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ABSTRACT 

 
This article describes the design and development ofa system for remote indoor 3D monitoring 

using an undetermined number of Microsoft® Kinect sensors. In the proposed client-server 

system, the Kinect cameras can be connected to different computers, addressing this way the 

hardware limitation of one sensor per USB controller. The reason behind this limitation is the 

high bandwidth needed by the sensor, which becomes also an issue for the distributed system 

TCP/IP communications. Since traffic volume is too high, 3D data has to be compressed before 

it can be sent over the network. The solution consists in self-coding the Kinect data into RGB 

images and then using a standard multimedia codec to compress color maps. Information from 

different sources is collected into a central client computer, where point clouds are transformed 

to reconstruct the scene in 3D. An algorithm is proposed to conveniently merge the skeletons 

detected locally by each Kinect, so that monitoring of people is robust to self and inter-user 

occlusions. Final skeletons are labeled and trajectories of every joint can be saved for event 

reconstruction or further analysis. 
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1. INTRODUCTION 

 
A system for remote people monitoring can be employed in a large amount of useful applications, 

such as those related to security and surveillance[1], human behavior analysis[2] and elderly 

people or patient health care[3][4]. Due to their significance, human body tracking and 

monitoring are study fields in computer vision that have always attracted the interest of 

researchers[5][6]. As a result, many technologies and methods have been proposed. Computer 

vision techniques are becoming increasingly sophisticated, aided by new acquisition devices and 

low-cost hardware data processing capabilities. 

 

The complexity of the proposed methods can significantly depend on the way the scene is 

acquired. An important requirement is to achieve fine human silhouette segmentation.State-of-art 

technologies are really goodat this task. Apart from the techniques that use markers attached to 

the human body, tracking operations are carried out mainly in two ways, from 2D information or 
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3D information [7][8]. On the one hand, 2D body tracking is presented as the classic solution; a 

region of interest is detected within a 2D image and processed. Because of the use of silhouettes, 

this method suffers from occlusions. On the other hand, advanced body tracking and pose 

estimation is currently being carried out by means of 3D cameras, such as binocular, Time-of-

Flight (ToF) or consumer depth-cameras like Microsoft(R) Kinect[9].The introduction of low-

cost depth sensors has pushed up the development of new systems based on robust segmentation 

and tracking of human skeletons. The number of applications built on top of depth-sensor devices 

is rapidly increasing. However, most of these new systems are aimed to track only one or two 

people thus have only direct application on videogames or human-computer interfaces.  

 

There are some limitations to address in order to build a remote space monitoring system using 

consumer depth-cameras, and only a few separate efforts have been done to address these 

limitations. Even so, those developments do not pursue building a remote monitoring system, but 

covering part of the limitations in which we are also interested for our system.On the one hand, 

Kinect devices can capture only a quite small area, covering accurately distances only up to 3.5 

meters[9]. There areproposalswhich allow to make a 3D reconstruction of spaces and objects 

using Kinect[10], but in themevery capturing device has to be connected to the same computer. 

Apart from that, these solutions cannot merge skeletonsinformation from different Kinects. The 

first limitation is significant, since only two or three devices can be connected to a single 

computer, due to the high USB bandwidth consumption of these cameras. There is another 

proposal that allows to send data over a network[11]. However, this application uses Microsoft 

SDK [9], so it only works under Windows operating system. 

 

The 3D monitoring system presented in this paper addresses these limitations and allows using an 

undetermined number of Microsoft® Kinect cameras, connected to an undetermined number of 

computers running any operating system(Windows, Linux, Mac), to monitor people in a large 

space remotely. The system codes the 3D information (point clouds representing the scene,human 

skeletons and silhouettes)acquired by each camera, so that bandwidth requirements for real-time 

monitoring are met.The information coming from different devices is synchronized. Point clouds 

are combined to reconstruct the scene in 3D and human skeletons and silhouettes information 

coming from different cameras are merged conveniently to build a system robust to self-user or 

inter-user occlusions. The proposed system uses low cost hardware and open source software 

libraries, which makes its deployment affordable for many applications under different 

circumstances. 

