

Sundarapandian et al. (Eds) : CCSEA, EMSA, DKMP, CLOUD, SEA - 2014

pp. 63–73, 2014. © CS & IT-CSCP 2014 DOI : 10.5121/csit.2014.4306

MULTIPLE DAG APPLICATIONS

SCHEDULING ON A CLUSTER OF

PROCESSORS

Uma Boregowda
1
 and Venugopal Chakravarthy

2

1
Department of Computer Science and Engineering, Malnad College of

Engineering, Hassan, India
umaboregowda@gmail.com

2
Department of Electronics and Engineering, Sri Jayachamarajendra College of

Engineering, Mysore, India
venu713@gmail.com

ABSTRACT

Many computational solutions can be expressed as Directed Acyclic Graph (DAG), in which

nodes represent tasks to be executed and edges represent precedence constraints among tasks.

A Cluster of processors is a shared resource among several users and hence the need for a

scheduler which deals with multi-user jobs presented as DAGs. The scheduler must find the

number of processors to be allotted for each DAG and schedule tasks on allotted processors. In

this work, a new method to find optimal and maximum number of processors that can be allotted

for a DAG is proposed. Regression analysis is used to find the best possible way to share

available processors, among suitable number of submitted DAGs. An instance of a scheduler

for each DAG, schedules tasks on the allotted processors. Towards this end, a new framework

to receive online submission of DAGs, allot processors to each DAG and schedule tasks, is

proposed and experimented using a simulator. This space-sharing of processors among multiple

DAGs shows better performance than the other methods found in literature. Because of space-

sharing, an online scheduler can be used for each DAG within the allotted processors. The use

of online scheduler overcomes the drawbacks of static scheduling which relies on inaccurate

estimated computation and communication costs. Thus the proposed framework is a promising

solution to perform online scheduling of tasks using static information of DAG, a kind of hybrid

scheduling.

KEYWORDS

Task scheduling, DAG, workflow, PTG

1. INTRODUCTION

Many business, industrial and scientific areas, such as high-energy physics, bioinformatics,

astronomy, epigenomics, stock market and others involve applications consisting of numerous

components(tasks) that process data sets and perform scientific computations. These tasks

communicate and interact with each other. The tasks are often precedence-related. The problem

of scheduling jobs with precedence constraints is an important problem in scheduling theory and

has been shown to be NP-hard [1]. Data files generated by one task are needed by other tasks.

The requirement of large amount of computations and data storage of these applications can be

provided by a cluster. Because of huge technological changes in the area of parallel and

64 Computer Science & Information Technology (CS & IT)

distributed computing, powerful machines are now available at low prices. This is visible in large

spreading of cluster with hundreds of homogeneous/heterogeneous processors connected by high

speed interconnection network [2]. This democratization of cluster calls for new practical

administration tools.

The task scheduling problem is to allocate resources (processors) to the tasks and to establish an

order for the tasks to be executed by resources. There are two different types of task scheduling:

static and dynamic. Static strategies define a schedule at compile time based on estimated time

required to execute tasks and to communicate data. Static schedule can be generated only when

the application behaviour is fully deterministic and this has the advantage of being more efficient

and a small overhead during runtime. The full global knowledge of application in the form of

DAG will help to generate a better schedule. Dynamic strategies, on the other hand are applied

when tasks are generated during runtime. Tasks are assumed to be non-preemptive.

Workflows have recently emerged as a paradigm for representing complex scientific

computations [26]. Few widely used example workflows are Montage (Fig. 2), cybershake,

LIGO, SIPHT. Workflows represented by one of many workflow programming languages can be

translated into DAG, in general. Thus workflow scheduling is essentially a problem of scheduling

DAG. Although much work has been done in scheduling single workflow [3], multiple workflow

scheduling is not receiving deserved attention. Few initial studies are found in the literature [4, 5].

