

David C. Wyld et al. (Eds) : CCSIT, SIPP, AISC, PDCTA, NLP - 2014

pp. 441–448, 2014. © CS & IT-CSCP 2014 DOI : 10.5121/csit.2014.4238

REAL TIME FACE DETECTION ON GPU

USING OPENCL

Narmada Naik
1
 and Dr Rathna.G.N

2

1,2
Department of Electrical Engineering

Indian Institute of science

Bangalore-560012

India
1nnreema22@gmail.com

2rathna@ee.iisc.ernet.in

ABSTRACT

This paper presents a novel approach for real time face detection using heterogeneous

computing. The algorithm uses local binary pattern (LBP) as feature vector for face detection.

OpenCL is used to accelerate the code using GPU[1]. Illuminance invariance is achieved using

gamma correction and Difference of Gaussian(DOG) to make the algorithm robust against

varying lighting conditions. This implementation is compared with previous parallel

implementation and is found to perform faster.

KEYWORDS

Heterogeneous Computing, OpenCL, Image Processing, LBP, Histogram, Classifier.

1. INTRODUCTION

Face detection finds its application in various research discipline such as image processing,

computer vision, pattern recognition. Face detection can be done using many algorithms such as

Eigen faces, Fisher faces, Local Binary Pattern etc. Applications of human face detection

algorithms, such as computer assisted surveillance, need to be in real time. These algorithms,

being highly parallel, are more suited for platforms like GPU which have an inherent parallel

execution architecture and higher computing capacity compared to CPU. In this paper we have

implemented a parallelized variant of LBP on GPU using OpenCL, a heterogeneous computing

platform.

In this paper Face detection is done based on efficient grey scale invariant texture Local Binary

Pattern (LBP) Histogram, which is parallelized and processed by using Heterogeneous CPU-GPU

based platform. The work is based on converting colored images(captured from camera) to grey

scale, preprocessing the image and extraction of LBP feature and its histogram on GPU to reduce

the computation time. LBP operator is a computationally simple and efficient texture analysis

operator which labels the pixels of an image by thresholding the neighbourhood of each pixel and

considers the result as a binary number. In real time application the success of LBP is due to its

uncomplicated computation and robustness due to illumination variations [2].

Rest of the paper is organized into five more sections. Section 2 gives a brief overview about

Heterogeneous computing and OpenCL. In Section 3, we have discussed the LBP algorithm.

442 Computer Science & Information Technology (CS & IT)

Section 4 discusses the implementation details on GPU. Experimental results are shown in section

5. In Section 6, we give a brief conclusion of the paper.

2. HETEROGENEOUS COMPUTING WITH OPENCL

OpenCL[3] is an industry standard writing parallel programs targeting heterogeneous platforms.

In this section a brief overview of heterogeneous computing with OpenCL programming model is

given. Programming model of OpenCL is classified into 4 models[4] Platform model, Execution

model, Memory model, Programming model.

2.1. platform model

The OpenCL platform model defines a high-level representation of any heterogeneous platform

used with OpenCL. This model is shown in the Fig 1. The host can be connected to one or more

OpenCL devices(DSP, FPGA, GPU, CPU etc), the device is where the kernel execute. OpenCL

devices are further divided into compute units which are further divided into processing

elements(PEs), and computation occurs in this PEs. Each PEs is used to execute an SIMD.

Fig. 1. OpenCL Platform Model .

2.2. Execution model

OpenCL execution consist of two parts - host program and collection of kernels. OpenCL

abstracts away the exact steps for processing of kernel on various platforms like CPU, GPU etc.

Kernels execute on OpenCL devices, they are simple functions that transforms input memory

object into output memory objects. OpenCL defines two types of kernel, OpenCL kernels and

Native kernels.

Execution of kernel on a OpenCL device:

1. Kernel is defined in the host,

2. Host issues a command for execution of kernel on OpenCL device,

3. As a result OpenCL runtime creates an index space.

4. An instance of the kernel is called work item, which is defined by the coordinates in the

indexspace (NDRange) as shown in Fig 2.

Computer Science & Information Technology (CS & IT) 443

Fig. 2. Block diagram of NDRange.

2.3. Memory model

OpenCL defines two types of memory objects, buffer objects and image objects. Buffer object is

a contiguous block of memory made available to the kernel, whereas image buffers are restricted

to holding images. To use the image buffer format OpenCL device should support it. In this paper

buffer object is used for face detection. OpenCL memory model defines five memory region:

• Host memory: This memory is visible to host only.

• Global memory: This memory region permits read/write to all work items in all the

work groups.

