the memory consumption and proved a solution for the problem that

event cant’ be preempted. Thus, the kernel can make a rapid response to emergent tasks.

80 Computer Science & Information Technology (CS & IT)

Thread scheduler

In comparison with events, threads have one more state named ‘Suspend’. If the operating

condition is not met, this thread is blocked and its state changes to ‘Suspend’. Whereas, if the

operating condition is satisfied, the suspended thread is activated to resume running and its state

changes to ‘Ready’. Each thread is allocated with a unique priority level. Thread can be

preempted by other threads in a same event. The kernel adopts a ‘priority-based preemptive’

scheduling scheme and the scheduler will decide next-run thread through look up the value of

thread_priority and thread_timeslice, as shown in Equation (4)

thread_next=select_thread(priotity,time_slice) (4)

Through switching the threads, the system can process multiple tasks concurrently. For some

periodic tasks such as data collections, sampling and interval routing, the kernel can be

customized to thread-driven mode and process them at the same time. However, if the system is

used to detect some events, the kernel can be switched to the event-driven mode to make a rapid

response.

3.2. Run-time over-the-air updating mechanism

As the kernel is task-oriented, it is necessary for nodes to provide a run-time over-the-air updating

mechanism, which is described from three levels according to granularity of updating code size.

Global variable modification

In the kernel, there exist many global variables pre-defined by developers, which can determine

the operating routines. Through modifying the global variable in the ram, the node can be

switched to another operation mode. So the kernel will maintain a variable table which keeps the

information of the global variables, including the variable name and the physical address. After

rebooting the nodes, the new mode is activated. Meanwhile, a set of remote-commands is

designed to inform the node to update the global variables. The method relatively consumes little

power because only several bytes are transmitted and modified.

Dynamically loading Module

In the modular architecture, the kernel can load new module or unload the existing module at run

time without rebooting the node. Thus, just the necessary modules need to be transmitted, that is

an efficient way to reduce the update code size and optimize the power usage. The procedure can

be divided into the following steps [18]:

1. Meta-Data Generation: The meta-data consists of information about the whole program,

component specific information, symbol information, and the relocation table.

2. Code Distribution: during this step, the new modules together with their meta-data are

transmitted from the base station or the sink node.

3. Data Storage on the Node: Once modules with meta-data are received at the radio interface of

the node, they are stored in the external FLASH memory.

4. Register module: the kernel merges information of the new module’s meta-data with the old

symbol table in order to access to the new module and invoke the new functions.

5. Relocation Table Substitution: the kernel will substitute the old relocation table with the new

one.

6. Update References: through the new relocation table, the kernel can update the references of

the global variable in the data segment or the function address in the code segment.

Full image replacement

This level is designed for updating the whole kernel image. Namely, when the new version of the

kernel differs from the old one greatly, the node should erase the whole image and program the

Computer Science & Information Technology (CS & IT) 81

new version into the flash. For resource-constrained nodes, it is unlikely to modify the kernel

frequently. So full image replacement is relatively rarely used.

3.3. Security policy

Due to the nature of wireless connection and unattended mode, the sensor node is prone to

security attack. The kernel provides a security policy for sensor nodes, in order to guarantee the

normal operation of the nodes and support reliable and efficient code distribution.

3.3.1. Cryptography

The traditional encryption algorithm is divided in two categories: symmetric cryptography (such

as RC4, RC5, SHA-1 and MD5) and asymmetric cryptography (such as RSA and ECC).

Therefore, the kernel adopts a tow-level cryptography mechanism, as shown in Figure 4. In

symmetric cryptography, hashing algorithms (MD5 and SHA-11) incurred almost an order of a

magnitude higher overhead than encryption algorithms (RC4, RC5). Thus, RC5 is adopted for

communication between resource-constrained nodes. Meanwhile, the RSA algorithm, a typical

asymmetric cryptography is applied for communication between nodes and sink node or base

station which has adequate resource.

Figure 4. The two-level cryptography mechanism

3.3.2. Key Management.

In Sensor networks end-to-end encryption is impractical because of large number of

communicating nodes and each node is incapable of storing large number of encryption keys. We

assume that the number of sensor nodes in WSN is N. Storing the keys of other N-1 nodes will

occupy large memory of the limited memory nodes.

