

Natarajan Meghanathan et al. (Eds) : ITCSE, ICDIP, ICAIT - 2013

pp. 167–182, 2013. © CS & IT-CSCP 2013 DOI : 10.5121/csit.2013.3917

AGILE METHODS AND QUALITY _ A

SURVEY

BODJE N’Kauh Nathan-Regis

1
 and Dr G.M Nasira

2

1
PhD Candidate, Computer Science, Christ University Bangalore

bodje.nathan@yahoo.fr
2
Assistant Professor, Chikkanna Govt. Arts College, Tirupur -2, India

nasiragm99@yahoo.com

ABSTRACT

Agile software processes, such as extreme programming (XP), Scrum, Lean, etc., rely on best

practices that are considered to improve software development quality. It can be said that best

practices aim to induce software quality assurance (SQA) into the project at hand. Some

researchers of agile methods claim that because of the very nature of such methods,

quality in agile software projects should be a natural outcome of the applied method.

As a consequence, agile quality is expected to be more or less embedded in the agile software

processes. Many reports support and evangelize the advantages of agile methods with respect to

quality assurance, Is it so ?

An ambitious goal of this paper is to present work done to understand how quality is or should

be handled. This paper as all survey papers attempt to summarize and organizes research

results in the field of software engineering, precisely for the topic of agile methods related to

software quality.

KEYWORDS

Agile methods, quality assurance, software life cycle, software metrics

1. INTRODUCTION

Precisely from the quality point of view; the discussion at agile methods is wide and entails many

facets including: differences and similarities between the traditional quality assurance

procedures and Agile Software Quality Assurance, identification and evaluation of quality

metrics in agile software development.

The paper will attempt to report the state of the art regarding quality achievements in agile

methods and investigate on how practices and tools affect the quality in agile software

development. There is a literature gap in providing a critical view of agile quality, this areas need

improvement. The papers studies for this survey are from Ioannis G. Stamelos and Panagiotis

Sfetsos book in agile software development quality assurance [1].

This survey paper is made up of 4 sections; where each section will analyze the paper most

relevant in our senses for categorize the work done in the field. The first one will give an

overview of agile and Quality. The second will describe quality within agile development. The

168 Computer Science & Information Technology (CS & IT)

next one will describe work done for quality within agile process management and the last

chapter will show example of field experience.

2. AGILE AND QUALITY

Agile Software Methods: State-of-the-Art[2], let us know more about the concept of agile

methods and quality aspect in software development. The paper gives a comprehensive analysis

of agile methodologies from the perspective of software quality assurance. About agile with

have a definition from three perspectives: theoretical, functional and contextualized. And

the paper makes a link to relate agile and quality starting from a brief review of the

traditional understandings of quality assurance to the perspective under agile methods.

2.1. Agile Definition

The theoretical definition of agile is given by Lindvall et al.(2002) as a group of software

development processes that are iterative, incremental, self organizing, and emergent.

Figure 1. Definition of agility - Copyright Ernert MnKandla PhD thesis University of the

Witwatersrand

The functional definition according to Abrahamson et al (2002), the term “agile” carries

with it connotations of flexibility, nimbleness, readiness for motion, activity, dexterity in motion

and adjustability. Nonetheless, Beck (1999) defines agile methodologies as lightweight,

efficient, low-risk, flexible, predictable, scientific, and fun way to develop software.

The contextual definition derived from what agility means in terms of certain specific software

engineering concepts. Because the book was specially focus on agile software quality

assurance the contextual definition of agile will be in relation with quality assurance.

Computer Science & Information Technology (CS & IT) 169

2.2. Agile software quality assurance

According to Juran, quality means two things: “ (1) quality consists of those product features that

meet the needs of customers and thereby provide product satisfaction and (2) consist of freedom

from deficiencies” (Juran and Gryna, 1988).

Meyer (2000) defines software qualiy according to an adapted number of quality parameters as

defined by McCall (1977), which are correctness, compatibility, robustness, extendibility,

reusability, efficiency, partability, integrity, verifiability and ease to use.

From Agile perspective, quality as McBreen (2000) said: it is the development of software that

can respond to change. We can notice that quality is a rather abstract concept that is difficult

to define but where it exists, it can be recognized.

The table below gives some parameters that define agile quality for extreme programming.

