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ABSTRACT 
 
Video Stabilization, which is important for better analysis and user experience, is typically done 

through Global Motion Estimation (GME) and Compensation. GME can be done in image 

domain using many techniques or in Transform domain using the well-known Phase Correlation 

methods which relate motion to phase shift in the spectrum. While image domain methods are 

generally slower (due to dense vector field computations), they can do global as well as local 

motion estimation. Transform domain methods cannot normally do local motion, but are faster 

and more accurate on homogeneous images, and are resilient to even rapid illumination 

changes and large motion. However both these approaches can become very time consuming if 

one needs more accuracy and smoothness because of the nature of the tradeoff.  We show here 

that wavelet transforms can be used in a novel way to achieve a very smooth stabilization along 

with a significant speedup in this Fourier domain computation without sacrificing accuracy. We 

do this by adaptively selecting and combining motion computed on a specific pair of sub-bands 

using the wavelet interpolation capability. Our approach yields a smooth, scalable, fast and 

adaptive algorithm (based on time requirement and recent motion history) to yield significantly 

better accuracy than a single level wavelet decomposition based approach. 

 

 

1. INTRODUCTION 
 

Video is increasingly the format of choice for acquisition and analysis of data. The video frame 

rate is a kind of temporal sampling which determines the range of motion which can be seen in 

the pixels of the image. A typical frame rate of the order of 20-30 frames per second gives us a 

sampling period of 0.05sec to 0.033 second. However, unintentional motion from human handlers 

of the image acquisition device generally last longer than this time and persists over several 

frames, introducing an artifact that degrades the quality of the entire data sequence. This global 

motion includes translation and mild rotation (between 5 and 10 degrees). A general goal of video 

stabilization is to remove the undesirable movement (global motion) from the sequence while 

preserving local motions of objects in the field of view.  
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Video stabilization is typically done through Global Motion Estimation (GME) and 

Compensation. GME can be done in image domain using multiple techniques such as Flow-based 

(e.g. Lucas-Kanade [6]) or Feature-based (e.g. SIFT, or matching best motion pairs across 

frames). These either require elaborate multi-scale iterative computation over dense vector fields 

in image domain [8] to overcome problems (such as small-motion assumption) or feature 

clustering with RANSAC like methods (to overcome noise and brightness constancy 

assumptions). GME can also be done in Transform domain using the well-known Phase 

Correlation which was originally defined in 1970’s by Kuglin and Hines [4], which relates global 

motion to phase shift in the spectrum which can be mapped back to a motion estimate derived as 

the position of the peak in the correlation surface derived through an inverse transform of the 

cross power spectrum of the two frames being compared.  

 

Image domain methods are slower (except in feature/corner-rich images where feature based 

methods perform faster), but they can do global as well as local motion estimation. Transform 

domain methods are generally faster and more accurate on homogeneous images, and are resilient 

to rapid illumination changes and large motion. Both these approaches can become very time 

consuming if one needs more accuracy and smoothness. Scalable, non-adaptive approaches based 

on image decomposition (say wavelet based) at a single scale of the image are known as well 

(McGuire [2]) but these also sacrifice accuracy for speed.  

 

We show here that wavelet transforms can be used to achieve significant speedup in this Fourier 

domain computation without sacrificing accuracy, by focusing on specific sub-bands (adaptively 

selected) and using the wavelet interpolation capability. Our approach yields a smooth, scalable, 

and  fast algorithm where two consecutive scale levels in a decomposition are adaptively chosen 

(based on time requirement and past motion history) and adaptively combined in a novel way to 

yield significantly better accuracy than a single level.  

 

Image-domain global motion stabilization techniques typically require computation of dense 

vector fields in a single resolution or of motion computation and combination across multiple 

resolutions. Our approach does not involve dense computation, but instead it computes as usual 

one FFT and one IFFT for the two selected levels to arrive at the final results. Our novel 

adaptivity comes from averaging the motion or jitter over a running window and selecting the 

sub-band pair where time complexity is least possible for this average. Also we note that ours is 

not block search based (being in transform domain), but searches in scale space for the correct 

pair of decomposition levels, and in the process introduces a novel multi-scale combination 

approach to transform domain, which is well-known in the image domain as Lucas Kanade 

pyramidal iterative tracker [8]. 

