

David C. Wyld et al. (Eds) : CCSIT, SIPP, AISC, PDCTA, NLP - 2014

pp. 139–151, 2014. © CS & IT-CSCP 2014 DOI : 10.5121/csit.2014.4212

AN EXPLICIT TRUST MODEL TOWARDS

BETTER SYSTEM SECURITY

Orhio Mark Creado

1
, Bala Srinivasan

2
, Phu Dung Le

3
, and Jefferson Tan

4

1
Caulfield School of Information Technology, Monash University,

Melbourne, Victoria, Australia
mark.creado@monash.edu

2
Clayton School of Information Technology, Monash University,

Melbourne, Victoria, Australia
srini@monash.edu

3
Caulfield School of Information Technology, Monash University,

Melbourne, Victoria, Australia
phu.dung.le@monash.edu

4
IBM Research – Australia, Melbourne, Victoria, Australia

jeffetan@au1.ibm.com

ABSTRACT

Trust is an absolute necessity for digital communications; but is often viewed as an implicit

singular entity. The use of the internet as the primary vehicle for information exchange has

made accountability and verifiability of system code almost obsolete. This paper proposes a

novel approach towards enforcing system security by requiring the explicit definition of trust for

all operating code. By identifying the various classes and levels of trust required within a

computing system; trust is defined as a combination of individual characteristics. Trust is then

represented as a calculable metric obtained through the collective enforcement of each of these

characteristics to varying degrees. System Security is achieved by facilitating trust to be a

constantly evolving aspect for each operating code segment capable of getting stronger or

weaker over time.

KEYWORDS

System Security, Trusted Computing, Trust Framework .

1. INTRODUCTION

Trust is an implicit commodity in the world today. We inherently trust our financial institutions,

service providers, and even other motorists without any second thought. However, although

synonymous, being trusted and being trustworthy are very different [1]. Trust as a human

construct is extremely pliable; but this is not the same case when considering computing systems.

Computing systems execute code that performs operations which produce usable outputs. Each

instruction can be considered to be a singular operation. Therefore, a computing system can only

be trusted and secure depending on the next instruction it executes. So how can a computing

system rely on securing itself from itself? [2].

In this paper we propose a novel concept to alleviate the ambiguity of trust levels associated with

executing code so as to ensure better overall system security. To achieve this goal, we primarily

140 Computer Science & Information Technology (CS & IT)

define trust in terms of a computing architecture; wherein, trust is no longer defined as a singular

attribute but instead as a combination of characteristics which can collectively determine the

overall trust level for any operating code. The aim behind this paradigm is to represent trust as an

evolving concept within a computing system capable of growing stronger or weaker over time

based on past operating performance. In our opinion, this is a significant step away from current

models which advocate trust to be a binary outcome based on superficial constructs such as a

valid username and password.

The rest of this paper is structured as follows. Section 2 briefly covers some of the relevant

literature in the area. Section 3 defines the explicit trust model architecture along with its main

component - the trust engine, outlining the various trust categories and trust levels within each

category and concludes with a real world application of the proposed model's theory. Section 4

evaluates our proposal with a formal analysis of security vs. performance and provides some real

world tangibility by using an asset centric threat model documenting some of the attacks pertinent

to system security and how the proposed model aims at resolving them. Section 5 concludes our

work and provides directions for future research.

2. BACKGROUND

Trust, as a concept, traces its roots back as a psychological and sociological construct. In

computing, its definition cannot be applied completely; as machines tend to be programmatic

intelligence, the task of quantifying malicious intent becomes more challenging [3]. Bevan [4]

proposes that with human-computer interactions there remain many variations of trust and trust

levels; but not all of these levels can be accounted for in human-human interactions. Yet,

computing systems have aimed to satisfy only a few of these variations at any one time, so how

can security be achieved if only partial trust can be achieved?

Trust in computing has been an active area of research for a very long time. One of the most

prominent implementations of trusted computing has been the Trusted Computing Group's (TCG)

Trusted Platform Module (TPM) [5,6]; which used a cryptographically secure hardware to

perform trusted software operations. A well-known implementation of this hardware platform

was observed in Microsoft's Next Generation Secure Computing Base (NGSCB) [7-11]. The

drawback of this approach was that it tried to facilitate for a trusted area within an otherwise

insecure environment.