TECHNIQUE

DESCRIPTION

Refactoring Make small changes to code, code behavior must not be affected, resulting

code is of higher quality (amber, 2005)

Test-driven

development

Create a test, run the test, make changes until test passé (amber, 2005)

Continuous

integration

Quality assurance test done on a finished system, usually involves the users,

sponsors, customer, etc. (huo, verner, zhu, & babar , 2004)

Pair programming Done on a daily basis after developing a number of user stories. implemented

requirements are integrated and tested to verify them. this is an important

quality feature.

Face-to-face

communication

Two developers work together in turn on one pc, bugs are identified as they

occur, hence the product is of a higher quality (huo et al., 2004)

On-site customer Preferred way of exchanging information about a project as opposed to use of

telephone, email, etc. implementated in form of daily stand-up meetings of not

more than twenty minutes (huo et al, 2004). this is similar to the daily scrum in

the scrum method. it brings accountability to the work in progress, which vital

for quality assurance.

Frequent customer

feedback

Each time there is a release the customer gives feedback on the system, and

result is to improve the system to be more relevant to needs of the customer

(huo et al., 2004). quality is in fact meeting customer requirements

System metaphor Simple story of how the system work (huo et al., 2004), simplifies the

discussion about the system between customer/ stakeholder/ user and the

developer into a non-technical format. simplicity is key to quality.

Table 1. Agile quality techniques as applied in extreme programming

2.3. In Resume

In this paper, an overview of agile methodologies was presented. Authors arrived with approach

definitions which are philosophical and practical about agile methodology. The authors said the

future trends of agile software development is to embedded innovative thinking for higher

level of maturity and quality assurance; as agile process begin to enter grounds such as

enterprise architecture, patterns, etc.

170 Computer Science & Information Technology (CS & IT)

3. QUALITY WITHIN AGILE DEVELOPMENT

Our second paper in study is: Handling of Software Quality Defects in Agile Software

Development; produce by Jörg Rech[3]. It will help us know how researcher understands quality

within Agile Development. The paper show refactoring; which is an important phase for

continuous improvement will add value on the quality assurance aspect built in Agile

development process. The work describes a process for recurring and sustainable discovery,

handling, and treatment of quality defects found in source code. In agile software

development, organizations use quality assurance activities likes refactoring to tackle defects that

reduce software quality.

This research was concerned with the development of techniques for discovery of quality

defects. The technique used as a quality driven and experience based method for the refactoring

of large scale software system.

3.1. Quality Defect Discovery

The techniques for the discovery of quality defects are based upon several research fields

such as : Software inspection, code inspection, software testing and debugging, etc. Software

inspection and code inspection are concerned with the process of manually inspecting software

products in order to find potential ambiguities as well functional and non-functional problems

(Brykczynski, 1999).

Software testing and debugging is concerned with the discovery of defects regarding the

functionality and reliability as defined in a specification or unit test case Software product metrics

are used in software analysis to measure the complexity, cohesion, coupling or other

characteristics of the software product.

There are several more techniques and tools for quality defect discovery.

They are an example of tools like : Checkstyle, FindBugs, Hammurapi or PMD.

3.2. Quality Defects on the code level

Various forms of quality defects exist. Some target problems in methods an classes, while others

describe problems on the architecture or even process level. The Author choose to focus on

the code level. The representatives on the code level are :

Code Smells: Abbrevation of “bad smells in code”. It was described in Beck et al. (1999). Code

smells are indicators for refractoring and typically include a set of alternative refactoring.

Today’s code smells are semi-formally described, they are at least 38 knows.

Architecture Smells: describe problems on the design level. Roock et al (2005) define 31

architetural smells wich are apply on design level but also on the code level.

Design Patterns and Anti-patterns : Gamma et al. (1994) about design patterns and Brown et al

(1998) for anti-patterns represent typical patterns of good and bad software architecutre. Patterns

state and emphasize a single solution to multiple problems, anti-patterns emphasize a single

problem to multiple solution.

Bug Patterns : Typically found in debugging and testing activities. Allen (2002) described 15 bug

patterns.

Computer Science & Information Technology (CS & IT) 171

Design characteristics : Whitemire (1997) describes nine distinct and mesurable

characteristics of an object-oriented design. These characteristic was focus on the similarity of

two or more classes or domain level in terms of their structure, fonction,behaior or purpose. Riel,

Roock et al work design heuristics wich provide support on how to construct software systems. 61

design heuristics was describe in Riel(1996) and 14 principles in Roock(2005).