 

Section 2 of this paper includes a general description of the tools and methods employed to 

develop the system, Section 3 describes de proposed system, describing important details about 

the 3D information coding strategy and the algorithm proposed to merge different skeletons 

information. Section 4 describes performance evaluation tests that were conducted in order to 

measure the robustness of the system. Finally, Section 5 draws the main conclusions and 

comments on future research tasks. 

 

2. TOOLS AND METHODS 

 
2.1 Consumer depth-cameras 

 
For 3D scene acquisition, a number of devices can be used. For computer vision techniques, we 

can distinguish among passive and active cameras. The first include stereo devices, simulating the 

left and right eye in human vision:the images coming from each camera in the device are 

combined to generate a disparity map and reconstruct depth information[7]. In this category, 

some other proposals in which several passive cameras are disposed around the person or object 

to be reconstructed can be included. The second option consists in using an active device such as 
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a TOF (Time of Flight) camera or newer consumer-depth cameras like Microsoft® Kinect or 

ASUS® Xtion. Despite their high depth precision, TOF cameras are expensive and provide very 

low resolutions. On the other side, consumer depth-cameras provide resolutions starting at 

640x480 pxand 30 fps at very affordable prices. 

 

We would pay special interest to Kinect cameras, since they are the chosen devices for the 

proposed system. Microsoft® Kinect emits a structured infrared pattern of points over its field of 

view, which is then captured by a sensor and employed to estimate the depth of every projected 

point in the scene. Although Kinect was initially devised only to computer games, the interest of 

the computer vision communityrapidly made it possible to use the device for general purpose 

from a computer, even before the Microsoft® official Kinect SDK was available[9]. There is a 

wide variety of tools to work with Kinect. A commonly used framework for creating applications 

is OpenNI[12], which has been developed to be compatible with any commodity depth camera 

and, in combination with NiTE middleware, is able to automate tasks for user identifying, feature 

detection, and basic gesture recognition[13]. 

 

2.2 Data compression 

 
Consumer depth cameras generate a largevolume of data. This is an importantissue, since one of 

the objectives of the system is the transmission of this information over a network. Therefore, 

data compression is necessary before sending data to a centralcomputer. There are different ways 

to compress data. If the data to compress is not multimedia, we can use a zip encoder, which 

provides lossless compression, but generates large output data and is computationally expensive. 

For multimedia compression, there are picture encoders like jpeg, which do not use temporal 

redundancy. To compress video, there are many encoders like H.264 or VP8.These encoders are 

able to compress data taking advantage of the temporal redundancy, thus compressed information 

is suitable to send over the network. However, there are not extended codecs to compress depth 

maps yet. One type of compression codecs used for 3D images, are those used to transmit the 3D 

television signal, but they are based on the compression of two images (right and left) [14], thus 

are not useful for our system, where 3D information is directly acquired using  an active infrared 

device. 

 

2.3 CORBA  

 
A distributed application based on the client-server paradigm does not need to be developed using 

low level sockets. For the proposed system, a much more convenient approach is using a 

middleware such as TAO CORBA, a standard defined by OMG (Object Management Group). 

This middlewareallowsusinga naming service[15], that avoids the central client to know about 

theaddresses of each one of the servers. The aim of CORBA is to hide to the programmer  thelow 

level complexity algorithms for data transmissionover the network. It is object-oriented and 

supports C++, Python, Java, XML, Visual Basic, Ada, C, COBOL, CORBA-Scripting-Language, 

Lisp, PL/1, Smalltalk and C#. Besides, this middleware is chosen because it is independent of the 

programming language, so serverscould be programmed in Java and a client in C++, for example. 

