

Jan Zizka (Eds) : CCSIT, SIPP, AISC, PDCTA - 2013

pp. 477–491, 2013. © CS & IT-CSCP 2013 DOI : 10.5121/csit.2013.3653

MODELING OF DISTRIBUTED MUTUAL

EXCLUSION SYSTEM USING EVENT-B

Raghuraj Suryavanshi
1
 and Divakar Yadav

2

1
Institute of Engineering and Technology, GBTU, Lucknow, INDIA

2
 Department of Computer Science, South Asian University, New Delhi 110067, India

suryavanshi.cse@ietlucknow.edu;dsyadav@cs.sau.ac.in

ABSTRACT

The problem of mutual exclusion arises in distributed systems whenever shared resources are concurrently

accessed by several sites. For correctness, it is required that shared resource must be accessed by a single

site at a time. To decide, which site execute the critical section next, each site communicate with a set of

other sites. A systematic approach is essential to formulate an accurate speciation. Formal methods are

mathematical techniques that provide systematic approach for building and verification of model. We have

used Event-B as a formal technique for construction of our model. Event-B is event driven approach which

is used to develop formal models of distributed systems .It supports generation and discharge of proof

obligations arising due to consistency checking. In this paper, we outline a formal construction of model of

Lamport's mutual exclusion algorithm for distributed system using Event-B. We have considered vector

clock instead of using Lam-port's scalar clock for the purpose of message's time stamping.

KEYWORDS

Formal Methods, Distributed System, Vector Clock, Event-B, Formal Specifications, Mutual Exclusion.

1. INTRODUCTION

In distributed system, the problem of mutual exclusion arises when several sites access shared

resources concurrently. To ensure the correctness, it is necessary that the shared resource must be

accessed by a single site at a time. The mutual exclusion problem in a single computer system,

where shared memory exist, can be solved by using shared variables i.e., semaphores. In

distributed systems, shared memory does not exist and the resources may be distributed.

Therefore, approaches based on shared variable may not be applicable. To solve the problem of

mutual exclusion in distributed system, the approaches based on message passing are used. The

mutual exclusion algorithm can be categorized as token based [1], [2] and non token based

algorithm [1], [3], [4]. In the first category a unique token is shared among all the sites. A site is

allowed to enter its critical section if it contains the token. In non token based algorithm, a site

communicates with a set of other sites to decide who should execute the critical section next. Non

token based mutual exclusion algorithms use timestamps to order requests for the critical section.

478 Computer Science & Information Technology (CS & IT)

In this paper, formal construction of non token based mutual exclusion algorithm for distributed

system is outlined. We have considered Lamport's algorithm [1], [3] for formal development of

our model. In this algorithm, each site maintains a request queue, which contains its own times

tamped request for mutual exclusion and also request messages received from other sites [3]. If

any site Sx wants to enter the critical section, it broadcasts a time stamped request message

REQUEST-X to all the sites and makes an entry for request message REQUEST-X in its request

queue. When a site Sy receives the request message REQUEST-X sent by site Sx, It makes an

entry of Sx's request(REQUEST-X)in its request queue and returns a time stamped reply message

REPLY-Y to site Sx. After receiving the time stamped reply messages from all the sites, there

questing site Sx enters the critical section if following conditions hold :

1. Time stamp of all received messages are greater than time stamp of request

 message REQUEST-X.

2. Time stamp of REQUEST-X is minimum among all requests present in

request queue of site Sx.

After executing the critical section site Sx removes the entry of request message (REQUEST-X)

from its request queue and broadcasts a time stamped release message RELEASE-X to all the

sites. When a site Sy receives the release message RELEASE-X from site Sx, It removes Sx's

request REQUEST-X from its request queue. When a site removes a request from its request

queue then it may possible that next minimum times tamped request is own request, enabling

it to enter the critical section. This algorithm executes critical section requests in the increasing

order of timestamps.

A functional specification of system describes its behavior. A specification contains significant

information about the system. The B Method provides a systematic approach to formulate an

accurate specification. we develop our model in the spirit embedded in Event-B. The model

contains a BROADCAST-REQ event that models the event for requesting critical section. In this

event a requesting site broadcasts a time stamped request message to all sites. Delivery of time

stamped request message is shown by DELIVER-REQ event. The event REPLY models the event

for sending time stamped reply message from a site (receiver of request message) to requesting

site. The event REPLY-RECEIVE models the receiving of time stamped reply message at the

requesting site. At the same time this event also count how many sites have sent the reply

messages. The execution and releasing of critical section is shown by the event EXECUTE-CS

and RELEASE-CS respectively. After the execution of critical section, the requesting site

broadcasts a timestamped release message to all sites. The broadcasting of time stamped release

message is shown by the event BROADCAST-RELEASE. The event DELIVER-RELEASE models

the delivery of times tamped release message at all sites.