3.3. Refactoring

Beside the development of software systems, the effort for software evolution and maintenance is

estimated to amount to 50% to 80% of the overall development cost (Verhoef, 2000). Reworking

parts of the software in order to improve its structure and quality (e.g., maintainability,

reliability, usability, etc.), but not its functionality is one step in the evolution and development of

software systems. This process of improving the internal quality of object-oriented software

systems in agile software development is called refactoring (Fowler, 1999).

From the agile world, in general, refactoring (Fowler, 1999; Mens et al., 2004) is necessary to

remove quality defects that are introduced by quick and often unsystematic development.

Organizations use techniques like refactoring to tackle quality defects (i.e., bad smells in code

(Beck & Fowler, 1999), architecture smells (Roock et al., 2005), anti-patterns (Brown et al.,

1998), design faws (Riel, 1996; Whitmire, 1997), and software anomalies (IEEE-1044,

1995), etc.) that reduce software quality.

During the last few years, refactoring has become an important part in agile processes for

improving the structure of software systems between development cycles. Refactoring is able to

reduce the cost, effort, and time-to-market of software systems. Especially in agile software

development, methods as well as tools to support refactoring are becoming more and

more important (Mens, Demeyer, Du Bois, Stenten, & Van Gorp, 2003).

Refactoring does not stop after discovery; the refactoring used has to be documented in order to

support maintainers and reengineers in later phases. These information can be stored in

configuration management systems (e.g., CVS, SourceSafe), code reuse repositories (e.g.,

ReDiscovery, InQuisiX), or defect management systems.

3.4. Quality Defect Ontology

In software engineering, in specially in the case of quality defects for a software product, the

context of defect can be describes as problems on different levels of complexity and might occur

in parralel in one situation (ie, in one code fragment). Here de figure below resume the

conceptual model of the quality defect ontology in the software product level.

172 Computer Science & Information Technology (CS & IT)

Figure 2. Conceptual model of quality defect ontology (Software Product Level)

A software system might have predispositions that foster or enable the creation of quality

defects. These defects themselves have causes that are responsible for the defects being

integrated into the system. The quality defects might have a negative as well as a positive effect

on specifc qualities and are perceivable via specifc symptoms. Finally, the defects are solved

or removed via specifc treatments after they are discovered, or the causes might be prevented

by special preventive measures.

3.5. Handling of quality defects

Several quality defects are introduced into the software system and are discovered

especially in the refactoring phase. The figure below show a model for defect discovery and

hanling process.

Figure 3. The quality defect discovery and handling process model

Computer Science & Information Technology (CS & IT) 173

As the figure show, in the execution of the process, the following sub-process are performed :

Discover Defect : Manual or automatic quality defect discovery techniques are used to analyze

the source code

Plan Removal : Based on the discovered, a sequential plan for the refactoring of the software

system (or part) is constructed.

Analyze Defects : Process the list of potential quality defects, analyzes the affected software

system (or part), and decides about the quality defect

Refactor Code : remove the quality defect from the software system.

Mark Code : Make where a potential quality defect is unavoidable or its removal would have a

negative impact on an important quality.

Document Change : After the refactoring or marking, annotate with specific tags about

the change or decision, and the experience about the activity

Analyze Cause : Statistics, information, and experiences about the existence of quality

defects in the software systems

3.6. In Resume

To assure quality, agile software development organizations use activities such as

refactoring between development iterations. Refactoring, or the restructuring of a software

system without changing its behavior, is necessary to remove quality defects (i.e., bad smells in

code, architecture smells, anti-patterns, design faws, software anomalies, etc.) that are introduced

by quick and often unsystematic development. In this work, author described a process for the

recurring and sustainable discovery, handling, and treatment of quality defects in software

systems. The author come out with requirements for quality defect handling in agile software

engineering such as : annotation language, tracking system or wiki, etc. The open door for this

work is to built resarch ti increase automation of process in order to support team of developper

with automated refactoring or defect discovery system.

4. QUALITY WITHIN AGILE MANAGEMENT

Agile methods is not only on the process model of software engineering, it is about management

practicses also. Improving Quality by Exploiting Human Dynamics in Agile Methods[4] show

how agile incoporate human factors, showed by theories and experiences to have critical impact

on the succes rate of software production. Software engineering practices extensively involve

humans under different roles (managers, analysts, designers, developers, testers, quality

assurance experts, etc.) (Pfeeger, 2001; Sommerville, 2004). Authors in this paper deals with

problem encourated at each level of management in an company applying eXtreme Programming,

one of the most diffused agile method. The paper propose and discuss two models; the first

model for personnel management based on the people CMM (The people capability

maturity model [P-CMM] was developed by the software engineering institute [SEI] at Carnegie

Mellon university (Curtis et al. 1995,2001)) and the next one proses a model that exploits

developer personalities in pair programming.

