

Sundarapandian et al. (Eds) : ICAITA, SAI, SEAS, CDKP, CMCA-2013
pp. 271–283, 2013. © CS & IT-CSCP 2013 DOI : 10.5121/csit.2013.3822

TRANSFORMATION RULES FOR BUILDING

OWL ONTOLOGIES FROM RELATIONAL

DATABASES

Mohammed Reda Chbihi Louhdi1, Hicham Behja2 and
Said Ouatik El Alaoui3

1Laboratoire Informatique & Modélisation,

Faculty of sciences Dhar El Mehraz, Fez, Morocco
chbihi@gmail.com

2Ecole Nationale Supérieure d'Electricité et de Mécanique, Casablanca,
Morocco

h_behja@yahoo.com
3Laboratoire Informatique & Modélisation,

Faculty of sciences Dhar El Mehraz, Fez, Morocco
s_ouatik@yahoo.com

ABSTRACT

Relational Databases (RDB) are used as the backend database by most of information systems.

RDB encapsulate conceptual model and metadata needed in the ontology construction. Schema

mapping is a technique that is used by all existing approaches for ontology building from RDB.

However, most of those methods use poor transformation rules that prevent advanced database

mining for building rich ontologies. In this paper, we propose transformation rules for building

owl ontologies from RDBs. It allows transforming all possible cases in RDBs into ontological

constructs. The proposed rules are enriched by analyzing stored data to detect disjointness and

totalness constraints in hierarchies, and calculating the participation level of tables in n-ary

relations. In addition, our technique is generic; hence it can be applied to any RDB. The

proposed rules were evaluated using a normalized and open RDB. The obtained ontology is

richer in terms of non- taxonomic relationships.

KEYWORDS

Semantic Web, Ontology Building, Relational Databases, Schema Mapping, Data Analysis.

1. INTRODUCTION

The Semantic Web [1], [2], [3] provides a common framework that allows data to be shared and
reused across applications, enterprises, and community boundaries. The current web is dominated
by unstructured and semi-structured documents. One of the objectives of the Semantic Web is to
convert the current web into a "web of data", by encouraging the inclusion of semantic content in
web pages and documents. Besides, the Semantic Web aims at making information on the Web
machine processable and understandable, and therefore, facilitates interoperability between
applications.

Computer Science & Information Technology (CS & IT) 272

Tom Gruber1 defined ontology as "a formal and explicit specification of a shared

conceptualization that refers to an abstract model of some phenomenon in the world that

identifies the relevant concepts of that phenomenon" [2]. In the context of database systems,
ontology could be defined as a process of abstraction of data models that are similar to relational
and hierarchical models, but which is supposed to model individuals’ knowledge, attributes and
relationships.

Ontologies are particularly specified in languages that make possible the abstraction of data
structures and allow strategies implementation. Semantic Web is then expected to provide
languages that can both express data and rules for reasoning about the data, and also to export
rules from any existing knowledge-representation system onto the web.

Building ontologies from scratch is a very expensive and laborious task. A manual approach is a
complex process and needs the supports of domain experts in knowledge acquisition as well, so it
is time-consuming and error-prone. However, the automatic building of ontologies from existing
information sources (text, databases, etc.) is relevant and unavoidable.

Generally, Relational Databases are used as the backend database by most of information
systems. These databases are well-designed, encapsulate conceptual data models and hide a
strong semantics that could be exploited in the process of ontology extraction.

All The existing methods for ontology engineering from relational databases use the schema
mapping to transform the components of the conceptual data model or the physical model into
ontology's concepts and relations [4].

In this work, we propose a technique which consists in enhancing transformation rules for
building owl ontologies from relational databases. It combines schema mapping and data analysis
techniques to detect disjointness and totalness in simple inheritance cases, and to compute the
table's participation level in the n-ary relations. Our proposal covers all possible cases in
databases and allows having richer ontologies.

The rest of this paper is organized as follows. Section 2 discusses related works in ontology
engineering from relational databases. Section 3 describes the proposed transformation rules.
Implementation and experimentations are presented in Section 4. Finally, Section 5 concludes this
paper, and discusses the perspectives of this work.