It represents a clear advantage over RMI, which can only be programmed in Java. CORBA is also 

cross platform, so clients and servers can be running on different operating systems.In the 

proposed system, the servers may be running on Windowscomputers and the client in a 

Linuxcomputer or in the opposite way. 

 

2.4 PCL: Point Cloud Library 

 
PCL ‘Point Cloud Library’[16], is a C++ free open source computer vision library to work with 

3D informationthat can be used in many areas such as robotics.PCL is being developed by a 
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group of researchers and engineers from around the world. There are also many companies such 

as Toyota or Nvidiaworking to develop this powerful library [17]. The library contains algorithms 

for filtering, feature estimating, point cloud registration and segmentation. 

 

Point clouds can be obtained and stored in 3D raw data files, read from 3D models or 3D cameras 

such as Kinect. The combination of both technologies, PCL and Kinect, is very convenient for 

our purpose of monitoring a space with 3D information. The library is comprised of the following 

modules: filters, features, keypoints, registration, kdtree, octree, segmentation, simple consensus, 

surface, range image, IO, visualization, common and search. 

 

3. PROPOSED SYSTEM 

 
The proposed system key feature is the fusion of 3D information coming from multiple Kinect 

devices, including depth information and detected skeletons. This takes place under the client-

server model, where servers are computers with attacheddevices and the client is the 

centralcomputer responsible for information fusion, tracking and visualization. 

 

3.1 General description 

 
Figure 1 depicts the scheme of the proposed system. A server is a computer where one or more 

Kinect cameras are connected. The different servers, deployed in a remote space are responsible 

of capturing the information coming from different regions of the scene. This information is 

conveniently processed and then sent to a system central computer. The large amount of 

information acquired by Kinect devices has to be compressed using different strategies before it 

can be sent over the network. The central client is in charged of reconstructing the remote space 

in 3D using PCL library and includes a robust algorithm for multiple detected skeletons merging. 

The computer interface can be used to monitor the scene in 3D in real time, label people within it 

and record specific users movements for further analysis[18] The system is fully scalable to any 

number of servers and clients, thus any number of acquiring devices and locations. 

 

 

Figure 1.General scheme of the proposed system. 
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3.2 Data acquisition 

 
Kinect devices present certain limitations. First, its view range covers depth precisely only 

between 0.5 m and 3.5 m[9].  

 

For this reason, one of the motivations of our system is to expand the covered view by adding 

several Kinects to the scenario. To add more Kinect devices to the scene, the naïve solution is to 

try to connect multiple cameras to the same computer. However, due to the large volume of data 

generated by each camera, a USB controller is needed to handle the bandwidth emitted by each 

one. As a consequence, that is not a valid solution, since most computers only support a limited 

number of USB controllers, usually two or three.The solution adopted for our system was to 

develop a distributed application with multiple cameras connected to multiple computers. In such 

a configuration, another important issue has to be taken into account. The infrared pattern emitted 

by different Kinects can interfere with each other, causing ‘holes’ in the acquired point clouds. 

Therefore, we must be careful in the placement of the devices and avoid placing a camera right in 

front of other one. 

 

The data provided by each Kinect in which we are interested in are: a three-channel RGB imageof 

the scene, captured at a resolution of 640x480 px; a depth map, which is a texture of the same 

resolution in which each pixel takes a value that indicates the distance between the infrared 

pattern and the sensor; a texture of user labels with same resolution, in which each pixel takes the 

value of the user id in front of the camera or a zero value; and the skeletons of the users in the 

scene, which are formed by joints representing the parts of the body (head, elbow, shoulders …) 

andincludeboth xyz position and rotation from an initial pose position. 

 

3.3 Data coding 

 
Before the information captured by the remote devices can be sent, it has to be encoded. Kinect 

data to be processed includes RGB images, depth maps, user labels and skeleton joints.Skeleton 

joints information is sent without any compression, since the volume of data needed to store and 

transmit the position of all the joints is negligible compared to the volume of image or depth 

information. 