Because of huge computing power of a cluster and the inability of a single DAG to utilize all

processors on cluster, multiple DAG applications need to be executed concurrently. Thus a

scheduler to deal with multi-user jobs with the objectives of maximizing resource utilization and

minimizing overall DAG completion time is essential. The contributions of this paper are 1) a

new method to find minimum, optimal and maximum number of processors that can be allotted

for a DAG and this information is used to find one best way to share available processors among

multiple DAGs 2) a framework to receive submission of DAGs, find the allotment for each

submitted DAG and schedule tasks on allotted processors, with the objectives of maximizing

resource utilization and minimizing overall completion time.

1.1. Application Model

The data flow model is gaining popularity as a programming paradigm for parallel processors.

When the characteristics of an application is fully deterministic, including task's execution time,

size of data communication between tasks, and task dependencies, the application can be

represented by directed acyclic graph (DAG) as shown in Fig.1. Each node in DAG represents a

task to be performed and the edges indicate inter-task dependencies. Node weight stands for the

computation cost of the corresponding task and the edge cost represents the volume of data to be

communicated between the corresponding nodes. The node and edge weights are usually

obtained by estimation or profiling. Communication-to-Computation (CCR) is the ratio of

average communication cost to the average computation cost of a DAG. This characterizes the

nature of DAG. The objective of scheduling is to map tasks onto processors and order their

execution so that task dependencies are satisfied and minimum overall completion time is

achieved. Makespan is the total time required to complete a DAG.

1.2. Platform

A cluster with ‘P’ homogeneous processors, each of which is a schedulable resource is

considered. Processors are interconnected by a high speed and low latency network. A processor

can communicate with several other processors simultaneously with multi-port model.

Computer Science & Information Technology (CS & IT) 65

Figure 1. A Typical DAG Figure 2. Montage – a Workflow

2. RELATED WORK

Extensive work has been done on scheduling a single DAG [6, 7, 8]. Zhao et al.[4] have proposed

few methods to schedule multiple DAGs. One approach is to combine several DAGs into one by

making the entry nodes of all DAGs, immediate successors of new entry node and then use

standard methods to schedule the combined DAG. Another way is to consider tasks from each

DAG in round robin manner for scheduling. They have proposed other policies to optimize both

makespan and fairness. The key idea is to evaluate, after scheduling a task, the slowdown value of

each DAG against other DAGs and make a decision on which DAG must be considered next for

scheduling.

A list scheduling method to schedule multi-user jobs is developed by Barbosa et al. [9] with an

aim to maximize the resource usage by allowing a floating mapping of processors to a given job,

instead of the common mapping approach that assigns a fixed set of processors to a user job for a

period of time. A master DAG where each node is a user job and each edge representing a priority

of one job over another is constructed using all submitted DAGs. A list scheduling algorithm [6]

is used to schedule all tasks of Master DAG. The master DAG is created based on job priorities

and deadlines

Bittencourt et al. [10] have used Path Clustering Heuristic (PCH) to cluster tasks and the entire

cluster is assigned to a single machine. They have proposed four heuristics which differ in the

order tasks of multiple DAGs are considered for scheduling. The methods are sequential, Gap

search method, Interleave algorithm and Group DAGs method. A meta-scheduler for multiple

DAGs [11] merges multiple DAGs into one to improve the overall parallelism and optimize idle

time of resources. The efforts are limited to the static case and they do not deal with dynamic

workloads.

Duan et al. [12] have proposed a scheduling algorithm based on the adoption of game theory and

idea of sequential cooperative game. They provide two novel algorithms to schedule multiple

DAGs which work properly for applications that can be formulated as a typical solvable game.

Zhifeng et al. [13] addresses the problem of dynamic scheduling multiple DAGs from different

66 Computer Science & Information Technology (CS & IT)

users. They expose a similar approach from Zhao et al. [4] without merging DAGs. Their

algorithm is similar to G-heft algorithm.

An application which can exploit both task and data parallelism can be structured as Parallel Data

Graph (PTG) in which task can be either sequential or data parallel. Data parallelism means

parallel execution of the same code segment but on different sections of data, distributed over

several processors in a network. A DAG is a special case of PTG where task can only be

sequential task. Thus PTG scheduling is quite similar to DAG scheduling. Not much work is

carried out in Multiple PTG scheduling. Tapke et al. [5] have proposed an approach where each

PTG is given a maximum constraint on number of processors it can use and tasks are scheduled

using a known PTG scheduling algorithm. The size of each processor subset is determined

statically according to various criteria pertaining to the characteristics of PTG like maximum

width, total absolute work to be done and proportional work to be carried out.