2. RELATED WORKS

The realization of semantic web requires structuring of web data using domain ontologies.
Extracting domain knowledge from database schemata can profitably support ontology
development. There are many relational databases on the web that store important and useful
information, which is a valuable source for ontology learning.

However, some existing methods [5], [7], [9], [10], [11] use the conceptual data model as a
source of ontology learning, because it is semantically richer than the relational model.
Unfortunately, in the most cases, the databases are available in a physical format (the
corresponding conceptual data model is not available). In addition, the mapping operation (from
the conceptual data model to the relational model) may create new tables and new attributes, that
makes difficult the ontology populating task (since there are many differences between the
components of the conceptual data model and those of the relational model).

1 http://tomgruber.org/bio/short-bio.htm

273 Computer Science & Information Technology (CS & IT)

Schema mapping technique is used by ontology building methods. It converts the relational
database schema (or the ER Model) to an ontology by using a set of predefined transformation
rules. Some works [12], [13], [14], [15], [16] map ontologies to relational databases schemata in
order to maintain interoperability between them. The schema mapping is performed using
mapping rules that update the ontology when the database is modified and vice-versa.

Note that most methods based on the schema mapping technique cannot handle some complex
cases like multiple inheritance, many-to-many relations with attributes, and the n-ary relations.
The multiple inheritance case was treated by [11] where authors reproduce the hierarchy found in
the conceptual data model in the taxonomy of the ontology. Concerning the many-to-many
relations with attributes, they were supported by the transformation rules of some methods [9],
[10], [11], [17]. The n-ary relation is a difficult case, because only binary relations between
classes can be represented through object properties in the ontology. However, some works [9],
[10], [17], [18], [19] propose solutions to represent n-ary relations in OWL ontologies. In [10],
[17], [18], [19], authors create a class for the bridge table related by two object properties
mutually inverse. The method [9] uses AllValuesFrom restrictions to link the class corresponding
to the bridge table, with the classes that correspond to the participating tables to the n-ary relation.
This solution is more representative than the first one, because the existence of a record in the
bridge table is conditioned by the existence of records in tables that participate to the n-ary
relation.

The foreign key columns (or one-to-many relations) and the simple inheritance cases are
processed by the most of existing methods. Furthermore, the most existing methods transform the
simple attributes into Data Type Properties. Some of them [10], [11], [17], [18], [19] suggest to
add restrictions to the attributes that have a constraint (Primary Key, NOT NULL or UNIQUE).
In the Table I, we present the main methods and the different cases treated from the relational
model.

Table 1. The main methods and the different cases captured from the relational model.

Methods

One-to-

many

relation

Simple

inheritance

Multiple

inheritance

Many-to-

many

relation

Many-to-

many

relation with

attributes

n-ary

relations

[5], [6] X X
[7], [8], [20] X X

[9], [17] X X X X X
[10] X X X X
[11] X X X X X

[18], [19] X X X X
[21], [22],
[23], [24],

[25]
X X X

Our method X X X X X X

In this work, we propose to use the relational model as a source for ontology learning. Unlike the
methods mentioned previously, we propose exhaustive transformation rules that deal with most of
existing cases in databases (table1). Moreover, we analyze the database records to recover some
disappeared aspects during the mapping from the conceptual data model to the relational model
(like disjointness and totalness in simple inheritance cases and the participating level of tables in
n-ary relations).

Computer Science & Information Technology (CS & IT) 274

3. TRANSFORMATION

Before applying transformation rules, we classify tables of the database schema into six
categories according to their attributes. After that, we transform the tables of each category into
ontological components by applying both mapping rules and data analysis. The latter finds
disjointness and totalness in inheritance cases, and spots the participation level of tables in n-ary
relations.

3.1. Classifying database tables

This step consists of classifying database tables into six categories according to the different
cases. The table 2 shows the proposed classification. In this work, we suppose that the databases
are at least in the third normal form.

Table 2. The different categories adopted for classifying the database tables.