4.1. Human Resource Management at the Corporate Level

Quality at the corporate level is to adress for example, workforce related problems such as bad

staffing, inadequate training, bad competency, and performance management. People, people

quality, and people management are essential for agile companies. As a consequence,

Evaluation and Assessment people management models may help agile companies improve their

people management processes and policies, assuring agile personnel quality.

174 Computer Science & Information Technology (CS & IT)

People CMM, first published in 1995 and revised 2001 (version 2) (Curtis, Hefey, & Miller,

1995, 2001), is a five-level model that focuses on continuously improving the

management and development of the human assets of a software systems organization.

The table below show the process areas of People CMM : Version 2.

MATURITY LEVEL

FOCUS

KEY PROCESS AREAS

5 optimizing Continuously improve and align

personal, workgroup, and organizational

capabilty

- Continous workforce

innovation

- organizational performance

alignement

- continuous capability

improvement

4 predictable empower and integrate workforce

competences and manage performance

quantitatively

- mentoring

- organizational capability

management

- quantitative performance

management

- competency-based assets

- empowered workgroups

- competency integration

3 defined develop workforce competencies and

workgroups, and align with business

strategy and objectives

- patipatory culture

- workgroup development

- competency-based practices

- career development

- workforce planning

- competency analysis

2 managed managers take responsibility for

managing and developing their people.

- compensation

- training et development

- performance management

- work environment

- communication and

coordination staffing

1 initial workforce practices applied

inconsistently

(no kpa at this level)

Table 2. Process areas of the People CMM: Version 2

Maturity level 1 (Initial Level) : workforce practices are often ad hoc and inconsistent and

frequently fail to achieve their purpose. Authors argue that XP organisation bypass the initial

level cause “XP is a high disciplined methodology, thus organizations applying XP tend to retain

skilled people, develop workforce practices, and train responsible individuals to perform highly

co-operative best practices.”

Maturity Level 2 (Key Process Areas at the Managed level) : At this level, P-CMM focus on

establishing basic workforce practices and eliminating problems that hinder work

performance. This capability is achieved by ensuring that people have the skills needed to

perform their assigned work and by implementing the defned actions needed to improve

performance (Training and development). XP addresses successfully training needs by rotating

developers in pair programming and by involving them in significant practices such as planning

game, testing, refactoring, and metaphor.

Computer Science & Information Technology (CS & IT) 175

Maturity Level 3 (Key Process Areas at the Defined Level) : At this level, organization

addresses organizational issues, developing a culture of professionalism based on well-

understood workforce competencies. Competencis are designed to identify, develop, and use the

knowledge, skills, and process abilities required by workforce to perform the organization’s

business activities, respectively. Authors agrue that XP organizations are well prepared to

successfully address most of the P-CMM Level 3 cause " XP process establishes a high

participatory culture (pair programming and other practices), spreading the fow of information

within the organization, and incorporating the knowledge of developers into decision making

activities, providing them with the opportunity to achieve career objectives."

Maturity Level 4 (Key Process Areas at the Predictable Level) : The key processes introduced in

this level help organizations quantify the workforce capabilities and the competency-based

processes it uses in performing its assignments. XP is a team-based process helping

workgroups to develop more cohesion, capability, and responsibility. it requires that

developers implement best practices in extreme levels using proven competency-based

activities in their assignments. Managers trust the results that developers produce and the XP

organization preserves successful results in its repository and exploits them as organizational

assets.

Maturity Level 5 (Key Process Areas at the Optimizing level) : These practices cover issues that

address continuous improvement of methods for developing competency at both the

organizational and the individual level. Authors conclude by saying that “The results from

measurements at level 4 and the culture of improvements established by the continuous

implementation of the XP practices can help the XP organization to mature up to this level.”

As a contribution to the P-CMM, authors proposed an adaptive P-CMM assessment process

model for typcally XP-Organizations. The process model suggest is an adaptive people CMM

assessment process model in the sense that the XP organization assesses itself against the

process areas defned in each maturity level. The model is divided into three stages: Input,

where the people process currently used by the XP organization and the adaptive people CMM

framework are entered into the process. Operation, where the assessment process takes place.