Sueter et al. [14] have focused on developing strategies that provide a fair distribution of

resources among Parallel Task Graphs (PTG), with the objectives of achieving fairness and

makespan minimization. Constraints are defined according to four general resource sharing

policies: unbounded Share(S), Equal Share (ES), Proportional Share (PS), and Weighted

Proportional Share (WPS). S policy uses all available resources. ES policy uses equal resources

for each PTG. PS and WPS use resources proportional to the work of each PTG, where the work

is considered as critical path cost by width of PTG.

A study of algorithms to schedule multiple PTGs on a single homogeneous cluster is carried out

by Casanova et al. [15]. Therein it is shown that best algorithms in terms of performance and

fairness all use the same principle of allocating a subset of processors to each PTG and that this

subset remains fixed throughout the execution of the whole batch of PTGs. The basic idea in job

schedulers [19] is to queue jobs and to schedule them one after the other using some simple rules

like FCFS (First Come First Served) with priorities. Jackson et al. [20] extended this model with

additional features like fairness and backfilling.

Online scheduling of multiple DAGs is addressed in [16]. Authors have proposed two strategies

based on aggregating DAGs into a single DAG. A modified FCFS and Service-On-Time (SOT)

scheduling are applied. FCFS appends arriving DAGs to an exit node of the single DAG, while

SOT appends arriving DAGs to a task whose predecessors have not completed execution. Once

the single DAG has been built, scheduling is carried out by HEFT.

An Online Workflow Management (OWM) strategy [18] for scheduling multiple mix-parallel

workflows is proposed. DAG tasks are labelled, sorted, and stored into independent buffers.

Labelling is based on the upward rank strategy. The sorting arranges tasks in descendent order of

the task rank. Task scheduling referred to as a rank hybrid phase determines the task execution

order. Tasks are sorted in descending order when all tasks in the queue belong to the same

workflow. Otherwise, they are sorted in ascending order. Allocation assigns idle processors to

tasks from the waiting queue.

Raphael et al. [23] have addressed online scheduling of several applications modelled as work-

flows. They have extended a well-known list scheduling heuristic (HEFT) and adapted it to the

multi-workflow context. Six different heuristics based on HEFT key ideas are proposed. These

heuristics have been designed to improve the slowdown of different applications sent from

multiple users.

Much work has not been done on scheduling multiple DAG applications. A common approach is

to schedule a single DAG on fixed number of processors [6] but methods to find the number of

processors to be used for a DAG, are not found in literature. Tapke et al. [5] have proposed

Computer Science & Information Technology (CS & IT) 67

methods to find maximum resource constraint for each PTG, while scheduling multiple PTGs.

But they have not restricted scheduling of a PTG to the fixed set of processors. A method

proposed by Barbosa et al. allows floating number of processors to a given job, instead of fixed

number of processors. Many existing workflow scheduling methods do not use fixed set of

processors for each DAG. Instead a task based on some heuristic is picked among tasks of all

DAGs and is scheduled on a processor where it can start earliest based on some heuristic. The

work proposed in this paper is similar to Barbosa [9] method, in the sense that a fixed set of

processor is allocated for each DAG which later can be varied during runtime with the objective

of maximizing resource usage. Their work does not address several issues like - how initial

processor allotment for each DAG is made, a method to decide number of DAGs to be scheduled

concurrently among several submitted DAGs, to deal with online submission of DAGs. This work

addresses all the above mentioned issues.

3. PROCESSOR ALLOTMENT FOR A DAG

A schedule for a DAG can be obtained with varied number of processors. By increasing the

number of processors allotted for a DAG, its makespan decreases. The gain in terms of reduction

in makespan, reduces as more number of processors are allotted to a DAG. This is due to

communication overhead and limited parallelism present in DAG. The optimal and maximum

number of processors for a DAG will help in finding processor allotment while scheduling

multiple DAGs concurrently on a cluster.