Entity type Category Features

Strong entities
1

Tables containing only simple attributes without foreign keys
constraint (Example : Tables PERSON and PROGRAM in Figure 1)

2
Tables containing at least one foreign key (Example: Table
ACTIVITY in Figure 1).

Weak entities

3
Tables whose entire primary key is also a foreign key referencing a
single table. (Example: Tables STUDENT and TEACHER in Figure
1).

4
Tables containing a composite primary key (two or more fields)
which is also a foreign key whose fields are referencing exactly two
tables (Example: Table SUPERVISION in Figure 1).

5

Tables containing a composite primary key (two or more fields)
which is also a foreign key whose fields are referencing more than
two tables. Simple attributes are not duplicated in any of the
referenced tables (Example: Table OFFERED_COURSE in Figure
1).

6

Tables containing a composite primary key (two or more fields)
which is also a foreign key whose fields are referencing more than
two tables. Some simple attributes are duplicated in the referenced
tables (Example: Table PEDAGOGICAL_PROJECT in Figure 1).

3.2. Rules

After classifying the database tables, we apply the appropriate transformation rules for each
table's category (see table 2). In the rest of this paragraph, we will present the proposed
transformation rules. All these rules are illustrated by examples using the database which is
presented in Figure 1.

Rule 1: The tables that contain only simple columns (without foreign key constraint) are
transformed into simple classes into the ontology (category 1). Example:

<owl:Class rdf:ID="PERSON"/>

<owl:Class rdf:ID="PROGRAM"/>

Rule 2: Tables of the second category are transformed into simple classes in the ontology. Each
foreign key is mapped into two Object-Properties (mutually inverse). The first one has the class
corresponding to current table as domain, and its range is the referenced table by the foreign key.
The second one (inverse of the first Object-Property) is declared as inverse functional. Example:

275 Computer Science & Information Technology (CS & IT)

<owl:Class rdf:ID="ACTIVITY"/>

<owl:ObjectProperty rdf:ID="activityHasProject">

<rdfs:domain rdf:resource="#ACTIVITY" />

<rdfs:range rdf:resource="#PROJECT" />

</owl:ObjectProperty>

<owl:InverseFunctionalProperty rdf:ID="project'sActivity">

<rdfs:domain rdf:resource="#PROJECT" />

<rdfs:range rdf:resource="#ACTIVITY"/>

<owl:inverseOf rdf:resource="#activityHasProject" />

</owl:InverseFunctionalProperty>

Figure 1. Example of a normalized database

Rule 3: we can identify simple inheritance relationships from tables of the third category. All
tables in this category are sub-tables in hierarchies. Each sub-table is transformed into a class in
the ontology and is declared as a subclass of the table referenced by the foreign key (which is also
the primary key of each sub-table). Example:

<owl:Class rdf:ID="PERSON" />

<owl:Class rdf:ID="STUDENT">

<rdfs:subClassOf rdf:resource="#PERSON" />

</owl:Class>

<owl:Class rdf:ID="TEACHER"/>

<rdfs:subClassOf rdf:resource="#PERSON" />

</owl:Class>

After reproducing simple inheritance relations into the taxonomy of the ontology, we will identify
disjointness and totalness constraints in those relations.

In a simple inheritance relation, disjointness means that an entity can be a member of at most one
of the subclasses (that have the same level) of a hierarchy [26]. To identify the existence of

#Ssn #ProgramID
STUDENT

Ssn Address BirthDate

Name
PERSON

#Ssn EngType

ENGINEER
#Ssn TypingSpeed

SECRETARY

#Ssn Salary
EMPLOYEE

#Ssn Tgrade

TECHNICIAN
#Ssn Speciality

TEACHER

#Ssn #ProjectID

SUPERVISION
ProgramID ProgramName

PROGRAM

ActivityID

ActivityName

ACTIVITY
#ProjectID
Project_ID

#Ssn

#ProgramID

OFFRED_COURSE
#CourseID

ProjectID

ProjectName

PROJECT
Duration

CourseName

LearningHours

#CourseID

PEDAGOGICAL_PROJECT
#ProjectID

ProjectName

Duration

CourseID

COURSE
CourseName

LearningHours

Computer Science & Information Technology (CS & IT) 276

disjointness between tables having the same level in a hierarchy, we propose the algorithm
presented in Figure 2. For example, the following OWL code illustrates the disjointness constraint
in a simple inheritance relation:

<owl:Class rdf:about="#TECHNICIAN">

<rdfs:subClassOf rdf:resource="#EMPLOYEE"/>

<owl:disjointWith rdf:resource="#SECRETARY"/>

<owl:disjointWith rdf:resource="#TEACHER"/>

</owl:Class>

<owl:Class rdf:about="#SECRETARY">

<rdfs:subClassOf rdf:resource="#EMPLOYEE"/>

<owl:disjointWith rdf:resource="#TEACHER"/>

</owl:Class>

<owl:Class rdf:about="#TEACHER">

<rdfs:subClassOf rdf:resource="#EMPLOYEE"/>

</owl:Class>

Disjointness

Input:
SC : List of the sub-tables of a simple inheritance relation

Output:

DL : two-dimensional array that will contain disjoint tables

Let pk(T) a function retrieving the primary key of a table T
Let val(attr) a function that retrieves the value of the attribute "attr" for the current record

Let N the size of the list SC
FOR i = 0 to N-1

FOR j = i+1 to N-1
FOR each record of the table SC[i]

FOR each record of the table SC[j]
IF val(pk(SC[i])) = val(pk(SC[j])) THEN

BREAK
ENDIF

ENDFOR
ENDFOR
Add [SC[i], SC[j]] to the array DL

ENDFOR
ENDFOR

Figure 2. Disjointness detection algorithm

Concerning the totalness, it specifies that every entity in the superclass must be a member of at
least one subclass in the hierarchy [26]. To identify the existence of totalness in a hierarchy, we
propose the algorithm presented in Figure 3. For example, the following OWL code illustrates the
totalness constraint in a simple inheritance relation:

<owl:class rdf:ID="EMPLOYEE">

<owl:unionOf rdf:parseType="Collection">

<owl:class rdf:about="#SECRETARY" />

<owl:class rdf:about="#TEACHER" />

<owl:class rdf:about="#TECHNICIAN" />

</owl:unionOf>

</owl:class>

In the case of existence of both a disjointness and totalness in a simple inheritance relationship,
we combine the two previous proposals. The following example illustrates this situation:

277 Computer Science & Information Technology (CS & IT)

<owl:Class rdf:about="#TECHNICIAN">

<rdfs:subClassOf rdf:resource="#EMPLOYEE"/>

<owl:disjointWith rdf:resource="#SECRETARY"/>

<owl:disjointWith rdf:resource="#TEACHER"/>

</owl:Class>

<owl:Class rdf:about="#SECRETARY">

<rdfs:subClassOf rdf:resource="#EMPLOYEE"/>

<owl:disjointWith rdf:resource="#TEACHER"/>

</owl:Class>

<owl:Class rdf:about="#TEACHER">

<rdfs:subClassOf rdf:resource="#EMPLOYEE"/>

</owl:Class>

<owl:class rdf:ID="EMPLOYEE">

<owl:unionOf rdf :parseType="Collection">

<owl:class rdf:about="#SECRETARY" />

<owl:class rdf:about="#TEACHER" />

<owl:class rdf:about="#TECHNICIAN" />

</owl:unionOf>

</owl:class>

Totalness

Input:

- ST : the super-table
- ssT : a list of the sub-tables of ST

Output:

F : Boolean to flag the existence of totalness

Let pk(T) a function retrieving the primary key of a table T
Let val(attr) a function that retrieves the value of the attribute "attr" for the current record

Let N the size of the list ssT
F ���� FALSE

FOR each table T of ssT
FOR each record of ST

FOR each record of T
IF val(pk(T)) = val(pk(ST))THEN

N ���� N – 1

BREAK
ENDIF

ENDFOR
ENDFOR

ENDFOR
IF N = 0 THEN

F ���� TRUE

ENDIF
Figure 3. Totalness detection algorithm

Rule 4: The tables containing a composite primary key (two or more columns) which is also a
foreign key whose fields are referencing exactly two tables (category 4), are mapped into two
Object-Properties mutually inverse. Example:

<owl:ObjectProperty rdf:ID="hasProject">

<rdfs:domain rdf:resource="#ENGINEER" />

<rdfs:range rdf:resource="#PROJECT" />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasEngineer">

<rdfs:domain rdf:resource="#PROJECT" />

Computer Science & Information Technology (CS & IT) 278

<rdfs:range rdf:resource="#ENGINEER" />

<owl:inverseOf rdf:resource="#hasProject"/>

</owl:ObjectProperty>

If a table of category 4 contains simple columns (table resulted from a many-to-many relation
with attributes), we apply rules 4 and 5 to this table.

Rule 5: the tables of the category 5 are resulting from n-ary relations. Their primary keys are
composed by several foreign keys (more than two) referencing the participating tables to the
relation.

OWL does not support n-ary relations. To represent this type of relations, W3C proposed two
solutions [27]. The first one is to create an individual that represents the relation instance itself,
with links from the subject of the relation to this instance and with links from this instance to all
participants that represent additional information (see Figure 4).

Figure 4. First solution of the W3C to represent n-ary relations

The second solution proposed by [27] is used when the n-ary relationship links individuals that
play different roles in a structure without any single individual standing out as the subject or the
"owner" of the relation. In this case, we create an individual to represent the relation instance with
links to all participants (Figure 5).

Figure 5. Second solution of the W3C to represent n-ary relations

In the case of ontology automatic generation, the first solution cannot be applied, because we
should choose a subject for the relationship. Therefore, we will adopt the second solution in our
method.

To represent n-ary relations from the relational model, we create a class corresponding to the
bridge table related to the classes that correspond to the participating tables to the n-ary relation
by OWL restrictions (allValuesFrom or someValuesFrom). These restrictions are depending on
the participation level of tables in the relation. In Figure 6, we present an example of transforming
the n-ary relation OFFRED_COURSE in the example given in the Figure 1.

To define the participation level of each table to the n-ary relation, we check if all records of the
participating tables are referenced in the bridge table. If so, we use an allValuesFrom restriction,
else a someValuesFrom restriction is used.

Relation_instance

Participant 1 Participant 2 Participant N

Subject

(Owner)
Relation_instance

Participant 1

Participant 2

Participant N

279 Computer Science & Information Technology (CS & IT)

Figure 6. Example of transforming a n-ary relation

To illustrate this solution, we present below the OWL code corresponding to the n-ary relation
OFFRED_COURSE:

<owl:Class rdf:ID="OFFRED_COURSE">

<rdfs:subClassOf>

<owl:Restriction>

<owl:someValuesFrom>

<owl:Class rdf:about="#COURSE"/>

</owl:someValuesFrom>

<owl:onProperty>

<owl:ObjectProperty rdf:about="hasCourse"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:someValuesFrom>

<owl:Class rdf:about="#PROGRAM"/>

</owl:someValuesFrom>

<owl:onProperty>

<owl:ObjectProperty rdf:about="hasProgram"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:allValuesFrom>

<owl:Class rdf:about="#TEACHER"/>

</owl:allValuesFrom>

<owl:onProperty>

<owl:ObjectProperty rdf:about="hasTeacher"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

Rule 6: in the conceptual data model, the tables of the category 6 are subclasses in more than one
class/subclass relationship (multiple inheritance). In the relational model, these tables can be
confused with the bridge tables of n-ary relations (category 5), since they are weak entities whose
primary key consists of two or more foreign keys referencing two or more tables. To distinguish
between both categories (5 and 6), we supposed that tables of category 6 must contain in addition
to the primary key, inherited attributes (during the mapping process) belonging to super-tables.

