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ABSTRACT 

 
In this paper, we propose a framework for Age Estimation which uses a correlated ageing 

pattern to rank images and makes necessary inferences from the image ranks to estimate the 

exact age of images. We use AAM and LBP as complementary feature extraction techniques for 

extracting facial features in low dimensionality. Our correlated ageing pattern model learns the 

ageing patterns of different individuals across ages and uses these to determine an agerank for 

each image. Subsequently, the learned age rank of a reference image set is used to determine 

the ranks of test images in order to deduce relevant inferences for age estimation. Our approach 

is significantly different from the previous ranking approaches in that it determines age ranks 

that do not only represent the correlation of ages of different individuals but also the correlation 

of ageing patterns of different individuals. Our initial findings look promising with the intuitive 

manner with which we employ correlated ageing patterns. 

 

KEYWORDS 

 
Age Estimation, Ageing Pattern, Age Rank, Ranking  

 

 

1. INTRODUCTION 
 

Human age estimation is a challenging task for humans as well as for machines. Although, 

humans possess the ability early in life to estimate the age of a person from his/her appearance 

[1], [2], the task is a subjective one which is largely based on the previous experience of the 

estimator. On the part of the estimated face image, several factors – external (eating habits, drugs, 

sickness, injuries, weather etc.) as well as internal (genetic or hereditary factors, ethnicity, gender) 

– could greatly cause variations in the pattern of aging of different individuals, thus making it 

more challenging to find a unique solution to the Age estimation problem. Therefore, whatever 

solution is to be proffered to the Age Estimation problem must be an adaptive one.  

 

Human Age Estimation has recently received attention in the research community and as such, 

several approaches and insights have been developed over the years to combat the problem. It 

continues to gain research interest especially due to its wide application in Adaptive Computing 

Methodologies such as Age-Specific Human Computer Interaction (ASHCI) [3], [4], [5]. A major 

motivation for this research from our own point of view is the fact that certain professions 

(Sports, Military etc.) require the knowledge of the actual age of individuals/professionals, hence, 

a medium of verifying the ages presented in such professions will be invaluable as it could be 

able to reduce the compromise in the ages supplied by these professionals. 
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Some areas where this research could be applicable include the use of Automatic Vending 

Machines which could restrict a customer’s purchase of alcoholic products based on the estimated 

age of the customer, National Youth Service Corps (NYSC) Scheme in which Nigerian Youth 

(below the age of 30 years) are sent to various states of the country to serve their Fatherland in 

their respective disciplines. The NYSC is also one of the primary motivations for this work as it 

will be very resourceful in reducing age falsification for participation in the scheme. 

 

As much as this research area is gaining a wider span of interest and applicability, it is still a 

challenging research area that has left research gaps, particularly in terms of its accuracy. The 

accuracy of any prediction or estimation algorithm/system largely determines the extent to which 

it will be widely adopted in real-world applications. Hence, this work proposes a model for 

ranking images based on the correlation between the ages and the ageing pattern of individuals. 

Subsequently, the ranks of images can be determined and used to make relevant inferences for 

age estimation. Our significant contribution with this model is the correlation between the ageing 

pattern of different individuals and their ages which is used to determine the age rank of images. 

Possible applications of this model in real world domains include age estimation and age learning 

from facial image. 

 

2. RELATED WORKS 

 
From our analysis of previous works on age estimation, we deduced that they can be classified 

into five major categories based on the approach employed in the research. We have the 

Anthropometric Models [6], [7], [8] which adopt knowledge from Facial Wrinkle Analysis and 

Craniofacial Research for modeling the growth (change in shape) of the face. This approach is 

mostly suitable for young faces and often requires high resolution images with minimal head 

pose. Some other research approaches use the aging pattern of faces [9], [10], [11] by learning the 

aging pattern of individuals and trying to synthesize a facial image for this individual at some 

other ages not present in the training sample. This approach performed greatly especially due to 

the fact that aging factors could be personalized. However, its flaws are quickly exposed when it 

is applied to images not closely represented (in terms of age, gender or ethnicity) in the training 

set, thus it required a very large training set with a well-spread age distribution to perform well. 

The third category is of those which treat the Age Estimation problem as a classification problem. 