Alternative solutions include the implementation of microkernels as proposed by Setapa [12], and

Heiser et. al. [13]. A good example of a hybrid approach between hardware and software policy

has been proposed in the work of Nie et. al. [14]. The drawback with some of these approaches is

that microkernels can be vulnerable during the boot phase of a computing system, and relying on

hardware based solutions to implement security models is equivalent to no security if it is

possible to compromise the actual hardware [15].

Trust can be defined as a concept with multiple characters [16], the challenge of implementing

trust in computing has been the subjectiveness of the term ‘trust’ in relation to the user. This

means that any operating code executed on a system can behave differently at different times

depending on the user, the operating environment variables, and the desired outcome being

sought. The determination of being trustable is still an open concern with human interactions, so

why should computing systems be any different? Real world implementations aren't quite as

simplistic, so as to be able to always consistency and accurately reduce the outcome of trust and

security to a binary result. It isn't feasible, or possible, to account for all the possible scenarios

which must have trusted operations defined. Modern day computing systems and their operations

are never static, so why should the definition of trusted operations and trust in computing be?

Computer Science & Information Technology (CS & IT) 141

3. EXPLICIT TRUST MODEL

Trust within operations in today's digital age is of paramount importance. Trust enforcing

mechanisms with binary outcomes have become a single point of failure leading to the

exploitation or compromise of a system. This section elaborates our proposal for explicit trust.

3.1 Security as a Combination of Characteristics

The more trusted the executing operations within a computing system, the more secure is the

computing system. With this analogy, the explicit trust model defines a set of characteristics, each

with its own set of properties, which can collectively determine the trust associated with all

operating code within a computing system. It is important to note that although achieving

absolute trust is not possible, it is quite possible to achieve near absolute trust through the correct

enforcement of each of the identified characteristics and properties. The defined characteristics

are as follows:

• Invulnerable

Invulnerability can be achieved through the reduction in the number of exploitable errors

in operating code. This can be practically envisioned through the definition of secure

programming languages, through secure coding practices, and through rigorous

application testing. Furthermore, all code should be implicitly defined to handle all errors

and be responsible for proper allocation and deallocation of resources. Properties include:

o Defined Bounds: Ensuring that all input parameters comply with expected inputs,

errors which exploit programming language vulnerabilities for input data types

can be prevented.

o Handled Exceptions: Ensuring that all output parameters produced comply with

expected outputs, errors which exploit programming language vulnerabilities for

output handling can be prevented.

• Integrity

Integrity can be achieved by having accountability standards in place for all operating

code. As all usable code serves a specific purpose and has an author; a publicly verifiable

metric, such as digital signatures, associated with the operating code should be provided

so as to ascertain its ownership and ensure its authenticity to perform its intended

purpose. Properties include:

o Accountability: Ensuring that all operating code must have a valid and publicly

verifiable digital signature which can uniquely identify the owner/author of that

operating code and can also uniquely identify the integrity of the code.

• Verification

Being verified can be achieved through rigorous state management by the operating

system. Virtualization technology employs similar aspects which facilitate the

management of system state. By preventing unauthorized changes in system states,

undesirable states of operation arising from unexpected exceptions in operating code can

be prevented. Properties include:

o Managed States: Ensures that all operations executing one instruction at a time do

not forget the operating state of the calling instruction/process parent thereby

ensuring the correct completion of instructions from start to finish.

142 Computer Science & Information Technology (CS & IT)

• Trustworthy

Being trustworthy can be achieved through the proper definition of a calculable trust

metric associated with any operating code. Initially assigned based on the credibility of

its owner and post that, based on historical performance based on correct execution

calculable via deterministic trust algorithms. Properties include:

o Trust Levels: Ensures that all operating code must have a defined trust level

which indicates its level of trustworthiness to the system and upon each

execution is recalculated and modified accordingly based on the outcome of that

execution.