The remainder of this paper is organized as follows: Section 2 briefly outline Event B and Rodin

platform, Section 3 describes system model and informal description about events, Section 4

presents Event−B Model of mutual exclusion for distributed system. Section 5 concludes the

paper

Computer Science & Information Technology (CS & IT) 479

2. EVENT-B AND RODIN PLATFORM

The B Method [5], [6], [7] is a model oriented state based method. It represent the complete

mathematical development of a Discrete Transition System. Event-B represents a further

evolution of the B method, which has been simplified and is now centered around the general

notion of events. Event-B [8], [9],[10], [11], [12],[13], [14], [15], [16], [17] is event driven

approach used to develop formal models of distributed systems. It is made of several components

of two kinds: machines and contexts. Machines represent the dynamic part of model. This part is

used to provide behavioral properties of model. It contains the variables, invariants, theorems,

and events of a project. A machine is made of a state, which is defined by means of variables.

Variables correspond to mathematical objects: sets, binary relations, functions, numbers, etc.

These variables are constrained by invariants and these invariants are to be preserved while

change the value of variables. The theorem of machine must follow from the context and the

invariants of that machine. Moreover, a machine can be refined by other machines, but each

machine can refine only one machine. Contexts contain the static part of model. It contains sets,

constants, axioms, theorems. Sets may be enumerated or carrier. Axioms are used to describe the

properties of those sets and constants. The context may be seen by machine directly or indirectly.

Besides its state, a machine contains a number of events which specify how the state may evolve.

An event is made up of three elements its name, guards and actions. The guards are the necessary

conditions for the event to occur. An event known as initialization event has no guard and it gives

initial position of the model. An event can be specified in one of following three forms:

Where k denotes parameters that are local to event, v denotes variable of machine containing the

event, P(...) is a predicate denoting the guards of event and S(...) denotes the actions that updates

some variables. Event-B notations are set theoretic notations. The syntax and description of

notations are outlined in [10].

The Event-B Method requires the discharge of proof obligations for consistency checking. What

is to be proved is stated in terms of proof obligations of a model. Proof obligations serve to verify

properties of a model. They also serve to demonstrate that a model is sound with respect to some

behavioral semantics. In this work, we have used Rodin platform. It is an open extensible tool for

specification and verification of Event-B. The tool provides a seamless integration between

modeling and proving. It also provide an environment for generation and discharge of proof

obligations. It is embedded by various plugins such as proof-obligation generator, model

checkers, provers, UML transformers, etc.

3. SYSTEM MODEL

We have considered a distributed system having a set of sites where every site maintains a request

queue. The request queue contains timestamped request messages. In our model, time stamping of

messages are done through vector clock [18]. In a system of vector clock, every site maintains a

480 Computer Science & Information Technology (CS & IT)

vector of size N to represent what that site believes to be the logical time at all other sites (N is

the total number of sites in the system). Assume each site Si maintains a vector clock VTSi, where

VT Si (i)represents a local logical time at Si while VTSi(j) represents the site Si's latest knowledge of the

time at site Sj . Precisely VTSi(j) (i ≠j)represents the local time at site Sj when the most recent

message was sent from Sj to Si directly or indirectly. Each time when a message is sent by any

particular site a vector time stamp is assigned to message. While sending a message M from site

Si to Sj , sender process Si updates its own time (ith entry of vector) by updating VTSi(i)as

VTSi(i):= VTSi(i)+ 1. The message time stamp VTM of message M is generated as VTM(k) :=

VTSi(k), ∀ k ∈ (1..N),,where N is the number of sites in system. A site Si increments its own local

time VTSi(i)only at the time of sending a message.