This research approach assumes the age labels to be independent classes into which face images 

can be classified thus resulting in a multi-class classification problem [12], [13], [14]. This 

approach also met with great success, especially due to the use of the Support Vector Machine; an 

excellent Machine learning algorithm for classification. Unfortunately, the assumption that ages 

are independent is, however, not too realistic. A person may have similar looks across different 

age classes and two different people might have, to some extent, similar facial features at the 

same age thus flawing the classification approach. Some other research approaches have handled 

age estimation as a regression problem in which the age labels are learned by a function which 

fits the face images to their corresponding estimated ages [15], [16], [17]. This is intuitive as the 

age labels are integers and their relationship with the ageing features, expressed as real numbers 

can be learn, but this is after some rigorous training. Support Vector Regression (SVR) has been 

very successful in this approach, thus researchers have applied several modifications of it to 

improve the model fitting function. The last category of research approaches in age estimation are 

those which treat the age labels as ordinal pairs and therefore calculate a rank for each face image 

which is compared against the set of already ranked images [18], [19], [20]. In this work, we 

employ this approach to age estimation but with an improvement over the existing rank-based 

frameworks. 

 

In [18], Yang et al. used Harr-like features to represent the face and then used a combination of a 

ranking model and personal aging pattern to reduce the dimensionality of the feature set obtained. 
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Pair-wise samples were built for the ranking model by organizing the age sequence according to 

individual ageing patterns within each subject and RankBoost [21], which employs a ranking 

model with boosting learning, was used to select relevant features, thereafter, they used SVR with 

the Radial Basis Function kernel to estimate the age of a facial image. Chang et al. [19] also 

applied a rank-based framework to age estimation with an intuition that it is easier to estimate the 

age of a subject by comparing his face with the faces of other people whose ages are known. 

Their work used the relative order of age labels to build a rank model. To avoid exhaustive 

comparison with all face images in the database, they only used a subset of the database (80 

images) to build the rank model which was used as a reference for comparison with test images. 

For each image compared against the set of ranked images, the age estimation problem is 

eventually reduced to a binary classification problem and a combination of binary decisions is 

used to make inferences which guide the age prediction. Cao et al. in [20], proposed a Ranking 

SVM for human age estimation by building a set of images used as a reference set to which 

images are compared before they are then classified into their corresponding age labels. They 

improved upon the ranking model of Yang et al. by including what they called ‘consistent pairs’ 

(images of the same age) in their reference set. Also, based on the intuition that Humans age 

differently, they ranked images of the same age such that they reflect their slight differences as 

well as their common trend, but these differences do not reflect the true variation in the ageing 

pattern of these individuals because it is not derived based on a trend of ageing patterns along 

ages. 

 

3. PROPOSED METHODOLOGY 

 
2.1. Age Estimation Framework 

 
Our proposed ranking approach makes intuitive improvements on the existing ones by employing 

the correlation between individual ageing patterns for determining age ranks. The generic 

processes involved in our proposed model are the major processes involved in face processing but 

with different techniques. 

 

 

 

 

 

 

 

 

 

The processes shown in figure 1 are involved in both the training and testing phases. As in most 

face processing systems, in order to improve performance, there will be need to pre-process our 

input images by first converting them to grayscale, detecting the facial part of the images and then 

cropping this facial part. Thus after pre-processing, the image is expected to contain just the face 

which is sufficient to provide the necessary facial features required for face representation. 

Feature extraction is to be carried out by Local Binary Pattern (LBP) and Active Appearance 
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Figure 1: A General Overview of the Age Ranking Framework 
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Model (AAM). LBP [22] is a powerful texture operator which is robust to illumination and 

grayscale changes, but more importantly, it extracts image features with reduced dimensionality 

and low computational time. For each pixel in an image, LBP extracts pixel information from by 

computing a binary code from its neighbouring pixels. It has found success in many face 

processing tasks including facial age estimation [23], [24]. AAM [25], known for appearance 

modeling, is an extension of the Active Shape Model (ASM) [26] which represents shape and 

contour features in a single appearance model. AAM uses annotated facial landmarks to model 

the contours/shape of the face and constructs a shape free patch of the face which it later uses to 

create a texture model. By learning the correlation between these two face models; AAM is able 

to create a single representation of the face which represents both its shape and contour. 