3.1. Maximum Number of Processor for a DAG

The maximum number of processors a DAG can utilize depends on its nature and degree of

parallelism present in it. The number of allotted processors, beyond which DAG’s makespan

does not decrease with any more additional processors, is the maximum number of processors

that can be utilized by a DAG. A brute force method can be used to find this, by making several

calls to scheduling method and recording the makespan for each case. But an efficient binary

search based method [24] is used in this work and its time complexity is O(log n) against O(n) of

the brute force method.

3.2. Optimal Number of Processor for a DAG

Optimal number of processors for a DAG is that number up to which every added processor is

utilized well and beyond it, they are underutilized. With increase in number of allotted

processors, DAG’s makespan decreases and average processor utilization decreases due to

communication overhead and limited parallelism. Average processor utilization can best be

measured using computing area, which is the product of makespan and the number of processors

used. In this work, computing area is used to find the optimal number of processors for a DAG.

As processor allotment to a DAG is increased, makespan decreases and computing area increases.

Initially decrease in makespan is more than increase in computing area, justifying the worthiness

of increase in processor allotment. After the processor allotment reaches a certain value, the

increase in computing area is more than the decrease in makespan for every added processor,

indicating that any further increase in processors allotment is not of significant use.

By successively increasing number of processors allotted for a DAG, makespan and computing

area are recorded. The number of processors for which decrease in makespan becomes less than

the increase in computing area, fixes the optimal number of processors for a DAG.

.

68 Computer Science & Information Technology (CS & IT)

4. MULTIPLE DAGS SHARING CLUSTER

It is advantageous to schedule multiple DAGs simultaneously on a cluster instead of dedicating

the entire cluster to a single DAG, due to communication overhead. Furthermore, it is beneficial

to schedule more number of DAGs each with relatively less number of processors than

scheduling less number of DAGs each with large number of processors, because of

communication overhead. The returns, in terms of decrease in makespan, for each additional

processor differs for each DAG depending on its nature and number of processors already allotted

to it. Hence additional processors must be allotted to those DAGs which will be benefitted most

by means of reduction in makespan. To find the most benefitting DAGs, reduction in makespan

for the next added processor must be known for each DAG. Reduction in makespan for every

added processor can be best captured as an equation using regression analysis and are provided to

scheduler along with DAG. During regression analysis of large number of DAGs, it is observed

that for any DAG, makespan reduction follows either exponential or power curve. Thus for each

DAG, makespan reduction for each added processor is recorded and curve fitting is done. The

type of equation and its constants are stored along with each DAG, which then is used by the

scheduler while finding processor allotment for each DAG, while scheduling multiple DAGs. The

scheduler is invoked when a DAG arrives or a DAG completes execution. The minimum number

of processors to be allotted for each DAG is assumed to be four, by conducting the experiments

large number of times. The algorithm for the proposed scheduler is given below.

Algorithm multi_dag_scheduler()

// information submitted along each DAG – opt_proc, max_proc, eqn_type, eqn_const

//avail_proc – currently available number of free processors

// let min_core = 4

Input : submitted DAGs

Output : processor allotment and calling an instance of scheduler for each DAG

Step 1: if (arrival) then // DAG has arrived

Step 2: if (avail_proc < min_core) then

Step 3: append to waiting queue

Step 4: else

Step 5 : allot (min_proc or max_proc or opt_proc) whichever best fits avail_proc

Step 6 : create an instance of scheduler for a DAG on allotted processors

Step 7 : endif

Step 8: else //DAG has completed

Step 9: if (waiting queue is not empty) then

Step 10 : do_allot()

Step 11 : endif

Step 12 : end_algorithm

Algorithm do_allot()

Step 1: remove those many number of DAGs from queue beginning, whose sum of their

min_proc is less than avail_proc

Step 2 : if (sum of opt_proc of all removed DAGs is less than available processors) then