• Local memory: This memory region, local to the work group, can be accessed by work

items within the work group.

• Constant memory: This region of global memory remains constant during execution of

the kernel. Workitems have read only access to these objects.

• Private memory: This memory region is private to a work item i.e variables defined

private in one work item are not visible to the other work item. Block diagram of memory

model is shown in Fig 3.

Fig. 3. Block diagram for memory model

444 Computer Science & Information Technology (CS & IT)

2.4. Programming model

Programming model is where the programmer will parallelize the algorithm. OpenCL is designed

both for data and task parallelism. In this paper we have used data parallelism which will be

discussed in section 4.

 Basic work flow of an application in OpenCL frame work is shown below in block diagram Fig.4

FIG. 4. WORK FLOW DIAGRAM OF OPENCL.

Here we start with the host program that defines the context. The context contains two OpenCL

devices, a CPU and a GPU. Next the command queue is defined, one for GPU and the other for

CPU. Host program then defines the program object to compile and generate the kernel object

both for OpenCL devices. After that host program defines the memory object required by the

program and maps them to the arguments of the kernel. Finally the host program enqueue the

commands to the command queue to execute the kernels and then the results are read back.

3. OVERVIEW OF THE ALGORITHM

In this section it is discussed about how the image is captured from camera and converted to grey

scale used gamma operation and DOG operation in preprocessing[1] and LBP feature extraction,

Histogram and classifier.

3.1 Face detection using LBP:

LBP operator labels the pixel by thresholding the 3x3 neighbourhood of each pixel with the

center value. This generic formulation of the operator puts no limitations to the size of the

neighbourhood [5]. Here each pixel is compared to its 8 neighbours (on its left-top, left-middle,

left bottom, right-top, right-middle, right-bottom) followed in clockwise direction. Wherever the

center pixel value is greater than the neighbour write 1 to the corresponding neighbour pixel

otherwise write 0. This gives an 8-digit binary number as shown in Fig.5. This 8-digit binary

number is then converted to a decimal.

Computer Science & Information Technology (CS & IT) 445

Fig. 5. LPB Thresholding

After getting the LBP of the block , histogram of each block is calculated in parallel and is

concatenated as shown in Fig.6. This gives the feature vector used for training the classifier. LBP

operator[6] is defined as

where gp is the intensity of the image at the pth sample point where p is the total number of the

sample point at a radius of R denoted by(P,R). The P spaced sampling points of the window are

used to calculate the difference between center gc and its surrounding pixel[5]. The feature vector

of the image obtained after cascading the histogram is,

where k is an integer to represent the sub histogram that is obtained from each block k=1,2...K. K

is the total no of histograms ,and f(x,y) = where f(x; y) is the LBP

calculated value at pixel (x,y).

Fig. 6. LBP in Face detection

446 Computer Science & Information Technology (CS & IT)

3.2. classifier

There are many methods to determine the dissimilarity between the LBP pattern, here chi-square

method is used and further work is going on with SVM for training and classifying the LBP

feature. The chi-square distance used to measure the dissimilarity between two LBP images S and

M is given by

where L is the length of the feature vector of the image and Sx and Mx are respectively the sample

and model image in the respective bin.

4. IMPLEMENTATION

The goal of this paper is to implement LBP algorithm on a cpu, gpu based heterogeneous

platform using OpenCL, to reduce computation time. The process of LBP feature extraction and

histogram calculation from the image is computationally expensive (N2xW2, where NxN is size of

image and WxW is size of LBP block) and it is easy to figure out that the extraction in different

parts are independent as discussed in section 3. Thus it can be efficiently parallelized [7].

 For real time implementation, first the image is captured using OpenCV and is converted to a

grey scale image. Then preprocessing of the image is done. To figure out different features in the

image, various algorithms are implemented on the image. For parallel processing of the

algorithm, the image is subdivided into smaller parts. In this case the image is divided into 16 x

16 pixels blocks. The task of calculating LBP for each block is given to work items. So there are

different work items processing different blocks in parallel. Each work item processes 256 pixels

and different work items work in parallel, reducing the processing time up to a significant extent.

So, to calculate the LBP of 16x16 pixels blocks the image is converted to an one dimensional

array. A global reference of the image is used by each work item for creating one 18 x 18 two

dimensional matrix to find out the LBP for each block. From the 18 x 18 matrix, LBP is

calculated as discussed in section 3 for 16x16 pixels not considering the boundary pixel of 18 x

18 matrix . Afterwards the calculated values for LBP are processed to form a histogram ranging

from 0 to 255. Each work item formulates a histogram accordingly for one block and the different

histograms are cascaded to form the actual histogram for the complete image in order to get the

LBP feature vector as shown in Fig.7. This feature vector is then classified using nearest

neighbourhood method.