 

Our choice of AAM and LBP is based on the fact that they have achieved significant success in 

previous face processing tasks including facial age estimation. More importantly, we chose to use 

the two techniques as complementary techniques so that the results obtained from both techniques 

can be compared to arrive at more accurate age estimates. Due to the relatively low dimension of 

features extracted by the two techniques mentioned above (when compared to other techniques 

such as Gabor and Haar features), using them concurrently is not as expensive as one would 

expect. LBP features can be collected into histograms of length 256 or less and AAM features 

could extract 68 landmark features. Taking advantage of multi-core processors, we consider that 

the concurrent use of these techniques is worth the expected age estimation results. Our proposed 

Feature Extraction technique is explained in details in figure 2.  

 

 

 

 

 

 

 

 

 

 

 

3.2. Proposed Ranking Model 

 
Our usage of the ranking approach is based on its intuitive nature in helping to learn the 

correlation between the ages of images. The faces of two different people at the same age may not 

look completely similar, however, they possess similar characteristics common to their age; at the 

same time, the pattern of ageing of different individuals is personalized and thus different across 

different individuals. For instance three people of age 17 each; are of the same age but might 

reflect different ageing patterns. Although, they are different individuals, we expect that their 

different ageing patterns should also reflect certain traits common to their age (e.g. initial 

appearance of facial hair). Thus, inferences can be made from the correlation between individual 

ageing patterns along each age for determining the ranks of individuals and these inferences can 

be used to enhance age estimation. 

Figure 2: Feature Extraction and Selection using AAM, LBP and LARS 
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We present mathematical formulations for our proposed model below 

 

Definition 1: Given a set of image, X and an outcome space, Q (in this case, age labels) and a set 

of ranks R, we have the following definitions: 

 

X = (x1j,x2j,…,xnm | Ʌ j = 1, 2,…,m)        (1) 

Q = {q1j, q2j, …, qnm | Ʌ qi > qi-1, j = 1, 2,…,m }      (2) 

R = {r1j, r2j, …, rnm |  Ʌ  rij > ri-1j, j=1,2,…,m; r є ℝ }     (3) 

Definition 2: For the given definition above, we wish to find a space of ranking functions, H, a 

mapping of images to ranks, such that each h(.) є H is a function which appropriately ranks X. 

 

H = {h(.)}          (4) 

h(.) = X→R          (5) 

We expect h(.) to construct R such that there is a one-to-one mapping between Q and R and that 

each rank in R appropriately represents its corresponding age in Q. However, the age labels in Q 

are integers while the ranks are real values in order to capture the variations in ageing patterns 

along ages (this is further illustrated in the following definitions and equations). 

 

Yang et al. [18], Chang et al. [19] and Cao et al. [20] all used pair-wise ranks of images for 

comparison with test images. This reduces the substantiality of information available for making 

inferences about the age to be estimated. Cao et al [20] ranked images using a reference set 

containing ordinal and consistent pairs (images of different individuals of the same age), 

however, they abandoned the ageing pattern of individuals, an important factor which facilitated 

the success of many age estimation algorithms [9],[10],[11],[1]. Although, they provided a 

variation between the ranks of images of different individuals for each age, the use of images of 

the same individual in our model allows us to properly represent this variation as a true difference 

between the ages of individuals. 

 

For our proposed model, we use a subset of the image database as a reference set (with known 

ranks) and organize it such that individual ageing patterns can be learned along different ages. In 

organizing our reference set, we maintain sets of images of the same individuals at different ages 

for learning the ageing pattern of each individual and arrange these sets in a dimension that 

groups together, images of different individuals at the same ages. Thus we have a matrix of 

images with the rows corresponding to images of different individuals at the same ages and the 

columns corresponding to the images of the same individuals at different ages, the images in our 

reference set are labeled with ground-truth ages so that their age ranks are pre-determined relative 

to their true ages. Mathematically, 

 

Definition 3: suppose we have a particular individual x, with n different images and an 

arbitrary individual w; then for j such individuals and a function age(.) which returns the age of 

an individual, we define the set χ as follows; 

 

χ = {xi, j | age(xi, j) > age(xi-1, j) and age(xi, j) =  

age(wi, j-1), Ʌ  i = 1,2,..,n, j= 1,2,…,m; x ≠ w}        (6) 