Step 3 : allot opt_proc to each removed DAG

Step 4 : else

Step 5 : for each removed DAG allot their min_proc number of processors

Step 6 : endif

Computer Science & Information Technology (CS & IT) 69

Step 7 : if (free processors are left) then

Step 8 : distribute those free processors among DAGs, in such a way that each processor is

added to that DAG for which it yields maximum reduction in makespan, using

equations types and their constants

Step 9 : endif

Step 10 : end_algorithm

5. EXPERIMENTAL SETUP AND RESULTS

5.1. Experiment Setup

A discrete-event based simulator is developed to simulate the arrival, scheduling, execution and

completion of DAGs. Simulation allows performing statistically significant number of

experiments for a wide range of application configurations. Poisson distribution is used to

simulate the arrival time of DAGs. Several kinds of benchmark DAGs from several sources are

used to experiment the proposed scheduler for different types of DAGs. Series-parallel DAGs

from Task Graphs For Free [22], random DAGs from Standard Task Graph Set [21], DAGs of

linear algebra applications like FFT, LU decomposition, Gauss-elimination, Laplace transform

and workflows like LIGO, cybershake, Montage, SIPHT[25]. DAGs with CCR values of 0.1,

0.4, 1 and 5 are used in experiments.

5.2. Results and Analysis

5.2.1. Optimal and Maximum Number of Processors for a DAG

An efficient binary search based method [24] with time complexity of O(log(n)) is used to find

the maximum number of processors a DAG can utilize. The decrease in makespan and increase in

computing area (decrease in average processor utilization) for every added processor is used to

fix the optimal number of processors for a DAG. The plot of decrease in makespan and increase

in computing area for different number of processors, for a DAG is given in Fig.3. The crossover

point gives the optimal number of processors for that DAG. The method can be used for any kind

of DAG.

Figure 3. To find Optimal Number of Processors for a DAG

70 Computer Science & Information Technology (CS & IT)

5.2.1. Multiple DAGs Scheduling

Recent works on multiple DAG scheduling [4, 5, 9, 10, 11, 12, 14] have not considered allotment

of fixed set of processors to a DAG. Instead, tasks from all DAGs are scheduled on any processor

on which they can start earliest, using some heuristic. Hence initially, it is proved experimentally

that space partitioning of processors among multiple DAGs, delivers improvement in

performance compared to combined DAGs scheduling. To experiment this, a set of DAGs of all

kinds, were scheduled on a cluster with 100 numbers of processors. The metric used is the sum of

computing area of all scheduled DAGs. To study the effect on both computation intensive and

communication intensive applications, DAGs with both low and high CCR are considered. Two

sets of DAGs each with 8 and 16 number of DAGs, under each category are considered. Thus the

four categories of DAGs are labelled as ccrl_8, ccrl_16, ccrh_8 and ccrh_16. Since the behaviour

depends on the nature of DAG, 50 sets of DAGs are considered for each category. Care is taken

to consider all different types of DAGs in the sets of DAGs. The results obtained from 50 sets are

averaged and the same is shown in Fig. 4. The performance of the proposed method is better than

combined DAGs scheduling for all four categories of DAGs. For the category ccrh_8, proposed

method shows maximum improvement of 12%, since DAGs are communication intensive and

thus scheduling tasks on fixed set of processors reduces time to complete the DAG. Performance

improvement is only 9% for the category ccrh_18, as there is less scope for further improvement

due to large number of DAGs being scheduled together.

Figure 4. Combined DAGs scheduling vs Proposed Space-sharing Schedule

The benefits of space partitioning processors which cannot be measured for DAGs with dummy

tasks are 1) as tasks of a DAG are scheduled on the same set of processors, they will be benefitted

from cache-warm and secondary memory warm. 2) an online scheduler can be used for each

DAG, after allotting a set of processors to it. 3) processor allotment for a DAG can be varied

depending on availability of processor, with the objectives of maximizing resource utilization.