To map the multiple inheritance case, we reproduce the same hierarchy in the taxonomy of the
ontology. Each sub-table (of category 6) is transformed into a subclass of the classes
corresponding to the tables referenced by the foreign keys of the sub-table. For example, the
OWL code for the PEDAGOGICAL_PROJECT (Figure 1) is as follows:

OFFRED_COURSE

TEACHER PROGRAM COURSE

allValuesFrom someValuesFrom someValuesFrom

Computer Science & Information Technology (CS & IT) 280

<owl:Class rdf:ID="COURSE" />

<owl:Class rdf:ID="PROJECT"/>

<owl:Class rdf:ID="PEDAGOGICAL_PROJECT">

<rdfs:subClassOf rdf:resource="#PROJECT" />

<rdfs:subClassOf rdf:resource="#COURSE" />

</owl:Class>

Rule 7: Concerning the transformation of the columns (without foreign key constraint), we create
for each attribute a dataType property for which the domain is the class corresponding to the table
containing this column and the range is the type in XML schema. Example:

<owl:DatatypeProperty rdf:ID="Name">

 <rdfs:domain rdf:resource="#PERSON"/>

 <rdf:range rdf:resource="&xsd;String"/>

</owl:DatatypeProperty>

For attributes with special constraints such as NOT NULL, UNIQUE and Primary Key, we
propose to treat them as follows:

NOT NULL: add the MinCardinality restriction to the Datatype Property with the value 1,

<owl:Class rdf:ID="PERSON">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#Name" />

 <owl:minCardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>

 </owl:Restriction>

 </rdfs:subClassOf>

</owl:Class>

UNIQUE: declare the Datatype property as inverse functional,

<owl:InverseFunctionalProperty rdf:ID="Program_name">

 <rdfs:domain rdf:resource="#PROGRAM"/>

 <rdf:range rdf:resource="&xsd;String"/>

</owl:InverseFunctionalProperty>

Primary Key: add the MinCardinality restriction to the Datatype Property with the value 1, and
declare it as inverse functional,

<owl:InverseFunctionalProperty rdf:ID="Ssn">

 <rdfs:domain rdf:resource="#PERSON"/>

 <rdf:range rdf:resource="&xsd;String"/>

</owl:InverseFunctionalProperty>

<owl:Class rdf:ID="PERSON">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#Ssn" />

 <owl:minCardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>

 </owl:Restriction>

 </rdfs:subClassOf>

</owl:Class>

The table IV summarizes the proposed transformation rules.

281 Computer Science & Information Technology (CS & IT)

Table 3. Summary of the proposed transformation rules.

Rule Case OWL Component
1 Strong entity Class

2

Foreign Key Two Object Properties mutually inverse
1. The First one :

- Domain: Class corresponding to the table containing the
column,

- Range : Class corresponding to the referenced table,
2. The Second one is the inverse of the first, and it is declared as

inverse functional

3 & 6
Simple and Multiple
inheritance

Reproducing inheritance relations into the taxonomy of the ontology

4
Many-to-Many
relation

Two Object Properties mutually inverse that rely the classes
corresponding to the participant tables of the relation

5

N-ary Relation A class corresponding to bridge table, related to the classes that
correspond to the participating tables with "is-a" relation restricted
with the OWL restriction "AllValuesFrom" or "SomeValuesFrom"
according to the participating level of each table of the relation

4 & 5
Many-to-Many
relation with
attributes

Combination of the above two cases

7

Simple column Data Type Property
- Domain : Class corresponding to the table containing the

column,
- Range : The column type expressed with XML Schema,

Column with
UNIQUE constraint

Inverse Functional Property
- Domain : Class corresponding to the table containing the

column,
- Range: The column type expressed with XML Schema,

Column with NOT
NULL constraint

Data Type Property
- Domain : Class corresponding to the table containing the

column,
- Range : The column type expressed with XML Schema,
- Minimal cardinality = 1

Primary Key Inverse Functional Property
- Domain : Class corresponding to the table containing the

column,
- Range : The column type expressed with XML Schema,
- Minimal cardinality = 1

4. EXPERIMENTAL RESULTS

To evaluate the efficiency of the proposed transformation rules, we implemented the proposal
with Java and the Jena API (Java framework for building Semantic Web applications) for
automatically OWL ontology building from relational database. Having a friendly-user interface,
our system allows building OWL file that contains the definition of the extracted ontology from
MySql database.