In order to reduce the memory the keys occupied, the kernel takes the hop-by-hop encryption

mechanism, in which each sensor node stores encryption keys shared with its immediate

neighbours. Thus the keys stored in nodes can be divided into 2 parts: the keys Kn, which is

shared with its neighbours and the key Ks, which is shared with the base station or sink node.

This mechanism reduces the memory the keys occupied and the power consumption of

transmitting keys.

82 Computer Science & Information Technology (CS & IT)

4. EVALUATION

4.1. Sensor platform

The kernel has been tested on the AT91SAM7S evaluation board which include AT91SAM7S256

processor core (based on arm7),256Kbytes Flash, 64Kbytes SRAM, and peripherals such as

UART, SPI, and I2C etc. The RF module is XBEE-PRO [21] (based on Zigbee) which

communicates with the processor core through UART (RS-232 protocol).

4.2. Performance analysis

4.2.1. Memory usage

Table 3 shows the storage usage of the kernel. It occupies no more than 5KB and is suitable for

resource-constrained sensor node. The code size of whole image which includes kernel, hard

drivers and applications is less than 30KB. Thus, the kernel is flexible and portable to

heterogeneous sensor nodes.

Table 3. Code size and data size of the kernel and whole system

 Code size(bytes) Data size(bytes)

Kernel 3572 1272

Kernel+Driver+Applications 16988 11929

4.2.2. Power analysis

To reduce energy consumption, the main energy-aware module of the sensor node

(microprocessor, wireless RF module) support low power mode, as shown in Table 4.

Table 4. Power consumption evaluation

Chips
Power consumption

Normal mode Low power mode

AT91SAM7S256(48MHz) <50mA <60µA

Xbee-pro

Transmit Mode <250mA

Receive Mode <50mA

Sleep Mode <50µA

When the system is in idle state (no data transmission or no running components), the kernel can

customize the node configuration to make it run at low power mode to reduce the consumption

and prolong the lifetime of the node. Thus, it demonstrated that the kernel is task and resource

self-adaptive for sensor node.

4.2.3. Overhead of scheduling strategy

The kernel adopts event/thread 2 level scheduling strategies to support real-time multi-task. This

paper evaluates the overhead of scheduling strategy from 3 aspects: Interrupt response time,

Event switch time and Thread switch time.

Computer Science & Information Technology (CS & IT) 83

Table 5. Overhead of scheduling strategy
Overhead

(instruction cycle)
Time (µS)(48Mhz)

 min avg max min avg max

Event switch time 164 168 516 3.4 3.5 10.7

Thread switch time 176 93 798 3.6 1.9 16.6

Interrupt response time 157 194 395 3.2 4 8.2

Table 5 shows the overhead of the scheduling strategy through testing the average time

mentioned above.

4.2.4. Overhead of run-time updating mechanism

As mentioned in chapter 3, the paper proposes a run-time remote-updating scheme from 3 levels

according to the granularity of the updating code size. Obviously, the overhead and power

consumption is determined by the code size disseminated to a great extent. The paper evaluates

the overhead from two aspects, dynamic loading of modules and full image replacement.

Table 6. Comparison of energy-consumption of dynamic loading and full image replacement

step Dynamic loading (mJ) Full image replacement(mJ)

Code size 160bytes 28917bytes

Receive data 17mJ 330mJ

Store data 1.1mJ 22mJ

Reloc&ref updating 14.mJ 0mJ

As the meta-data generation is executed in sink node or base station, the paper evaluate the

energy-consumption of the rest of steps, which are executed in sensor node. The table 6 shows the

Comparison of energy-consumption of dynamic loading and full image replacement.

5. CONCLUSION

This paper presents a novel task and resource self-adaptive real-time microkernel for wireless

sensor nodes. Based on the modular architecture, the kernel integrates the benefits of Event-

driven and Thread-driven model to make the kernel capable of processing real-time tasks and

multi-task. Moreover, in order to adapt to the complex environment, the sensor nodes are enabled

to be customized and configured dynamically through the run-time over-the-air updating

mechanism. A two level Cryptography mechanism and key management is also proposed for

resource-constrained node to guarantee the reliable and efficient communication and code

distribution.

Through analysis of the evaluation results, the kernel has good performance in communication

throughout, supporting real-time task, and over-the-air updating mechanism. Compared with

other dedicated WSN OSs, the kernel consumes more energy and memory. The verification of the

updating code integrity should also be taken into account in over-the-air updating mechanism. In

addition, there is still much room for optimizing the cryptography algorithm and managing the

keys more efficiently.