A highlight of this work is to find one best way to share available processors among multiple

DAGs, using regression analysis. The proposed work is compared against policies proposed by

Tapke et al. [14] - unbounded Share(S), Equal Share (ES), Proportional Share (PS), and Weighted

Proportional Share (WPS). The strategy S which is a selfish allocations and tasks of different

DAGs are not differentiated is used as a baseline performer for other strategies as it gives an

Computer Science & Information Technology (CS & IT) 71

indication of performance of heuristics originally designed for single DAG. Values obtained are

normalized with the value of S strategy, to help in comparison. Performance metric used is

average makespan and resource utilization which is measured as the sum of computing area of all

DAGs scheduled together. Five categories of DAGs each with 4, 8, 12, 16 and 20 number of

DAGs are considered. Random, series-parallel, linear algebra DAGs and various workflows like

montage, SIPHT, epigenemics, LIGO are considered. 100 sets of DAGs are considered for each

category and the results obtained are averaged. The result is shown in Fig. 5 and Fig. 6. The

proposed method is better than all policies found in literature.

For less number of DAGs, performance of all methods is almost the same, as there will not be

much conflict for resources. With more number of DAGs, resource conflicts increase and the

proposed method shows considerable good performance over previous methods.

Figure 5. Normalized Average Makespan of Set of DAGs

Figure 6. Normalized Sum of Computing Area of Set of DAGs

72 Computer Science & Information Technology (CS & IT)

6. CONCLUSIONS

Multiple DAGs scheduling on a cluster is not receiving the deserved attention. Few methods

found in literature performing combined DAGs scheduling. But in this work, it is proposed to

allot a fixed number of processors to each DAG and an instance of local DAG scheduler to

schedule DAG’s tasks only on the allotted fixed set of processors. A method to find the maximum

and optimal number of processors that can be allotted to a DAG is given, which will be used to

find the processor allotment for each DAG while scheduling multiple DAGs. A new framework

to schedule multiple DAGs with the objectives of maximizing resource utilization and

minimizing DAGs completion time is proposed. Regression analysis is used to find the number of

processors to be allotted to each DAG while scheduling multiple DAGs. This method is proved to

outperform other methods found in literature by around 10-15%.

The other big advantage of the proposed approach is that instead of static schedule, an online

scheduler for each DAG can be used to schedule tasks, as they are generated, onto the allotted

processor. An Online scheduler overcomes drawbacks of static schedule and is more

advantageous. Also static DAG information can be used during online scheduling to further

improve performance. Because of space sharing of processors, the number of processors allotted

to each DAG can be varied during runtime, depending on the availability of free processors. This

will improve resource utilization, hence performance of the scheduler. In future work, the idea of

online scheduler and varied processor allotment for each DAG will be experimented.

REFERENCES

[1] Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems, 3rd edition. Springer (2008)

[2] D.E. Culler, J. P. Singh, and A. Gupta. Parallel Computer Architecture: A Hardware/Software

Approach. Morgan Kaufmann Publishers, inc., SanFrancisco, CA, 1999..

[3] Yu, J., Buyya, R.: A Taxonomy of Scientific Workflow Systems for Grid computing. SIGMOD

Records 34(3),44–49 (2005)

[4] Zhao, H., Sakellariou, R.: Scheduling Multiple DAGs onto Heterogeneous systems. In: Parallel and

Distributed Processing Symposium, 2006. (IPDPS 2006). 20th International, pp. 14–pp. IEEE (2006)

[5] N’takp´e, T., Suter, F., Casanova, H.: A Comparison of Scheduling Approaches for Mixed-Parallel

Applications on Heterogeneous Platforms. In: Parallel and Distributed Computing, 2007. ISPDC’07.

Sixth International Symposium on, pp. 35–35. IEEE (2007)

[6] Y.-K. Kwok and I. Ahmad. Static Scheduling Algorithms for Allocating Directed Task graphs to

Multiprocessors. ACM Computing Surveys, 31(4):406–471, 1999

[7] E. Ilavarasan and P. Thambidurai ,.Low Complexity Performance Effective Task Scheduling

Algorithm for Heterogeneous Computing Environments , Journal of Computer Sciences 3 (2): 94-103,

2007

[8] T. Hagras, J. Janeček . Static vs. Dynamic List-Scheduling Performance Comparison, Acta

Polytechnica Vol. 43 No. 6/2003

[9] J. Barbosa and A. P. Monteiro, A List Scheduling Algorithm for Scheduling Multi-user Jobs on

Clusters, High Performance Computing for Computational science- VECPA8 2008, Lecture Notes in

Computer Science volume 5336, 2008, pp123-136

[10] Bittencourt L.F., Madeira: Towards the Scheduling of Multiple Workflows on Computational Grids.