We conducted several experiments using a normalized relational database (SAKILA available on
the official MySql website) containing different cases discussed previously. The metadata of this
database is presented in the table 4.

Computer Science & Information Technology (CS & IT) 282

 Table 4. Metadata of SAKILA database.

Metadata Count

Entities
Strong 14
Weak 2

Columns

Primary Key (PK) constraint 14
Foreign Key (FK) constraint 16
PK and FK constraints 4
Others 53

Using the proposed transformation rules to map SAKILA database into ontology, the obtained
numbers of concepts, Object Properties and Data Type Properties are respectively 16, 42 and 67.
All the existing cases in the SAKILA database were successfully transformed into ontological
components.

5. CONCLUSION AND FURTHER WORKS

In this paper, we have proposed a technique which consists in a set of transformation rules for
building OWL ontologies from relational databases. The schema mapping uses the transformation
rules to transform the components of the physical model into ontology's components. The data
analysis is used to recover some disappeared aspects during mapping conceptual data model to
the relational model (like disjointness and totalness in simple inheritance cases and the
participating level of tables in n-ary relations).

We have tested our proposal using the SAKILA database. The obtained results are satisfactory
compared to other methods in terms of the number of the treated concepts. Moreover, our method
covers all possible cases in databases. The generated ontologies have richer non-taxonomic
relations.

A major direction for improvement could be to add a reverse engineering phase before applying
the transformation rules in order to detect generalization and specialization inheritance cases. This
process will allow us to recover disappeared tables during mapping conceptual data model to the
relational model. Furthermore, integrating a reverse engineering phase will make the built
ontologies richer in terms of taxonomic relations. Finally, we also suggest testing our technique
on a second database to show its robustness and its genericity.

REFERENCES

[1] W3C, the semantic web activity, Available at : http://www.w3.org/2001/sw/
[2] T. Gruber, Ontology, In Ling Liu & M. Tamer Özsu (Ed.), the Encyclopedia of Database Systems

(Springer-Verlag, 2009, 1963-1965).
[3] Tim Berners-Lee, James Hendler & Ora Lassila, (2001) “The Semantic Web”, Scientific American,

Vol. 284, pp. 34-43.
[4] Alexander Maedche & Steffen Staab, (2005) “Ontology Learning for The Semantic Web”, IEEE

Intelligent Systems, Vol. 16, No. 2, pp. 72-79.
[5] Chen He-ping, He Lu & Chen Bin, (2008) “Research and implementation of ontology automatic

construction based on relational database”, Proceedings of the International Conference on

Computer Science and Software Engineering, pp. 1078-1081.
[6] Heru Agus, Su-Cheng Haw & Ziyad.T. Abdul-Mehdi, (2011) “Ontology extraction from relational

database: Concept hierarchy as background knowledge”, Knowledge-Based Systems, Vol. 24, No 3,
pp. 457-464,

[7] Justas Trinkunas & Olegas Vasilecas, (2007) “Building ontologies from relational databases using
reverse engineering methods”, Proceedings of the international conference on Computer systems and

technologies.

283 Computer Science & Information Technology (CS & IT)

[8] Farid Cerbah, (2008) “Mining the Content of Relational Databases to Learn Ontologies with Deeper
Taxonomies”, Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web

Intelligence and Intelligent Agent Technology, pp. 553- 557.
[9] Zhuoming Xu, Xiao Cao, Yisheng Dong & Wenping Su, (2004) “Formal Approach and Automated

Tool for Translating ER Schemata into OWL Ontologies”, Advances in Knowledge Discovery and

Data Mining, pp. 464-475.
[10] Igor Myroshnichenko & Marguerite C. Murphy, (2009) “Mapping ER Schemas to OWL Ontologies”,

Proceedings of the IEEE International Conference on Semantic Computing, pp. 324-329.
[11] Sujatha R. Upadhyaya & P. Sreenivasa Kumar, (2005) “ERONTO: A Tool for Extracting Ontologies

from Extended ER Diagrams”, Proceedings of the 20th ACM Symposium on Applied Computing, pp.
666-670.