Output, where the results of the assessment process, in the form of a new improved

process, are adopted by the people process management task and are communicated to the

organization. The model is show below.

Figure 4. An Adaptive people CMM assessment process model for assessing XP- organizations

176 Computer Science & Information Technology (CS & IT)

4.2. Quality at the Project/Team Level

Authors on this step of their work, went throw assessing and improving pair programming

effectiveness based on developer personalities. The proof of human issues in pair programming

was demonstrated when (beck,2000) said : “Extreme programming bases its software

development process on a bunch of intensely social and collaborative activities and practices”.

XP, is a disciplined practice in which the overall development activity is a joint effort, a function

of how people communicate, interact, and collaborate to produce results.Two widely used tools to

assist in the identifcation of personality and temperament types are the Myers-Briggs Type

Indicator (MBTI) (Myers, 1975) and the Keirsey Temperament Sorter (KTS) (Keirsey et al.,

1984). The result of their work first provide a table that summarise the salient characteristics of

each personality type (list as : Extroverts, Introverts, Sensors, Intuitives, Thinkers, Feelers,

Judges, Perceivers) and their suggestions for exploiting them in pair programming.

The table below give in short way summarize the temperaments salient characteristics and

show authors suggestions for their use in pair programming.

Temperament Type Salient Characteristics Suggested use in Pair

Programming

Artisans (SP)

(Sensing-Perceiving)

Prefer concrete communications.

Prefer a cooperative path to goal

accomplishment. Possess a superior

sense of timing. Prefer practical

solutions and are lateral thinkers

Good as start-up persons and

Effective brainstormers. May be

good in decision making and

May exhibit adaptability and be

innovative

Guardians (SJ)

(Sensing-Judging)

Prefer concrete communications.

Prefer more a utilitarian approach.

Are traditionalists and stabilizers

Prefer rules, schedules, regulations,

and hierarchy. Prefer that things

remain as are

May be good in estimations (eg

from the user stories). May be

good in resource management.

May be good in planning game,

contracts. Are considered very

responsible, succeed in assigned

tasks

Idealists (NF)

(Intuitive-Feeling)

Prefer more abstract communication.

Prefer more a utilitarian approach.

Prefer to guide others. Excellent

communicators

Will contribute to pair spirit and

morale. Are good in personal

relationships. Are good in

interaction with users and

management. May be forward

and global thinkers

Rationalists (NT)

(Intuitive-Thinking)

Prefer more abstract

communications. Prefer a cooperative

path to goal accomplishment. Are

natural-born scientists, theorists and

innovators

Posses highly valuing logic and

reason. Prefer competence and

excellence

Are good in subtask

identification (eg in splitting

user stories). Are good in long-

range plan (ie planning game).

Are good in analysis and design.

Are considered good in

inventing and configuring

Table 3. The salient characteristics of temperament types with respect to pair programming

Based on their findings, the results of their experiment, authors arrived with having the

theory that considers pairs as adaptive ecosystems as framework. Their propose an adaptive

pair formation/rotation process model as the figure below show (see Figure 5). The model can

help organizations and managers build high-performance pairs out of talented developers. It

describes three main phases: the setup phase, the assessment phase, and the improvement phase.

Computer Science & Information Technology (CS & IT) 177

The setup phase includes the identification, understanding, and interpretation of the

developer personalities—temperaments. The assessment phase includes a gap analysis and the

construction or review of a set of guidelines and policies for pair formation/rotations. The

improvement phase includes mini retrospectives (communication-collaboration reviews) for

pair evaluation, and the establishment of the improved pair rotation process.

Figure 5. AN adaptive pair formation/rotation process model

4.3. In Resume

Authors believed that organizations practicing XP should not have problems in addressing most

of the PCMM level 2 and 3 KPAs (Key Process Areas). They described an adaptive

people CMM assessment process model for assessing XP organizations and stepwise guidelines

for its implementation. Also propose an adaptive pair formation/rotation process model,

which identifies, interprets, and effectively combines developer variations. The proposed

model can help organizations and managers improve pair effectiveness, by matching developers’

personality and temperament types to their potential roles and tasks, effectively exploiting their

differences in pair formations and rotations.