For individuals with missing images at certain ages, in order to complement the row of same 

ages, we fix in images of other individuals belonging to the same age and gender. 
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Definition 3: Thus, for a test image xi,j such that age(xi,j) is greater than an age k (chosen 

arbitrarily) in Q, R is divided into two subsets, 

 

R1 = {ri,j, qi+1,j,…,qkm }          (7) 

R2 = {qk+1,j, qk+2,j,…,qnm}          (8) 

Where R1 is the set of ageranks less than or equal to the rank of the test image xi,j and R2 is the set 

of ageranks greater than the rank of the test image. 

 

 

 

 

 

 

 

 

 

 

 

Subsequently, the problem is reduced to a binary classification where we only need to compare 

the rank of xi,j with the ranks of images in either R1 or R2 and by an iteration of such binary 

classifications, we are able to further reduce each sub-problem to a smaller one until the 

appropriate rank of xi,j is found. 

 

Inspired by the work of Li and Lin [27] in stating an equation for calculating the rank of a data set 

in an ordinal regression problem for the purpose of binary classification, we define our ranking 

equations. For each test image in X, we compare the rank of the image against the ranks in R 

(comparing against d different individuals in each age, and d is less than the number of images in 

an age) until the test image is found to be less than or equal to the range of ranks of a particular 

row (of ages) i; we then compare along rows i-1, i and i+1 until the rank of the test image 

satisfactorily falls within a range of ranks in one of these ages. The essence of this kind of 

comparison is to cater for the relative correlation in between neighbouring ages and to ascertain 

that an image truly belongs to the age to which it is ranked. 

 

Definition 4: For each image xij, and an arbitrarily chosen k, we assume a rank comparison 

function f(xij,k),  a threshold d and then calculate its rank as follows: 

 

           (9) 

 

Figure 3: Proposed Correlated Ageing Pattern Ranking Model 
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Where 

f(xij,k)= Φ if the rank of xij is greater than k and 0 otherwise (Φ=1/m) 

 

g(.) = 1 if the inner summation is equal to (d×Φ) ± ϕ otherwise it is equal to 0. (In our model, we 

chose Φ=0.1 and ϕ=0.05 with an assumption that there are 10 images for each age). 

 

Thus, the age ranks of images for each age differs from those of images in neighboring ages by an 

approximate value of 1 while images within the same age differ in rank by 0.1. Thus individual 

ageing patterns are reflected within each age but the ranks of images in each age are still kept 

within the same range. 

 

As shown in our model in figure 3, images surrounded with dashed lines are substituted for those 

individuals whose images for that particular age are not present in the dataset used. As mentioned 

earlier, we used images of the same gender. Each rij denotes the rank of the labeled image. This 

approach is superior to the ranking models discussed earlier in that it utilizes the correlation 

between aging patterns across different individuals alongside the discriminative features within 

the same age while maintaining relative similarities within the ages. For the purpose of 

illustration, we have used images from the popular FG-NET [28] database and our locally 

collected FAGE database in constructing the model shown in figure 3. FG-NET is a database of 

1002 images of 82 different individuals with ages ranging from 0-69 years. Due to the wide range 

of age separated images for each individual in this database, we considered it suitable for use with 

our proposed model. 

 

3. CONCLUSION 

 
The intuitive approach used to construct our ranking model in this paper is based on the fact that, 

if the rank of facial images can be determined relative to the ages to which they belong, we can 

provide inferences for estimating exact ages more accurately. Thus, we have embedded in our 

model, a correlation between individual ageing patterns as well as a relative discrimination 

between ages. With the use of AAM and LBP for feature extraction, age estimation algorithms 

will find our proposed model applicable for estimating ages more accurately by using the age 

estimates of features extracted using both techniques to determine a more exact age estimate for a 

given image. With the intuition employed in our proposed model, it will be possible to reduce the 

Mean Absolute Error (MAE) and increase the Cumulative Score (CS) (the two mostly used 

benchmarks in age estimation) of most age estimation algorithms thus producing age estimation 

algorithms that compare favourably with (or even performs better than) human prediction and the 

state-of-the-art algorithms in age estimation. 
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