 

To encode the RGB image we use a video compressor. It would be meaningless to use an image 

codec such as JPEG, since it only uses spatial information at the time of compression and thus the 

bit rate needed is much higher. For video compression, the proposed system uses the cross-

platform library FFMPEG, which provides many audio and video codecs. The RGB image 

compression is done using the VP8 codec developed by Google TM [19] that needs a YUV 420 

image format. Although VP8 codec introduces quality losses during compression and 

decompression, its balance between final quality and performance makes itadequate for our 

purposes. Additionally, the loss in quality remains quite low and the human eyes, acting as filters, 

are note able to appreciate it. 

 

As it has been commented before, there is no compression codec to encode depth or a 

combination of RGB and depth information. In the proposed system, the compression of the 

depthmap has to be done in atricky way, based on the scheme proposed by Pece[20]. Basically, 

one depth channel has to be converted into a three-channel image, and then a specific codec H264 

is used to compress the result. The H264 codec is more computationally expensive than VP8 and 

it also needs more bandwidth. However, the final results obtained for the particular case of depth-

information are much better than using VP8. 
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Finally, for labels codification, the chosen codec was VP8. Using this codec, quality losses that 

could result in user misidentifications in the remote computer, can be expected. In order to 

prevent these situations, the following strategy is proposed. Since encoders usually join together 

colors being too close, we propose spacing them before codification. The values 0 to 15 of user 

labels are translated into values from 0 to 255, preventing the encoder to mix up them. In Figure 2 

the conversion equivalencesare shown. With these new values, labels are storedinto a luminance 

channel and then compressed. 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

| | | | | | | | | | | | | | | | 

0 17 34 51 68 85 102 119 136 153 170 187 204 221 238 255 
 

Figure 2.Correspondence of user labels to colors to avoid misidentifications after data compresion. 

 
Due to the computation requirements of the proposed system, in order to code and send the 3D 

information, it has been designed to process video sequences in parallel using threads. The RGB 

image, depth map, user labels and skeletons are acquired at the same time. Each type of data is 

then coded separately in parallel using the ‘Boost’ library. 

 

3.4 Data transmission 

 
System servers are registered in a CORBA naming service after starting, so that the 

system’scentralcomputer can find them, without needing to know their IP addresses. When the 

centralcomputer establish a communication and asks for data, the server collectsthe information 

from every local attached Kinect, encodes it and sends it continuously to the remote client. The 

client is constantly receiving data sent from each server, but it may not use all information that 

arrives to the client. The system is designed to decode only the information that is to be used. To 

this end, mutual exclusion techniques are employed. 

 

Compressed information is stored into CORBA data arrays. Then, the server sends data by 

invoking remote methods in each client. These methods receive input arguments containingthe 

compressed RGB image, depth map, user labels and uncompressed skeletons. The information is 

sent only to the clients who have previously registered on the server. 

 

3.5 Point cloud fusion 

 
Once the Kinect cameras have been installed in the location to be monitored, a first system 

calibration has to be performed. The goal of calibration is for the central client computer to find 

the proper transformation matrices to align and fuse the received point clouds. One of devices is 

chosen to be the center of the coordinate system and then rotations are calculated from the other 

cameras. Given each pair of point clouds, the objective is to calculate a 4x4 rotation and 

translation matrices by solving the system of equationsB = RA + t, where A and B are three-

componentpoints, R is a 3x3 rotation matrix and t is a three-component columntranslation vector. 

 

Within the system interface, the calibration step will prompt the user to check the correspondence 

of at least 3 common points in different clouds of points. This calibration clouds are not yet 

compressed for better results. For this purpose, it is useful to place an object into the intersection 

area of different infrared patterns. Figure 3 shows this process using points belonging to a chair 

and a box on top of it. Takingthe marked common points, the system can approximate an initial 

calibration, which serves to rotate the point clouds and apply the algorithm ICP (Iterative Closest 

Point), which refines the calibration. These rotation matrices have only to be computed the first 
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time the system is deployed and 

different cameras, including user skeletons

Figure 3.Initial calibration to determine rotation and translation matrices. These matrices are used to 

3D information coming from different Kinect cameras. 