[12] Shihan Yang & Jinzhao Wu, (2010) “Mapping Relational Databases into Ontologies through a Graph-
based Formal Model”, Proceedings of the Sixth International Conference on Semantics Knowledge

and Grid, pp. 219-226.
[13] Christian Bizer, (2003) “D2R MAP - a database to RDF mapping language”, Proceedings of the 12th

International World Wide Web Conference.
[14] Nikolaos Konstantinou , Dimitrios-emmanuel Spanos , Michael Chalas , Emmanuel Solidakis &

Nikolas Mitrou, (2006) “VisAVis: An Approach to an Intermediate Layer between Ontologies and
Relational Database Contents”, Proceedings of Workshops and Doctoral Consortium, The 18th

International Conference on Advanced Information Systems Engineering - Trusted Information

Systems.
[15] Shihan Yang, Ying Zheng & Xuehui Yang, (2010) “Semi-automatically building ontologies from

relational databases”, Proceedings of the 3rd IEEE International Conference on Computer Science

and Information Technology, pp. 150 - 154.
[16] Jesús Barrasa , Óscar Corcho & Asunción Gómez-pérez, (2004) “R2O, an Extensible and

Semantically based Database-to-Ontology Mapping Language”, Proceedings of the 2nd Workshop on

Semantic Web and Databases, pp. 1069-1070.
[17] Irina Astrova , Nahum Korda & Ahto Kalja, (2007) “Rule-Based Transformation of SQL Relational

Databases to OWL Ontologies”, Proceedings of the 2nd International Conference on Metadata &

Semantics Research, pp. 415-424.
[18] Man Li, Xiao-Yong Du & Shan Wang, (2005) “Learning ontology from relational database”,

Proceedings of the International Conference on Machine Learning and Cybernetics, pp. 3410-3415.
[19] Zdenka Telnarova, (2010) “Relational database as a source of ontology creation”, Proceedings of the

International Multiconference on Computer Science and Information Technology, pp. 135-139.
[20] Kobra etminani , Mohsen Kahani & Yanehsari N.R, (2009) “Building ontologies from relational

databases”, Proceedings of the First International Conference on Networked Digital Technologies,
pp. 555-557.

[21] Changjun Hu, Huayu Li, Xiaoming Zhang & Chongchong Zhao, (2008) “Research and
Implementation of Domain-Specific Ontology Building from Relational Database”, Proceedings of

the Third ChinaGrid Annual Conference, pp. 289 - 293.
[22] Ahmed Waqas, Aslam Muhammad Ahtisham, Shen Jun & Yong Jianming, (2011) “A light weight

approach for ontology generation and change synchronization between ontologies and source
relational databases”, Proceedings of the 15th International Conference on Computer Supported

Cooperative Work in Design, pp. 208-214.
[23] Nadine Cullot, Raji Ghawi & Kokou Yétongnon, (2007) “DB2OWL: A Tool for Automatic Database-

to-Ontology Mapping”, Proceedings of the 15th Italian Symposium on Advanced Database Systems,
pp. 491-494.

[24] Irina Astrova & Ahto Kalja, (2006) “Towards the Semantic Web: Extracting OWL Ontologies from
SQL Relational Schemata”, Proceedings of the 2nd International Conference on Metadata &

Semantics Research, pp. 62-66.
[25] Guohua Shen, Zhiqiu Huang, Xiaodong Zhu & Xiaofei Zhao, (2006) “Research on the Rules of

Mapping from Relational Model to OWL”, Proceedings of the OWLED*06 Workshop on OWL:

Experiences and Directions.
[26] Ramez Elmasri & Shamkant Navathe, (2011) Fundamentals of Database Systems sixth Edition

Pearson Education.
[27] W3C Working Group, Defining n-ary Relations on the Semantic Web, 12 April 2006. Available at :

http://www.w3.org/TR/swbp-n-aryRelations/