When a recipient site Sj receives a time stamped message it updates its knowledge by updating

own vector clock. Site Sj updates its vector clock VTSj afterthe delivery of message M as VTSj(k)

:= Max (VTSj(k),VTM(k)). Therefore, inthe vector clock of site Sj , VTSj(i) indicates the number of

messages delivered to site Sj sent by site Si. The delivery order of messages between every pair of

sites must follow FIFO order. The FIFO ordering property says that: If a particular site

broadcasts a message M1 before it broadcast a message M2, then each recipient process delivers

M1 before M2. The informal description of events are as follows:

1. Request for Critical Section: Any site which wants to enters the critical section, broadcasts a

time stamped request message to all the sites. When a site broadcasts a message it increments its

own vector time stamp by one and modified vector time stamp is assigned to message. It also

creates an entry of time stamped request message in its request queue.

2. Delivery of Request Message: When a site receives the time stamped request message, it makes

an entry of received request in its request queue. The delivery order of request message must

follow the FIFO order. This ensures that all the messages which are previously sent by requesting

site before the request message have already been delivered. During the delivery of request

message receiving site also updates its knowledge by updating own vector time stamp with the

time stamp of request message.

3. Reply to Requesting Site: After the delivery of timestamped request message at any site, it

sends a corresponding time stamped reply message to requesting site. For assigning time stamp to

message, a receiving site increments its own vector time stamp by one and modified vector time

stamp is assigned to reply message.

4. Receive Reply Message: The requesting site receives the times tamped reply message sent by

all sites. It makes an entry for each received reply message.The requesting site also count the total

number of replied site. Each time when it receives a reply message it increments the value of total

number of replied site by one. The requesting site also updates its vector time stamp with the time

stamp of replied messages.

5. Execution of Critical Section: After receiving the reply messages from all sites, a requesting

site enters critical section if the time stamp of all received messages are greater than time stamp

of its request message and also the time stamp of own request message is minimum among all

request messages present in request queue.

Computer Science & Information Technology (CS & IT) 481

6. Release Critical Section: After performing execution of critical section the requesting site

release it and removes the entry of request message from its request queue.

7. Broadcast Release Message: The requesting site broadcasts a time stamped release message to

all the sites so that they can also remove the entry of request message (which is previously sent by

it) from their request queue.

8. Receive Release Message: After the delivery of timestamped release message at any site, it

removes the entry of corresponding request message from its request queue and updates its vector

time stamp with the time stamp of release message.

4. EVENT-B MODEL OF MUTUAL EXCLUSION FOR DISTRIBUTED

SYSTEM

Our Event-B model contains a context and a machine having eight events. In a context seen by

machine SITE and MESSAGE represent carrier set. The status is defined as enumerated set

containing the element pending, reqcs, execs, releasecs. The type is also defined as enumerated

set and contains the element request, reply, release. Variable sender is defined as a partial

function from MESSAGE to SITE. A mapping of the form (m7→s)∈ sender indicates that

message m was sent by a site s. The variable msgsend is subset of MESSAGE and it contains only

those messages which are sent by any site. The variable reqsites is subset of SITE and it contains

only those sites which have sent request messages. The variable vtss represents vector time stamp

of site. It is declared as:

vtss ∈ SITE → (SITE → Natural)

It is a total function which maps every site to a vector function. The vector function maps each

site to a natural number. The 'Natural' represents a set of natural numbers in B. Therefore, vector

time stamp of any site Si, vtss(Si) is a vector. The length of vector depends on number of sites

present in the set SITE. Assume there are K sites in the system then vtss(Si) is a vector of

((S17→N1),(S27→ N2), (S37→ N3).........(Si7→ Ni)........(Sk7→ Nk)).

Every time when a message is sent by site Si, it increments its own clock value vtss(Si)(Si) by

one. Therefore, vector time stamp of site Si after sending single message is

((S17→N1),(S27→ N2), (S37→ N3)........(Si7→ Ni + 1)........(Sk7→ Nk)).

The variable vtsm represents vector time stamp of message. It is defined as:

482 Computer Science & Information Technology (CS & IT)

It is a total function which maps every message to a vector function. Vector time stamp of any

message mm (vtsm(mm)) is also a vector. Every time when a message mm is sent by site Si, it

increments its own clock value by one and modified vector timestamp of site is assigned to

message mm. This creates thevector timestamp of message mm. The vtss(Si)(Si) represents the

number of messages sent by site Si. The description of other variables are as follows (see Fig. 1):

(i) The variable sitestatus is defined as a total function which maps each site to status. Thus every

site in the set SITE will have one of the following states;pending, reqcs, execs, releasecs.

(ii) The variable messagetype is defined as:

messagetype ∈ msgsend → type

It is a total function which maps every sent message to type. This ensures that every sent message

will have one of the following states; request, reply,release.