 

3.6 Skeleton merging 

 
We distinguish between Kinect input skeletons and system

skeleton is computed dynamically from a linked list of input skeletons, which are me

averaged together.  

 

Figure 4 depicts the process of output

first step is to apply rotation matrices to the detected joints. Once all the skeletons from all the 

cameras are in the same reference system, the algorithm for skeleton merging can be applied. 

first step is to check for changes in 

correspondence among similar input skeletons. T

skeletons identifiers and the output skeleton

Kinect skeleton to have disappear

camera provides information of a new skeleton, the system 

end, it compares the distance between the joints representin

strategy has been used in other human skeleton tracking proposals

15 cm, the system considers both input skeletons to be the same output skeleton

skeleton matching during 25 consecutive frames strengthens

no correspondence can be found to include the new skeleton into any existing linked list, then it is 

considered as a new output skeleton and a new linked list 

calculated by averaging all joints from different cameras

within a skeleton is less than 0.5, 

this design is that in case one camera cannot detect a given

from the information given of other camera. The probability of having all joints describing the 

skeleton available, and with accurate positions, grows with the number of cameras det

skeleton. 
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time the system is deployed and they are later used to rotate all information coming from the 

different cameras, including user skeletons,in different executions. 

determine rotation and translation matrices. These matrices are used to 

3D information coming from different Kinect cameras.  

We distinguish between Kinect input skeletons and system’s final output skeletons. Each output 

skeleton is computed dynamically from a linked list of input skeletons, which are me

output skeletons computation. To merge the input skeletons, the 

first step is to apply rotation matrices to the detected joints. Once all the skeletons from all the 

cameras are in the same reference system, the algorithm for skeleton merging can be applied. 

check for changes in the previous linked lists of skeletons, which

correspondence among similar input skeletons. These lists includethe camera identifier

and the output skeletons identifiers.Every time a remote camera considers a 

disappeared, it is removed from its linked list. Accordingly, every time

a new skeleton, the system tries to add it into a linked list

the distance between the joints representing the two skeleton heads. 

strategy has been used in other human skeleton tracking proposals[21].If the distance is less than 

15 cm, the system considers both input skeletons to be the same output skeleton

skeleton matching during 25 consecutive frames strengthens the robustness of the system

no correspondence can be found to include the new skeleton into any existing linked list, then it is 

considered as a new output skeleton and a new linked list is built up.The final joints are 

calculated by averaging all joints from different cameras. If the confidence of a specific joint 

is less than 0.5, its position is not used to calculate final joint. The advantage of 

case one camera cannot detect a given joint,its positioncan be determined 

from the information given of other camera. The probability of having all joints describing the 

skeleton available, and with accurate positions, grows with the number of cameras det
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ming from the 

 

determine rotation and translation matrices. These matrices are used to fuse 

final output skeletons. Each output 

skeleton is computed dynamically from a linked list of input skeletons, which are merged and 

skeletons, the 

first step is to apply rotation matrices to the detected joints. Once all the skeletons from all the 

cameras are in the same reference system, the algorithm for skeleton merging can be applied. The 

, which contain the 

identifiers, the input 

remote camera considers a 

linked list. Accordingly, every time a 

linked list. To this 

g the two skeleton heads. This 

If the distance is less than 

15 cm, the system considers both input skeletons to be the same output skeleton. Evaluating 

robustness of the system. In case 

no correspondence can be found to include the new skeleton into any existing linked list, then it is 

The final joints are 

a specific joint 

The advantage of 

s positioncan be determined 

from the information given of other camera. The probability of having all joints describing the 

skeleton available, and with accurate positions, grows with the number of cameras detecting the 
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Figure 

 

3.7 Data visualization and skeleton tracking

 
The central client interface uses PCL to visualize the final reconstructed space and 

time tracking of labeled people inside the area covered by the cameras.

skeleton being monitorized in real

from any point of view. However, there is a limitation on the available frame rate due

rendering methods employed by the system. When the number of points in the final point cloud 

grows, the frame rate is reduced. This is not a problem related to 

computational cost, but the visualization methods incl

said to address this problem by adding native OpenGL

usability of the system, despite of this problem, 

of points to visualize. Test and results section gives some figures of performance with 5 device 

cameras. 