3.2 Identifying Trust Categories and Trust Levels

To facilitate for evolving trust, the proposed model also defines a set of trust categories and

underlying trust levels associated with each category. The purpose of these categories is to allow

the trustworthiness associated with all operating code to either increase or decrease based on

historical performance; thereby implicating higher trustworthiness for correct successful

operations and lower trustworthiness for incorrect unsuccessful operations. The following trust

categories and underlying trust levels have been defined:

• Functional Trust

This category outlines the basic trust requirements for all operations within a computing

system. All operating system code, user application code, and network services code must

have a trust level associated with this category. To allow for application scalability, the

standardized constructs which outline the fundamental operations for each application

can be application specific. Defines the following trust levels:

o Operational Trust - Is required for system level operations, such as System-

system communication and high priority OS operations.

o Verifiable Trust - Is the basic requirement for all operational code executed by

the system or user to be verifiable and accountable.

o Denied Trust - Is defined for operational components which are not verifiable and

accountable; such as malicious operations aimed at exploiting or compromising

the computing system, thereby completely preventing their execution on the

computing system.

• Transactional Trust

This category is defined for operational components to constantly evolve their trust levels

by serving as an intermediary between two functional trust levels. Trust levels under this

category are deterministically calculable based on past historical operations over time.

Defines the following trust levels:

o Transitional Trust - Intermediate between verifiable and operational trust,

facilitates evolution of trust for operations with good historical performance.

o Untrustable Trust - Intermediate between verifiable and denied trust, facilitates

evolution of trust for operations with detrimental historical performance.

However, to support versatility and scalability, this trust level allows operational

components which do not meet all the verification and accountability standards,

but without significant operating history to deny execution, to execute within a

constrained operating environment.

Computer Science & Information Technology (CS & IT) 143

3.3 Defining the Trust Architecture

This section aims to integrate the defined concepts of the proposed security characteristics in

conjunction with the proposed trust levels so as to define the explicit trust model's trust

architecture. Traditionally computing systems allow for three types of execution modes: System,

User, and Guest. Whilst beneficial, these modes do not define any level of granularity between

each and often overlap based on the nature of operations. The proposed model advocates the

requirement for a trust level to be associated with the operating code rather than the execution

mode of the computing system.

Figure 1. Explicit Trust Model Architecture

Fig. 1 provides a conceptual definition of the proposed trust architecture. The architecture

mandates that each operation must be able to satisfy each of the security characteristics by

fulfilling their underlying properties. In a realistic scenario these characteristics could be satisfied

only to a certain degree and therefore would allow the deterministic calculation of a trust level on

a scale from no trust to absolute trust. For this purpose, the architecture defines a trust engine

component which acts as an intermediary and facilitates the calculation and determination of the

associated trust levels with each operation prior to execution. The last stage of the process is the

execution of operating code under one of the execution modes facilitated by the operating system.

Figure 2. Trust Engine Architecture

The proposed trust engine is the most integral part of the explicit trust model, and Fig. 2 outlines

a conceptual definition of the explicit trust model's trust engine architecture. The proposed

144 Computer Science & Information Technology (CS & IT)

workings of the trust engine will be defined; its practical implementation, at this stage, is out of

scope of this paper.

The trust engine serves as the common link which integrates the various security characteristics

with the defined trust levels applicable to operating code. This is facilitated by specifying two

calculable trust metrics for each block of operating code; the first being its functional trust level

and the second being its transactional trust level. Prior to executing any operating code the trust

engine facilitates the following process:

• Verifies its associated functional trust level.

• Verifies its associated integrity signature.

• Determines operating mode and passes instructions for execution.

• On completion of execution, it verifies the state management registry to ensure correct

execution.

• Depending on execution outcome, it updates the operation history registry.

• Executes the trust algorithm to deterministically calculate a new transactional trust level

based on the operational history.

• Lastly, updates the operating code with a new functional and/or transactional trust level

metric.

We now define the various components of the trust engine architecture which facilitate the inner

working process of the trust engine. The included components are:

• Operating Code - Defines the basic set of operating instructions which need to be

executed on a computing system.

• Trust Algorithm - Deterministic algorithm which takes into account the number of

historical executions, correct executions, incorrect executions, owner trust metric, and

other key inputs to determine a trust metric for any operating code.

• Standardized Constructs - Defined as an optional customizable add on to the model which

would facilitate user or application specific trust requirements.