Fig. 7. Histogram Calculation on GPU

Computer Science & Information Technology (CS & IT) 447

The Block Diagram Of The Overall Method Is Shown In Fig.8

Fig. 8. Block diagram of the overall method

5. RESULTS

In the proposed paper we have calculated each block in different compute units. Since the

calculation of histogram depends on all the pixels within a block thus it is better to do the whole

calculation within one compute unit. Additionally, the amount of computation per compute unit

shouldn’t be too small otherwise the overhead associated with managing a compute unit will be

more than the actual computation. Since the whole computation is done in the GPU and only the

input image and the final histogram are transferred between the CPU and GPU thus overheads

associated with data transfer are minimal. As a result the computational time is 20 ms. The

performance table of the implementation is shown in Table 1.

Table 1. Performance Table

Input Resolution 640x480

Sub Histograms 256

CPU(i5 3rd generation) 109 ms

AMD(7670M) 20 ms

Table 2. Comparison With Previous Work

 PREVIOUS WORK[8] OUR WORK

Image size 512x512 640x480

Sub Histograms 256 256

Feature Extraction 36.3 ms 20 ms

Compared to previous work[8], the image is grabbed from camera and processed in real time. As

can be seen from TABLE 2, computational time for our implementation is less. Performance of

the proposed paper is tested on AMD 7670M GPU, i5 3rd generation CPU based system. Total

time for feature extraction on CPU was 108 ms and on GPU was 20 ms for 640X480 resolution

input image. Thus we get a 5x improvement in speed using GPU implementation.

448 Computer Science & Information Technology (CS & IT)

6. CONCLUSION

In this paper real time face detection using LBP feature extraction is done and is classified using

nearest neighbourhood method. We have parallelized the existing LBP algorithm to make it

suitable for implementation on SIMD architecture such as GPGPU. Performance gain has been

achieved over previous implementations.

REFERENCES

[1] Xiaoyang Tan; Triggs, B., ”Enhanced Local Texture Feature Sets for Face Recognition Under

Difficult Lighting Conditions,” Image Processing, IEEE Transactions on , vol.19, no.6, pp.1635,1650,

June 2010 doi: 10.1109/TIP.2010.2042645

[2] Computational Imaging and Vision, Vol. 40 Pietikinen, M., Hadid, A.,Zhao, G., Ahonen, T. 2011,

XVI, 212 p.

[3] KHRONOS:OpenCLoverviewwebpage, http://www.khronos.org/opencl/,2009.

[4] Aaftab Munshi, Benedict Gaster, Timothy G. Mattson, James Fung, Dan Ginsburg ISBN: 978-0-3217

4964-2

[5] TY - JOUR T1 - Facial expression recognition based on Local Binary Patterns: A comprehensive

study JO - Image and Vision Computing VL - 27 IS - 6 SP - 803 EP - 816 PY - 2009/5/4/ T2 - AU -

Shan, Caifeng AU - Gong, Shaogang AU - McOwan, Peter W. SN - 0262-8856 DO

http://dx.doi.org/10.1016/j.imavis.2008.08.005

UR-http://www.sciencedirect.com/science/article/pii/S0262885608001844 KW - Facial expression

recognition KW - Local Binary Patterns KW - Support vector machine KW - Adaboost KW – Linear

discriminant analysis KW - Linear programming ER

[6] Caifeng Shan; Shaogang Gong; McOwan, Peter W., ”Robust facial expression recognition using local

binary patterns,” Image Processing, 2005. ICIP 2005. IEEE International Conference on , vol.2, no.,

pp.II,370-3, 11-14 Sept. 2005 doi: 10.1109/ICIP.2005.1530069

[7] Miguel Bordallo Lpez ; Henri Nyknen ; Jari Hannuksela ; Olli Silvn and Markku Vehvilinen

”Accelerating image recognition on mobile devices using GPGPU”, Proc. SPIE 7872, Parallel

Processing for Imaging Applications, 78720R (January 25, 2011); doi:10.1117/12.872860;

http://dx.doi.org/10.1117/12.872860

[8] Parallel Implementation of LBP Based Face recognition on GPU Using OpenCL Dwith, C.Y.N. ;

Rathna, G.N. Parallel and Distributed Computing, Applications and Technologies (PDCAT), 2012

13th International Conference on Digital Object Identifier: 10.1109/PDCAT.2012.107 Publication

Year: 2012 , Page(s): 755 - 760