(iii) The variable requestqueue is declared as:

The operator ↔ defines the set of relations between SITE and request messages sent by

corresponding sites. A mapping of the form

Computer Science & Information Technology (CS & IT) 483

Fig. 2. Broadcasting of request message

requestqueue indicates that request queue of site ss has a request message m sent by site s.

Relational image of site Si under the relation requestqueue is represented by requestqueue[{Si}]

and it contains all request messages sent by corresponding sites i.e., if site Si receives three

request messages M1, M2,M3 sent by sites S1, S2, S3 respectively then requestqueue[{Si}]

contains The vector time stamp of messages can be

found from the variable vtsm.

(iv) When a site receives a request message it sends a corresponding reply message to requesting

site. A reply of request message sent by a site is represented by variable replymsgsent. It is

defined as:

A mapping indicates that a reply message m of a

request message mm has been sent by a site ss.

(v) The variable replymsgrec represents receiving of reply message of a request

message at requesting site.

(vi) The variable deliver represents delivery of message at a site. A mapping of form

 deliver represents that a site s has delivered message m.

484 Computer Science & Information Technology (CS & IT)

Fig. 3. Delivery of request message

(vii) The variable delorder represents delivery order of messages at a site. A mapping

 indicate that site s has delivered m1 before m2.

(viii) The variable totalrepliedsite maps each site to 'Natural' number. Variable counter is a

integer type which is used to count number of sites from which requesting site has received the

reply messages. A mapping totalrepliedsite represents that 'n' number of sites has sent

reply message to site s. Each time when a requesting site receives a reply message from other

sites the value of counter is incremented by one. Initially, the status of all site is set to as pending

and the value of variable counter is zero. The vector time stamp of all sites and messages are

initialized with zero. The remaining variables contain null values.

Broadcasting and Delivery of Request Message : The event BROADCAST-REQ models the

broadcasting of request message (see Fig. 2). A site ss which wants to enters critical section,

broadcasts a timestamped request message mm to all site. The guard grd6 & grd7 ensures that

message mm has not been sent previously. At the time of broadcasting a message mm, site ss

increments its own clock value vtss(ss)(ss) by one (grd9). The modified vector timestamp of site

is assigned to message mm(act1). The guard grd10 is written as:

Computer Science & Information Technology (CS & IT) 485

Fig. 4. Sending of Reply Message

It ensures that request queue of site ss does not contain a request message mm which is sent by it.

The action act2 ensures broadcasting of message mm by site ss and actions act3, act4 add the site

ss and message mm in the set reqsites and msgsend repectively. The type of message mm is set to

as a request through the action act5. The action act6 adds the message mm sent by site ss in the

request queue of ss. The action act7 changes the status of site ss from pending to reqcs.

The event DELIVER-REQ models the delivery of request message (see Fig.3).The request

message mm (grd7) which is sent by site ss (grd8) has not been delivered at site s is ensured by

guard grd10. The site ss is requesting site is ensured by guard grd2. The guard grd9 ensures that

request message mm sent by site ss is not present in the request queue of site s. The guard grd11

ensures FIFO order delivery of message. It confirms that all the messages which are sent by site

ss before message mm has been already delivered to site s. As a consequence of occurrence of this

event delivery of message mm is done at sites (act1) and request is added in the request queue of

site s (act3). The delivery order at site s is also updated such that all messages delivered at site s

must

486 Computer Science & Information Technology (CS & IT)

Fig. 5. Delivery of Reply Message

precede mm (act2). For maintaining the latest knowledge about the system, site

s updates its vector time stamp. It is expressed as act4 :

The operator (overload operator) updates the values in the vector clock of site s by

corresponding values in the vector timestamp of message mm (vtsm(mm)) wherever values in the

recipient site clock (vtss(s)(k)) are less than corresponding values in the message time stamp

(vtsm(mm)(k)).

Sending and Delivery of Reply Message: The event REPLY is given in Fig.4. This event models

the sending of timestamped reply message of corresponding request message. The message mm is

request message is ensured by guard grd5. A reply message m of request message mm has not

Computer Science & Information Technology (CS & IT) 487

been sent is ensured by guards grd7& grd9. The guard grd8 ensures that message m is a fresh

message and has not been previously sent by any site. As a consequences of occurrence of

this event, incremented vector time stamp value of site ss is assigned to message m (act1) and it is

added in the set msgsend (act2). The type of message m is set to as reply through action act3. The

action act4 makes site ss as a sender of

m. The action act5 is written as:

It updates variable replymsgsent and creates the entry of reply message m of request message mm

sent by site ss. The event REPLY-RECEIVE models the delivery of reply message at requesting

site (see Fig. 5). Site ss is a requesting site is ensured by guard grd2.