The more mature an organization, the greater its capability for attracting, developing, and

retaining skilled and competent employees it needs to execute its business. Agile methods,

in particular extreme programming, through their repeatable practices lead to an improved

workforce environment with learning, training, and mentoring opportunities, improving

workforce competencies.

5. AGILE QUALITY: FIELD EXPERIENCE

This chapter, is ending the survey paper with experiences from industry, comes from a

large company, namely Siemens (USA). Siemens has gained as reported in the book of our

survey, “ in the past few years, considerable experience using agile process with several

178 Computer Science & Information Technology (CS & IT)

projects of varying size, duration, and complexity”. In the paper, quality improvement from

using ADM_lessons learned [5]; authors report project in wich they have used agile process. The

aim was to inform fellow agile developers and researchers about their methos for achieving

quality goals, as well as providing an understanding of the current state of quality

assurance in agile practices.

5.1. In-House Agile Processes

This part deals with the two agileprocess use in siemens.

The first process, named S-RaP[6] (an acronym for Siemens Rapid Prototyping), is a UI (user

interface)-centered workfow-oriented approach that targets primarily the exploration of

complex business requirements. The process evolved to provide rapid prototyping solutions for

Siemens customers. The figure below shows this model.

S-RaP development is concentrated around two key artifacts:

- The Storyboard is the requirements and testing specifcation for the developers and a

means to establish and communicate a common product vision among all stakeholders.

- Prototype provides the customer with a working representation of the fnal deliverable at an

early stage. This gives the customer a hands-on testing experience with what has been developed,

which helps to validate existing ideas and oftentimes generates new ones.

Figure 6. S-RaP process model (Nelson & Kim, 2004) (image by Kathleen Datta)

Computer Science & Information Technology (CS & IT) 179

The second process, entitled UPXS[7], is a combination of traditional and agile practices (Unifed

Process (Jacobson, Booch, & Rumbaugh, 1999), eXtreme Programming (Beck, 1999), and

Scrum (Schwaber & Beedle, 2001)) that aims to support full-blown product development (even

product-lines). Developed for a high-profle Siemens project, the process was designed to address

the needs of a large distributed agile project. With a foundation of Scrum’s team structure and

activities, UPXS adds the project timeline model and phases of UP, along with iteration and task

planning and development practices from XP. Similar to S-RaP, UPXS is executed in time-boxed

iterations of 10 to 20 working days.

5.1.1. Project at Siemens

The processes previously described were employed in a number of different projects. The table

below gives the characteristics of these projets taken at Siemens-USA.

Table 4. Siemens Project Characteristics

The numbers of team members and the duration for the project show that is was not a small

project taken.

Project A1 and Project A2 : was an S-RaP project. The application ran in a Web browser

and used simple HTML and JavaScript technologies. When the customer in Project A1 desired

an advanced set of features that could not be easily done with its existing architecture, Project A2

was born.

Project B is a smaller S-RaP project that produced a prototype starting from a vague statement of

customer needs.

Project C is another S-RaP project that produced a small 3-tier product. In terms of quality goals,

the focus was initially on high security, so as not to compromise personal data, as well as a highly

attractive and easy-to-use UI.

180 Computer Science & Information Technology (CS & IT)

Project D is a UPXS project that began with a mostly centralized co-located team and has

expanded into a worldwide-distributed project to develop a groundbreaking platform upon which

future communications applications will run.

Project E is a UPXS project with a large number of distributed teams working on a product

that will replace several legacy applications. The Web-based application interfaces with

databases and communication hardware.

Project F is the smallest S-RaP project yet, which aimed to elicit, refne, and mature the

requirements for a next generation product.

5.1.2 Quality Assurance : Common Goal

“QA (for agile methods) is looking at the same deliverables (as with plan-driven

methods). But the process used to create the deliverables does affect how QA works”

(McBreen, 2002). Siemens experiences have shown us that the cycle of customer

involvement constant re-estimation, and constant reprioritization of scope and features is an

inherent mechanism of agile methods that leads to high software quality.

Although each of our projects focused on their own set of quality goals, there were several

common goals that were important to all of them. The 4 goals was applied to achieve one or more

of siemens projects.

- Goal 1: The fnal deliverable should exhibit a high degree of correctness of implementation.

- Goal 2: The fnal deliverable is well suited to the expressed needs of the customer.

- Goal 3: The fnal deliverable is easy-to-understand, easy-to-learn, and easy-to-use.