Finally, the kernel extends the range of WSN application and provides the reliability and

robustness for the complex application.

84 Computer Science & Information Technology (CS & IT)

REFERENCES

[1] J.J. Labrosse.Micro/OS-II, the Real-time Kernel, Second edition. Technical Document. 2002: 2-3.

[2] Dedicated Systems Magazine. VxWorks/x86 5.3.1 evaluation, RTOS evaluations. URL:

http://www.dedicated-systems.com. 2000.

[3] Microsoft Corporation. Which to choose: Evaluating Microsoft windows CE.NET and windows XP

embedded. Technical Report. 2001: 3-6.

[4] Levis P, Madden S, Polastre J, et al. TinyOS: An Operating System for Sensor Networks. Ambient

Intelligence(Part II), 2005, 35: 115-148.

[5] C.-C. Han, R. Kumar, R. Shea, E. Kohler and M. Srivastava. A Dynamic Operating System for Sensor

Nodes. In Proceedings of the 3rd International Conference on Mobile Systems, Applications, and

Services. New York, USA. 2005: 163-176.

[6] Abrach H, Bhatti S, Carlson J, et al. MANTIS OS: An Embedded Multithreaded Operating System

for Wireless Micro Sensor Platforms. Mobile Networks & Applications (MONET), 2005,10(4): 50-59

[7] Dunkels, Adam, Bjorn Gronvall, and Thiemo Voigt. "Contiki-a lightweight and flexible operating

system for tiny networked sensors." Local Computer Networks, 2004. 29th Annual IEEE International

Conference on. IEEE, 2004.

[8] Farooq, Muhammad Omer, and Thomas Kunz. "Operating systems for wireless sensor networks: A

survey." Sensors 11.6 (2011): 5900-5930.

[9] Anil Kumar Sharma,Surendra Kumar Patel,Gupteshwar Gupta. Design issues and classification of

WSNs Operating Systems. International Journal of Smart Sensors and Ad Hoc Networks (IJSSAN),

ISSN No. 2248-9738 (Print), Vol-2, Iss-3,4, 2012.

[10] Chen, Yu-Ting, Ting-Chou Chien, and Pai H. Chou. "Enix: a lightweight dynamic operating system

for tightly constrained wireless sensor platforms." Proceedings of the 8th ACM Conference on

Embedded Networked Sensor Systems. ACM, 2010.

[11] Moubarak, Mohamed, and Mohamed K. Watfa. "Embedded operating systems in wireless sensor

networks." Guide to Wireless Sensor Networks. Springer London, 2009. 323-346.

[12] Pompili, Dario, TommasoMelodia, and Ian F. Akyildiz. "Deployment analysis in underwater acoustic

wireless sensor networks." Proceedings of the 1st ACM international workshop on Underwater

networks. ACM, 2006.

[13] Munawar, Waqaas, et al. "Dynamic Tinyos: Modular and transparent incremental code-updates for

sensor networks." Communications (ICC), 2010 IEEE International Conference on. IEEE, 2010.

[14] J. Jeong, S. Kim, and A. Broad, “Network reprogramming,” Aug 12,2003. [Online]. Available:

http://www.tinyos.net/tinyos-1.x/doc/Xnp.pdf

[15] J. W. Hui and D. Culler, “The dynamic behavior of a data dissemination protocol for network

programming at scale,” in SenSys ’04, 2004.

[16] R. M¨ uller, G. Alonso, and D. Kossmann, “A virtual machine for sensor networks”,SIGOPSOper.

Syst. Rev., vol. 41, no. 3, pp. 145–158, 2007

[17] Steiner, Rodrigo, et al. "An operating system runtime reprogramming infrastructure for WSN."

Computers and Communications (ISCC), 2012 IEEE Symposium on. IEEE, 2012.

[18] Poschmann, Axel, Dirk Westhoff, and Andre Weimerskirch. "Dynamic code update for the efficient

usage of security components in wsns."Communication in Distributed Systems (KiVS), 2007 ITG-GI

Conference. VDE, 2007.

[19] Atmel Ltd. AT91SAM7S-EK Evaluation Board User Guide.Technical Document. 2006: 12-19.

[20] MaxSream, Inc. XBee™/XBee-PRO™ OEM RF Modules Product Manual. Technical Document.

2006.