• Integrity Verification - Verifies the integrity signature of the operating code against the

hash of the operating code and the owner's public key.

• Operational History - This registry stores aggregated historical operations for all

operating code resident within the computing system serving as input to the trust

algorithm's calculation.

• State Management - This registry monitors the execution of processes and forking of

parent processes to ensure desirable states of operation and complete execution of

instructions from start to finish.

• CPU - Facilitates for the processing and execution of operating code instructions; and

accepts required inputs and produces any applicable outputs.

3.4 Integrating The Explicit Trust Model

This section aims to further the readers understanding of a possible real world application of the

explicit trust model. Fig. 3 illustrates the step by step process of executing operating code based

on the associated trust level.

Computer Science & Information Technology (CS & IT) 145

Figure 3. Operational Trust Levels

As observed in Fig. 3, all operations within a computing system can be reduced to operating code

making the explicit trust model universally applicable to all operations, users, or even

components within a computing system. By associating a trust level with each object it facilitates

for a model whereby past operations dictate future access; thereby allowing for an evolving level

of trust.

System code is initially owned by its author/owner and once installed on the system changes

ownership to the system thereby preventing all future modifications of system level operating

code by any user. Updates to system level code would require verification of the original owner in

order to allow for modifications of system level code files. By assigning an operational trust level,

all operating code within this trust level definition would have access to all system and user level

resources.

System and user code which belongs to third parties are always defined with a verifiable trust

level provided they have correct integrity signatures. The transactional trust level allows this

operating code to evolve to an operational trust level wherein access to system resources might be

required in order to perform system level operations. The transactional trust level determines the

access to protected user resources and/or system resources.

System and user code which consistently encounter errors or detrimentally affect system state are

categorized with a denied trust level wherein all operating code with this trust level is not allowed

to be executed on the computing system. To facilitate for operating code without sufficient

operating history and/or without verification signatures the untrustable trust level allows for

execution of these instructions within a protected environment wherein system level access is

completely restricted.

4. EVALUATION

In this section we proposal a more formal evaluation of the proposed model for both security and

performance. For real world tangibility, we also provide a concise asset centric threat analysis of

the model with the emphasis on the computing system. Lastly we conclude the section with an

objective discussion of the proposed theory.

146 Computer Science & Information Technology (CS & IT)

4.1 Security vs. Performance Analysis

Let us assume that an operating code is comprised of lines of operating code, which is a total

of operations; such that

 (1)

represents the total number of operations for lines of code where

is the coefficient of the number of instructions per line of code.

Eq. (1) therefore represents the default number of instructions to be executed without any

additional security enforcing properties.

The explicit trust model calculates security of the model using a probabilistic approach due to the

inverse relationship between security and performance. We reduce both metrics to the number of

operations being performed in order to deterministically evaluate the additional overhead.

Keeping this mind we can represent the following:

 ,

(2)

where security is calculated as the probability of finding a single error in any operating code

subtracted from the probability of code execution.

Each security enforcing characteristic within the explicit trust model can further be enforced with

the addition of additional lines of code to the basic set of operating instructions. We can transform

Eq. (1) for each property to represent the total number of additional instructional overhead as

follows:

 (3)

where is the additional number of lines of code added to for property

Accounting for each of the defined characteristics within the explicit trust model, we can

transform Eq. (2) as follows:

,

 (4)

where each of the properties of Invulnerability, Integrity, Verification, and Trustworthy have been

numerically represented.

Fig. 4 outlines the trade-off between performance and security for the proposed model. The graph

depicts the deterministic curve which defines the increase in security with a slight decrease in

performance. Since all operating code must be executed in order to be functional, the depicted

graph is directly based on the number of operations irrespective of the size of the executing code;

thereby facilitating for the evaluation of the additional overhead required in terms of ascertaining

additional levels of security for the minimal trade-off in performance.

Furthermore, the evaluation methodology provides for an objective overview of a deterministic

vs. probabilistic model; due to the nature of computing systems wherein performance degradation

is the direct result of increased operations. However, lapses in security should be based on a

Computer Science & Information Technology (CS & IT) 147

probabilistic model; as the mere existence of a vulnerability does not imply exploitation without

other key factors being supportive as well.