- Goal 4: At any stage of development, code is easily analyzable, modifable, and extensible

5.1.3. Lessons learn.

The paper gives in the beautiful manner the lessons learn in applying agile methods to attempt the

goal of quality at Siemens-USA. This is the list of the lessons.

Lesson 1: Use “living” documents whose lives are determined by the project’s needs.

Lesson 2: Development needs to be proactive with the customer by providing solution alternates

in a form easily grasped by the customer.

Lesson 3: Inexpert team members can be agile; however, the learning curve will be signifcant

for those who lack technical expertise.

Lesson 4: Agile methodologies must be practiced with a culture of proactive communication to

allow new members to acclimate quickly.

Lesson 5: Agile development needs agile project planning (Song et al., 2004).

Lesson 6: To achieve high customer satisfaction in agile development, collecting novice user

feedback is just as important as regular customer feedback

Lesson 7: Collocation, when necessary, is best practiced within small teams (Song et al., 2004).

Lesson 8: Decomposing project tasks to assign different teams works best with vertical slices.

Lesson 9: Where practical, postpone refactoring until several instances of the part

under consideration (component, behavior, etc.) are implemented.

Lesson 10: A high level of customer satisfaction can still be achieved, even if the resulting

deliverables do not entirely meet expectations.

Computer Science & Information Technology (CS & IT) 181

5.2. In Resume

The paper share an great experience in using customize agile project in Siemens. The implicit

suggestions of the work was done in the section "the lessons learned" for improving QA in agile

projects, authors feel that the most important is: " Actively attempt to capture and exploit

informal communications". They suggested that it is important to identify quality goals early on

in the project, even though they may change. The future work as an agile development group at

Siemens Corporate Research is the interest in identifying metrics for measuring software quality

in agile projects.

6. CONCLUSIONS

- Limitation of the work.

Software quality in agile development is not a straightforward topic. The survey study only the

paper presented in Ioannis G et al. Book on Agile Software Development Quality Assurance.

Even if this book is a reference in the domain, further paper must be study and an accent must be

put on the most recent and pertinent work on the quality field.

- In resume

The first chapter on this work provides a review of the state-of-the-art of agile methodologies.

However, it focuses primarily on the issue quality assurance. Then after the next chapter discusses

refactoring, an agile procedure during which, among other activities, quality defect removal takes

place. Because agile methods is not only on code writing but also on people interaction, the next

chapter explores the management of the human resources that are involved in agile development;

cause evidently human factors are critical for the success of agile methods. The last chapter

resume the experiences of a large company, namely Siemens, with agile methodologies. This

paper on study end with an summarize lessons learned from successes and failures while working

for quality assurance in their projects..

ACKNOWLEDGEMENTS

The authors would like to thank everyone, just everyone!

REFERENCES

[1] Agile Software Development Quality Assurance. Ioannis G. Stamelos (Aristotle University of

Thessaloniki, Greece) and Panagiotis Sfetsos (Alexander Technological Educational Institution of

Thessaloniki, Greece). Release Date: February, 2007. Copyright © 2007.

[2] Agile Software Methods: State-of-the-Art; E. Mnkandla (Monash University, South Africa) and B.

Dwolatzky (University of Witwatersrand, South Africa). p1-22.

[3] Handling of Software Quality Defects in Agile Software Development; Jörg Rech, Fraunhofer

Institute for Experiemental Software Engineering (IESE), Germany.

[4] Improving Quality by Exploiting Human Dynamics in Agile Methods; Panagiotis Sfetsos, Alexander

Technological Educational Institution of Thessaloniki, Greece; Ioannis Stamelos, Aristotle University,

Greece.

[5] Quality Improvements from using Agile Development Methods: Lessons Learned. Beatrice Miao

Hwong, Gilberto Matos, Monica McKenna, Christopher Nelson, Gergana Nikolova, Arnold

Rudorfer, Xiping Song, Grace Yuan Tai,Rajanikanth Tanikella, Bradley Wehrwein.

182 Computer Science & Information Technology (CS & IT)

[6] Gunaratne, Hwong, Nelson, & Rudorfer, 2004; Hwong, Laurance, Rudorfer, & Song, 2004; Nelson &

Kim, 2004; Song, Matos, Hwong, Rudorfer, & Nelson, 2004; Song, Matos, Hwong, Rudorfer, &

Nelson, 2005; Tai, 2005.

[7] Pichler, 2006; Smith & Pichler, 2005