 

Finally, the system is designed to store 

associated to their labeled output skeleton

stored in a raw file that can be further used to reproduce any situation occurred or serve as an 

input for another application for further 

application). For applications that 

much smaller than in conventional 

stored.  

Figure 5.Labeled skeleton and associated joints
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Figure 4.Skeleton merging algorithm. 

Data visualization and skeleton tracking 

The central client interface uses PCL to visualize the final reconstructed space and 

people inside the area covered by the cameras. Figure 5 shows a labeled 

skeleton being monitorized in real-time by 5 cameras. The final scene can be rotated and analyzed 

from any point of view. However, there is a limitation on the available frame rate due

rendering methods employed by the system. When the number of points in the final point cloud 

grows, the frame rate is reduced. This is not a problem related to the compression/decompression 

computational cost, but the visualization methods included in PCL. Future releases of 

said to address this problem by adding native OpenGL rendering [17]. In order to guarantee 

despite of this problem, the user interface allows subsampling

ze. Test and results section gives some figures of performance with 5 device 

he system is designed to store skeleton information of peoplewithin the tracking area

associated to their labeled output skeletons. Once recording has started, all the user jointsare 

stored in a raw file that can be further used to reproduce any situation occurred or serve as an 

input for another application for further situation analysis (i.e. movement

plications that require human activity registration, the needed storage space

much smaller than in conventional 2D video systems, since only the skeletons may need to be 

 

.Labeled skeleton and associated joints obtained from the combination of 5 cameras information.

The central client interface uses PCL to visualize the final reconstructed space and allows real-

Figure 5 shows a labeled 

The final scene can be rotated and analyzed 

from any point of view. However, there is a limitation on the available frame rate due to the VTK 

rendering methods employed by the system. When the number of points in the final point cloud 

compression/decompression 

uded in PCL. Future releases of PCL are 

. In order to guarantee 

subsampling the number 

ze. Test and results section gives some figures of performance with 5 device 

peoplewithin the tracking area, 

Once recording has started, all the user jointsare 

stored in a raw file that can be further used to reproduce any situation occurred or serve as an 

analysis (i.e. movement recognition 

, the needed storage space is 

skeletons may need to be 

obtained from the combination of 5 cameras information. 
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4. TESTS AND RESULTS 

 
The system has been tested using 5 Kinect cameras connected to three personal computers: two 

desktop computers equipped with an Intel i5-2400 CPU running at 3.10 GHz and a laptop 

equipped with an Intel i7-3610QM CPU running at 2.30GHz. The client computer was an Intel 

Xeon X5650 with 24 cores running at 2.66 GHzand equipped with aNvidia GeForce GTX580 

GPU. The server computers were running Windows 7 operating system, while the central client 

was running Linux Fedora 16. 

 

The aim of these tests was to check the performance of the final system in real conditions. The 

first tests conducted included data transmission, coding/decoding and visualization 

measurements.Using RGB input at 640x480 px resolution and coding depth information to 

320x240 px color maps, the theoretical limit on the number of cameras that can be connected over 

a Gigabit Ethernet is higher than 50 for a framerate of 30 fps. These numbers do not consider the 

overhead of TCP connection. In our experimental tests, performed with up to 5 cameras (the 

maximum number of cameras we managed to have), the obtained framerate was actually 30 fps. 