Figure 4. Performance vs. Security Trade-off

Lastly, the proposed work allows for the determination of optimums so as to maintain the balance

between security and performance to ensure the usability of a computing system without

compromising user friendliness. Furthermore, the abstraction of security enforcing characteristics

away from the end user ensures that security does not remain as an optional add-on within a

computing system.

4.2 Asset Centric Threat Model

In this section we aim to provide the reader with some real world tangibility by proposing the

possible feasibility of the proposed model and its application towards preventing real world

threats affecting modern day computing systems.

4.2.1 Attack Process Flow

Computing systems are processing stations for data - performing operations, and producing

desired output or errors. Abstracted within this simplistic view is the attack path used to

compromise the system. All attacks must exploit specific inputs so as to compromise a system.

Figure 5 graphically outlines the perceived vs. actual process flow of an attack as it happens

within a computing system.

Figure5. Attacker's Process Flow

4.2.2 Threat Identification and Mitigation

With regards to the defined attack process flow, we isolate and outline the various interacting

component for the proliferation of trust within a computing system pertinent to our threat model:

148 Computer Science & Information Technology (CS & IT)

• Inputs - Are classified as data needing to be processed by the execution of some code.

The issuer of the data or instruction, whether internal or external, is irrelevant to the

operation and is therefore not an input.

• Outputs - Post execution of any instruction, the computing system is capable of

producing the following outputs: data, errors, or other processes.

• Attacks - The following threats, applicable to system security, have been identified:

service disruption, privilege escalation, data theft/manipulation, system corruption,

protocol exploitation.

Figure 6. Computing System Threat Model

We identify five main attacks which target computing systems specifically, and represent them in

Fig 6 to represent how they relate to our attack process flow. For conciseness we represent the

threat mitigation process for these attacks in Fig 7 without taking into account the threat trees for

each attack.

Figure 7. Explicit Trust Threat Mitigation Model

The proposed analysis segments the attack process into three stages: User, System, and Resource.

Whilst majority of the actual process might happen at the system level, most attacks target

exploiting the resource level by gaining access at the user level. The prevention of these attacks is

proposed via the means of the trust engine's trust level determination process which can

determine if each of the underlying security enforcing properties is satisfied. By defining a linear

progression of characteristics for each operation within the explicit trust model, the trust engine

facilitates for a semi-hierarchical approach towards the fulfilment of trust properties to ensure

overall system security. The following are broad definitions of these attacks and their mitigations

within the proposed model:

Computer Science & Information Technology (CS & IT) 149

• Service Disruption

Are targeted towards disrupting basic operations; examples include denial-of-service and

distributed denial-of-service. The exploitation is targeted towards the communication

protocol used and the requirement to acknowledge and respond to all incoming requests.

These attacks can be prevented by the integrity and verification properties of the explicit

trust model. By validating dual authentication and ensuring state management for all

processes these attacks can be circumvented to ensure that all systems communicating

with the server can be identified and be held accountable for their actions.

• Privilege Escalation

Are targeted towards gaining unauthorized access; an example is a buffer overflow

attack. The exploitation is targeted towards finding and exploiting coding flaws by

passing modified inputs to overwrite memory registers. These attacks can be prevented

by the invulnerability, integrity, verification, and trustworthy properties of the explicit

trust model. By ensuring that all programming code has proper error handling and

resource utilization code in place and by ensuring that all code has an identifiable owner

who can be trusted via means of a trust metric associated with the application code.

Furthermore, proper state management to ensure instructions finish in order can further

prevent these types of attacks.

• Data Theft / Manipulation

Are targeted towards stealing user data or information; examples include viruses, trojans,

spyware/malware etc. The exploitation is targeted towards covert exploitation under the

pretence of some other legitimate operation. These attacks can be prevented by the

integrity and trustworthy properties of the explicit trust model. Any operating code

through covert channels would not be signed with any integrity signature; and

furthermore, any default trust metrics associated with these would only be at the

verifiable level, which would allow only protected execution thereby thwarting any

system level exploitation.