J. Grid Computing 8, 419–441 (2010)

[11] U. H. Nig and W. Schiffmann. A Meta-algorithm for Scheduling Multiple DAGs in Homogeneous

System Environments. In Proceedings of the 18th International Conference on Parallel and

Distributed Computing and Systems (PDCS’06), 2006

[12] R. Duan, R. Prodan, and T. Fahringer. Performance and Cost optimization for Multiple large-scale

Grid Workflow Applications. In Proceedings of the 2007 ACM/IEEE conference on Supercomputing,

pages 1–12, New York, NY, USA, 2007.

[13] Zhifeng Yu and Weisong Shi. A Planner-guided Scheduling Strategy for Multiple work-flow

Applications. Parallel Processing Workshops, International Conference on, 0:1–8,2008.

Computer Science & Information Technology (CS & IT) 73

[14] N’takpé, T., Suter, F.: Concurrent scheduling of parallel task graphs on multi-clusters using

constrained resource allocations. In: International Parallel and Distributed Processing

Symposium/International Parallel Processing Symposium, pp. 1–8 (2009)

[15]Casanova, H., Desprez, F., Suter, F.: On cluster Resource Allocation for Multiple Parallel Task

Graphs. Journal of Parallel and Distributed Computing 70(12), 1193–1203 (2010)

[16] Zhu, L., Sun, Z., Guo, W., Jin, Y., Sun, W., Hu, W.: Dynamic Multi DAG Scheduling Algorithm for

Optical Grid Environment. New Architecture Management Applications. V 6784(1), 1122 (2007)

[17] H Topcuoglu, S. Hariri and M. Y. Yu, Performance Effective and Low-complexity Task Scheduling

for Heterogene Computing, IEEE TPDS, 13(3):260-274, 2002

[18] Hsu, C.-C., Huang, K.-C., Wang, F.-J.: Online scheduling of workflow applications. In Grid

environments. Future Gen. Comput. Syst. 27, 860–870 (2011)

[19] R. L. Henderson, Job Scheduling under the Portable Batch System, Job Scheduling Strategies for

Parallel Processing, volume 949 of LNCS, pages 279–294, 1995.

[20] D. Jackson, Q. Snell, and M. J. Clement. Core algorithms of Job Schedule, Job Scheduling Strategies

for Parallel Processing, volume 2221 of LNCS, pages 87–102, 2001.

[21] Standard Task Graph Set http://www.kasahara.elec.waseda.ac.jp/schedule/.

[22] Task Graphs for Free http://ziyang.eecs.umich.edu/~dickrp/tgff

[23] Raphael Bolze, Frederic Desprez and Benjamin Insard, Evaluation of Online Multi-workflow

Heuristics based on List Scheduling Methods, Gwendia ANR-06-MDCA-009

[24] Uma B , C R Venugopal, A Novel Binary Search based method to find minimal number of cores

required to obtain minimal makespan, given makespan and given utilization of cores for a DAG

application, 4th International Conference on Computer and Automation Engineering, (ICCAE 2012)

January 14–15, 2012, Mumbai, India.

[25] https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator

[26] Taylor, I.J., Deelman, E., Gannon, D.B., Shields, Workflows for e-Science - Scientific Workflows for

Grids. Springer, New York (2007)

AUTHORS

C R Venugopal received his Ph. D from IIT, Bombay. Presently serving as a Professor

in Sri Jayachamarajendra College of Engineering, Mysore, India. His main research

interests are Cloud computing, High Performance computing, VLSI Technology and

File System development. Has authored more than 50 international conference and

journal papers.

Uma B completed M. Tech. in Computer Science and Engineering from IIT, Delhi.

Currently working as a Associate Professor in Malnad College of engineering, Hassan,

India. Her research interests are Parallel Programming, High Performance Computing

and Task scheduling.