A request message mm has already been sent by site ss is ensured by guards grd4, grd5 & grd6. A

reply mesaage m of mm has been sent by site s is ensured by guard grd10. The guard grd13

ensures that reply m of corresponding request message mm has not been received by site ss. The

guard grd14 ensures FIFO order delivery of message. The action act1 makes the delivery of

message m at sites ss and action act2 updates the delivery order of messages such that all

messages delivered at site ss must precede m. The action act3 is written as:

This makes receiving of reply message m of request message mm at site ss. This event also count

how many sites have sent the reply message to requesting site. Each time when a reply message is

received by requesting site the value of total replied site is incremented by one (act4 & act5). For

maintaining the latest knowledge about the system, site ss updates its vector time stamp through

the action act6 .

Execution and Releasing of Critical Section: The EXECUTE-CS event, given in Fig. 6, models

the execution of critical section. A requesting site ss executes the critical section if following

condition holds:

(i) Site ss has received the reply messages from all sites and time stamp of all received messages

are greater than time stamp of request message which is sent by site ss.

(ii) Time stamp of all request messages which are present in the request queue of site ss are

greater than the time stamp of request message sent by site ss. The guard grd2 ensures that site ss

is requesting site and guard grd4 ensures that status of site ss is reqcs. The message type of mm is

request is ensured by guard grd7. The guard grd8 ensures that request queue of site ss contains a

request message mm which is sent by it. The guard grd9 ensures that site ss has received the reply

messages from all the sites. The guard grd10 ensures that time stamp of request message mm is

less than time stamp of all received replied messages. The guard grd11 ensures that time stamp of

request message mm is minimum among all the requests messages present in request queue of site

ss. The status of site ss is set to as execs through the action act1.

488 Computer Science & Information Technology (CS & IT)

Fig. 6. Execution and Releasing of Critical Section

The RELEASE-CS event models the releasing of critical section (see Fig.6).After performing

execution of critical section the requesting site release it and removes the entry of request

message from its request queue. The site ss is requesting site is ensured by guard grd2. The guard

grd4 ensures that status of site ss is execs. This event set the status of site ss as releasecs (act2)

and removes entry of its request from its request queue (act1).

Computer Science & Information Technology (CS & IT) 489

Fig. 7. Broadcasting of Release message

Broadcast and Delivery of Release message: The event BROADCAST-RELEASE is given in

Fig. 7. After releasing of critical section site ss broadcasts a time stamped release message to all

sites so that they can also remove the entry of request message previously sent by it. The guard

grd4 ensures that site ss has performed the execution of critical section. Before broadcasting a

reply message mm site ss increments its vector time stamp (grd9) and this modified vector time

stamp is assigned to the message mm (act1). The action act4 set the type of message mm as

release message. The action act5 removes site ss from request set reqcs. The status of site ss is set

to as pending through the action (act6).

The event DELIVER-RELEASE models the delivery of release message (see Fig. 8). The guard

grd3 ensures that message mm is release message. A site ss has sent the release message mm is

ensured by guard grd4. In the request queue of site s (recipient site) there is an entry of request

message m sent by site ss is ensured by guard grd9. The guard grd10 ensures FIFO order delivery

of messages. The delivery of message mm at site s is done through action act1. The action act2

updates the delivery order such that all the messages which are previously delivered to site s must

precede message mm. The action act3 updates the vector time stamp of site s. The action act4

removes the entry of request message m sent by site ss from the request queue of site s. Removing

a request from request queue makes possible that next minimum time stamped request is own

request, enabling it to enter the critical section.

490 Computer Science & Information Technology (CS & IT)

 Fig. 8. Delivery of Release message

5 . CONCLUSIONS

In distributed system, due to absence of global clock and shared memory traditional technique

like semaphore may not be appropriate for solving the problem of mutual exclusion. To decide

which site execute the critical section, a site communicates with other sites by sending a message.