• System Corruption

Are targeted towards rendering a system unusable; an example is bios corruption. The

exploitation is targeted towards overwriting the master boot record thereby rendering the

next start-up unable to load. These attacks can be prevented by the integrity and

trustworthy properties of the explicit trust model. Any system level changes would

require the original author's verification of the operating code. Code affecting the boot

load process would ideally be required to have vendor integrity and trustworthy metrics

assigned.

• Protocol Exploitation

Are targeted towards exploiting vulnerabilities in communication protocols; examples

include ping of death, certificate forging, session hijacking, scripting etc. The exploitation

is targeted towards system modification, disruption, or compromise. These attacks can be

prevented by the verification property of the explicit trust model. By ensuring that all

processes have a managed state of execution, any variations can be trapped and

terminated so as to prevent undesirable states of operations.

150 Computer Science & Information Technology (CS & IT)

4.3 Discussion

One of the biggest challenges in theoretical computer science is the evaluation of a proposal so as

to ascertain the viability of the idea. Our approach to resolve this has been to provide a different

perspective to the reader from a conceptual viewpoint with links to practical applications.

Although some of the proposed concepts might seem like existing open challenges in the

computing industry the proposed work targets resolving them from a more fundamental point of

view which is the underlying source of the vulnerability rather than trying to propose a fix for any

specific vulnerabilities. By adopting this approach, our goal remains to propose a model which

can be independent of the underlying platform, operating system, application, or component.

For conciseness of this paper, many proposed concepts specifically in the threat model's asset

centric approach have been condensed; nonetheless, most of these are implementable via

modifying the operating code for most commodity programs and signature verification is

currently handled by most operating systems. By reducing our proposal to the most fundamental

unit of operating code we allow for the definition of security enforcing characteristics by

modifying the existing code. The mammoth task of fixing real world systems is perhaps out of

scope of the proposed work; but the argument remains is that if we could fix existing issues we

wouldn't still have them. The very fact that vulnerabilities still exist within computing systems

points to the fact that the underlying infrastructure might need changing and although perhaps

already in the works by big vendors for the not so distant future, this paper has aimed at providing

a more conceptually sound, yet practically realisable model to further the state of secure

computing.

5. CONCLUSION

If the existing paradigms for ensuring trust and security within computing systems were adequate,

we wouldn't have as many vulnerabilities and exploitations of systems happening all over the

world. Identity theft wouldn't be an issue, man-in-the-middle attacks wouldn't exist, and financial

crime would be non-existent. However, that would be an ideal world scenario, but for now there

exists a need for our computing infrastructure to evolve to the next level rather than patch existing

technology with band-aid solutions which sometimes introduce new vulnerabilities in the process.

In this paper we have proposed a novel approach towards promoting system security by ensuring

trusted operations through the proliferation of trust explicitly. We reduce higher order systems to

the basic fundamental units of operating code so as to be able to define a linear set of properties

which collective define trust as a combination of individual characteristics, rather than viewing it

as a singular attribute. Through this approach, we define a process for the deterministic

calculation of trust levels based on the degree of satisfaction of each of the properties underlying

each of the identified characteristics. By rendering trust as a deterministic metric calculable based

on past historical performance, we facilitate for a paradigm of evolving trust within a computing

system which can evolve to grow stronger or weaker over time depending on past executions.

Furthermore, we evaluate our proposal for the trade-off between security and performance by

alleviating the ambiguity between the deterministic vs. probabilistic approach by reducing both

aspects to the number of instructions executed we are able to provide a more viable benchmark

for comparison which is logically sound.

In our opinion, there remains a large void for secure operations within computing systems with

the growing diversity of devices and platforms. Through the incorporation of the proposed model

it remains feasible to define security at the core of all operations within a computing system

rather than as an add-on aspect dependent on the user. Our plans for continued work in this area

include defining a framework for secure computing which is capable of incorporating trust as a

fundamental component of its operation. We also have plans to publish our idea of a practical

way to realize the proposed model within a computing system. Also in the works include the

Computer Science & Information Technology (CS & IT) 151

development of a deterministic trust algorithm which is capable of providing a calculable metric

as a trust level using statistical and probabilistic models based on past operational history.

REFERENCES

[1] M. Abadi, "Trusted Computing, Trusted Third Parties, and Verified Communications," in IFIP

International Federation for Information Processing. vol. 147, Y. Deswarte, F. Cuppens, S. Jajodia,

and L. Wang, Eds., ed: Springer US, 2004, pp. 290-308.