However, in our tests, we detected that even having every server transmitting at 30 fps and the 

client computer decoding all cameras information at the same framerate, the final scene rendering 

was affected by VTK visualization limitations of PCL. As explained above, the achieved 

frameratedependson the number of points in the cloud. Table 1 shows how visualizing a cloud of 

points constructed from 5 cameras renders only at 7 fps if every point is drawn onto the screen. 

Subsampling the number of points by 16, which actually still provides a very nice representation 

of the scene, improves performance to 29 fps. 

 

FPS Rendered points 

7 ≈ 5*307200 = 1.536.000 

13 ≈ 5*307200/4 =  384000 

22 ≈ 5*307200/9 = 170666 

29 ≈ 5*307200/16 = 96000 

 

Table1. Frame rate obtained during visualization using VTK for 5 cameras 3D reconstruction. This is a 

limitation of VTK, not the system itself. 

 
The second battery of tests conducted included situations to measure the behavior of the system 

with different people in the scene and measure the robustness to self-user and inter-user 

occlusions.The first test consisted in a user placed in the center of the scene. Meanwhile, another 

user revolves around him or her, so that some cameras can see the first user and some others 

cannot.The goal is to test the robustness of the system when different cameras detect and lost 

Kinect skeletons over and over again. The test was conducted ten times using combinations of 

different height users and the obtained result was always successful in every situation, since the 

system did not confuse users or incorrectly merged their skeletons.The second test consisted in 

users sitting and getting up from chairs in an office space. This test measured the robustness of 

the system to some skeletons joint occlusions, since some of the cameras are not able to provide 

accurate positions for body parts behind tables or chairs. The test was repeated for ten different 

people sitting in front of the four tables in the scene in Figure 6 and again the system worked 

perfectly. The third test consisted in covering and uncovering one by one the different cameras in 

the scene while 5 people were being tracked in the scene. The goal was to test what happens when 
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multiple Kinect input skeletons are removed and detected at the same time. The result was again 

satisfactory and every computed output skeletons in the scene kept being tracked consistently. 

 

 

Figure 6 Inter-user occlusion test within a space monitorized by 5 cameras. 

 

5. CONCLUSIONS 
 
This article describes a distributed CORBA system for remote space 3D monitoring using Kinect 

consumer depth cameras. Due to the high bandwidth needs of these cameras, the maximum 

number of cameras that can be connected to a single computer is usually two. The solution 

provided in this paper includes a client-server application that can handle the information 

acquired by any number of cameras connected to any number of computer servers. Since one 

Kinect camera can only detect precisely the depth information within a field of view of 3.5 

meters, the proposed system solves, at the same time, the limitation on the size of the location that 

can be monitorized precisely. A central client computer can be used to monitor the reconstructed 

3D space in real time and track the movements of people within it.  

 

In the central client computer, a skeleton-merging algorithm is used to combine the information 

of skeletons belonging to the same person, but generated by different Kinect cameras, into a 

single output skeleton. The tests conducted showed that this algorithm is robust under several 

situations, avoiding unwanted duplication of skeletons when new people enter the scene or under 

camera or inter-user occlusions. Moreover, the algorithm combines the information coming from 

each skeleton joint independently, so the 3D location of joints in the final generated skeleton is 

more precise, having been averaged among all the cameras detecting that joint. In case a self-user 

or a inter-user occlusion causes one joint not to be detected by one or more of the cameras,its 

position is reconstructed using the information coming from cameras in which the joint has been 

detected with enough confidence. Output skeleton movements can be stored in raw files for 

further analysis of situations.  

 

Thissystem provides a very precise and convenient way of monitoring a 3D space at an affordable 

price. People activity in the scene can be registered for further analysis and the storage needs to 

keep track of human behavior under different circumstances can be much lower than for 
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conventional 2D systems, if only the skeletons are needed. Future research tasks will include 

designing a top activity recognition layer that could monitor people behavior and interactions. 
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