We have considered Lamport's mutual exclusion algorithm [1], [3] for formal construction of our

model. In this algorithm, each site maintains a request queue, which contains its own

timestamped request for mutual exclusion and also request messages received from other sites

[3]. We have considered vector clock [18] instead of using Lamport's scalar clock for assigning

the time stamp to messages. In a system of vector clock, every site maintains a vector to represent

what that site believes to be the logical time at all other sites.

In this paper, modeling of distributed mutual exclusion system is specied using Event-B. This

work is carried out on Rodin tool [16], [17]. The Rodin tool is intended to support construction

and verification of Event-B models. The tool takes the formal text of model and produces proof

obligations. It provides an environment to discharge of proof obligations arising due to

consistency checking. Modeling guidelines outlined in [14] were used and these guidelines

helped us in modeling and discharging proof obligations generated due to consistency checking.

Total sixty four proof obligations were generated by the system and all of them were discharged

automatically. The proofs and invariants together helped us to reason about the system design.We

also found that vector clock can also be used to implement Lamport's mutual exclusion instead of

using scalar clock.

Computer Science & Information Technology (CS & IT) 491

REFERENCES

[1] Singhal, M., Shivratri, N.G.: Advanced Concepts in Operating Systems. Tata Mc- GrawHill Book

Company, India (2005)

[2] Raymond, K.: A Tree-Based algorithm for Distributed Mutual Exclusion. In: ACM transactions on

computer systems, vol.7, pp. 61-77, (1989)

[3] Lamport, L.: Time, Clocks and Ordering of Events in Distributed Systems. In:communications of the

ACM, July (1978)

[4] Ricart, G. and Agrawala, A. K.: An Optimal algorithm for Mutual Exclusion in Computer Networks.

In: communications of the ACM, (1981)

[5] Butler, M.: An Approach to Design of Distributed Systems with B AMN. In: Proc. 10th Int. Conf. of

Z Users: The Z Formal Speci_cation Notation (ZUM), LNCS1212, pp. 223-241, (1997).

[6] Butler M. and Walden, M.: Distributed System Development in B. In: Proc. of Ist Conf. in B Method,

Nantes, pp. 155-168, (1996).

[7] Rezazadeh, A. and Butler, M.: Some Guidelines for formal development of web based application in

B Method. In: Proc. of 4th Intl. Conf. of B and Z users, Guildford, LNCS, Springer, pp 472-491,

(2005).

[8] Banach, R.: Retrenchment for Event-B: UseCase-wise development and Rodin integration. Formal

Aspects of Computing, 23, pp. 113131, (2011).

[9] Hallerstede, S.: On the purpose of Event-B proof obligations. Formal Aspects of Computing, 23: pp.

133150, (2011).

[10] Yadav, D. and Butler, M.: Rigorous Design of Fault-Tolerant Transactions for Replicated Database

Systems Using Event B. In: Butler M., Jones, C.B.(eds.) LNCS, vol. 4157, Springer, Heidelberg,

pp.343-363,(2006).

[11] Hallerstede, S. and Leuschel, M.: Experiments in program veri_cation using Event-B. Formal Aspects

of Computing, 24: pp. 97125, (2012)

[12] Suryavanshi, R. and Yadav, D.:Formal Development of Byzantine Immune Total Order Broadcast

System using Event-B. In: ICDEM 2010, Andres, F. and Kannan, R. (eds.) LNCS, Vol. 6411,

Springer, pp.317-324, (2010).

[13] Yadav, D. and Butler, M.: Application of Event B to Global Causal Ordering for Fault Tolerant

Transactions. In: Proc. of REFT 2005, Newcastle upon Tyne, pp. 93-103, (2005).

[14] Butler, M. and Yadav, D.: An incremental development of the mondex system in Event-B. Formal

Aspects of Computing, 20(1):61-77, (2008).

[15] Yadav, D. and Butler, M.: Formal Development of a Total Order Broadcast for Distributed

Transactions Using Event-B. Lecture Notes in Computer Science 5454, springer-Verlag Berlin

Heidelberg, pp.152-176, (2009).

[16] Metayer, C., Abrial, J.R. and Voison, L.: Event-B language. RODIN deliverables 3.2,

http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf, (2005).

[17] Abrial, J.R.: A system development process with Event-B and the Rodin platform. In: Lecture Notes

In Computer Science 4789, Springer, pp.1-3, (2007).

[18] Baldoni, R. and Raynal, M.: Fundamentals of Distributed Computing: A Practical Tour of Vector

Clock Systems. In: IEEE Distributed Systems Online, Vol. 3, no. 2,(2002)