[2] S. Bratus, P. C. Johnson, A. Ramaswamy, S. W. Smith, and M. E. Locasto, "The cake is a lie:

privilege rings as a policy resource," in Proceedings of the 1st ACM workshop on Virtual machine

security, Chicago, Illinois, USA, 2009, pp. 33-38.

[3] D. Trcek, "A formal apparatus for modeling trust in computing environments," Mathematical and

Computer Modelling, vol. 49, pp. 226-233, January 2009.

[4] C. R. Bevan, "Human to Computer Trust in Urban Pervasive Computing," PhD Thesis, University of

Bath, 2011.

[5] Trusted Computing Group. (2012, 29 Nov 2012). Trusted Platform Module Specifications in Public

Review. Available:

http://www.trustedcomputinggroup.org/resources/trusted_platform_module_specifications_in_public_

review

[6] Trusted Computing Group. (2007, Dec 28). TCG Specification Architecture Overview. Available:

http://www.trustedcomputinggroup.org/files/resource_files/AC652DE1-1D09-3519-

ADA026A0C05CFAC2/TCG_1_4_Architecture_Overview.pdf

[7] M. Abadi and T. Wobber, "A Logical Account of NGSCB," in Lecture Notes in Computer Science.

vol. 3235, D. Frutos-Escrig and M. Nunez, Eds., ed: Springer Berlin Heidelberg, 2004, pp. 1-12-.

[8] Microsoft. (2003, 29 Nov 2012). NGSCB - Trusted Computing Base And Software Authentication.

Available: www.microsoft.com/resources/ngscb/documents/ngscb_tcb.doc

[9] Microsoft. (2003, 29 Nov 2012). Security Model for the Next-Generation Secure Computing Base.

Available: http://www.microsoft.com/resources/ngscb/documents/ngscb_security_model.doc

[10] Microsoft. (2003, 29 Nov 2012). NGSCB - Hardware Platform for the Next-Generation Secure

Computing Base. Available:

http://www.microsoft.com/resources/ngscb/documents/FNGSCBhardware.doc

[11] M. Peinado, Y. Chen, P. England, and J. Manferdelli, "NGSCB: A Trusted Open System," in Lecture

Notes in Computer Science. vol. 3108, H. Wang, J. Pieprzyk, and V. Varadharajan, Eds., ed: Springer

Berlin Heidelberg, 2004, pp. 86-97-.

[12] S. Setapa, M. A. M. Isa, N. Abdullah, and J. L. A. Manan, "Trusted computing based microkernel," in

Computer Applications and Industrial Electronics (ICCAIE), 2010 International Conference on DOI -

10.1109/ICCAIE.2010.5771164, 2010, pp. 1-4.

[13] G. Heiser, J. Andronick, K. Elphinstone, G. Klein, I. Kuz, and L. Ryzhyk, "The road to trustworthy

systems," in Proceedings of the fifth ACM workshop on Scalable trusted computing, Chicago,

Illinois, USA, 2010, pp. 3-10.

[14] X.-W. Nie, D.-G. Feng, J.-J. Che, and X.-P. Wang, "Design and Implementation of Security

Operating System Based on Trusted Computing," in Machine Learning and Cybernetics, 2006

International Conference on DOI - 10.1109/ICMLC.2006.258997, 2006, pp. 2776-2781.

[15] B. Parno, "Bootstrapping trust in a "trusted" platform," in Proceedings of the 3rd conference on Hot

topics in security, San Jose, CA, 2008, pp. 1-6.

[16] J.-P. Steghofer, R. Kiefhaber, K. Leichtenstern, Y. Bernard, L. Klejnowski, W. Reif, T. Ungerer, E.

Andre, J. Hahner, and C. Muller-Schloer, "Trustworthy Organic Computing Systems: Challenges and

Perspectives," in Lecture Notes in Computer Science. vol. 6407, B. Xie, J. Branke, S. M. Sadjadi, D.

Zhang, and X. Zhou, Eds., ed: Springer Berlin Heidelberg, 2010, pp. 62-76.