 

Note that a 2D global motion estimate is sufficient to do the video stabilization which we are 

interested in, and that we are not interested in local motion or object tracking or 3D stabilization. 

Note also that, in our paper here, our objective is to compare our novel multi-scale phase 

correlation against the usual single level phase correlation in terms of speed and accuracy (we 

achieve 15 msec per frame on 320 X 240 30 fps video on a common laptop, 30% faster than 

normal phase correlation for similar accuracy). Our goal is real time stabilization of video with 

time to spare for additional tasks, it is not to compare against RANSAC based feature driven 

methods which are slower at 70 msec per frame on same video with a GPU on same laptop. 
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2. TRANSLATION USING THE TRANSFORM DOMAIN METHOD 
 

Phase correlation is a well-known, illumination-invariant fast, transform domain method for 

global motion estimation [1], [2], [3], [4]. It utilizes the phase of Fourier transform coefficients to 

estimate motion down to a sub-pixel level. Motion can be estimated independently in either axis 

(however, translational motion has to be less than or equal to half the image size in either 

direction). The algorithm is described below. Let Fi and Fi+1 be the frames under consideration, 

where Fi is the anchor frame, with respect to which, the global translation of Fi+1 is estimated 
 

 
 

The shift values xo,yo are the co-ordinates of the maximum value of I. The co-ordinates xo,yo 

give us the relative translation from frame k to frame k+1 Stabilization is effected by shifting the 

second frame back by X, Y pixels. Further, for small angles of rotation, the rotation can be 

approximated as a linear translation. 

 

2.1   Adaptive Scalability Using Wavelets  
 

In most cases, with a human operator, motion in either axis does not remain similar in magnitude 

(for instance in a given situation the shake could be mostly be vertical. In such cases, repeated 

computation of Fourier transform to the same extent on both axes becomes computationally 

unnecessary. The above Fourier based approach can then be combined with the wavelet 

transforms (we use Haar for computational simplicity) to provide a scalable version of phase 

correlation [2]. Given that the motion is often not equal in both directions, the separable nature of 

the wavelet transform can be used to perform the computation adaptively by asymmetrically 

scaling the spatial image resolution across axes for better speed. Thus, it is possible to choose a 

single sub band and perform the Fourier transform only on that sub band to obtain the translation 

estimates as described above. Further, it is also possible to control the choice of sub-band 

adaptively through the use of a cost function dependent on prior motion history. In the majority of 

cases, with a human operator, the motion is not constant but usually converges to some steady 

state. In such cases, we can use the motion obtained from previous frames to decide the sub-band 

on which the motion estimates are computed for the next frame pair. Thus the scalability is 

adaptively controlled from the previous motion history. 

 

3. MOTION VECTOR SIMULATION 
 

The motion vectors in x and y were modeled as a zero mean Gaussian random process of a 

sequence of 40 frames. The variance in the motion vectors was used as a criterion of stabilization. 

The results for 4 different random Gaussian motion sequences on the same sequence of 40 frames 
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are as shown below.  The motion estimate was computed for the next frame as the mean of the 

mean of the motion vectors of the previous 5 frames independently in x and y, a reduction in 

motion is seen in the reduced variance of motion vectors 

 
Table 1. The variance of motion in x and y learnt from queue of 5 frames before and after stabilization 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 2. The variance of motion in x and y for different frame queue sizes averaged over 10 sequences for 

the same queue size 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. (a),(b),(c),(d), motion without compensation (blue), and with compensation (red) in horizontal ( 

above) and vertical( below) directions) 
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Motion  

sequence 

 X Variance  

(before stabilization)  

 Y Variance  

(before stabilization) 

X Variance  

(after stabilization)  

Y Variance  

(after stabilization) 

1 92.97 380.99 9.176 49.012 

2 90.83 384.51 5.38 15.78 

3 91.855 387.58 15.42 5.446 

4 93.33 381.57 5.207 26.33 

Frame  

queue size 

 X Variance  

(before stabilization)  

Y Variance  

(before stabilization )  

X Variance  

(after stabilization) 

 Y Variance  

(after stabilization) 

3 92.43 384.13 11.53 46.24 

5 92.03 385.15 10.74 21.06 

7 92.02 384.16 9.02 23.16 
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Fig. 2. the sub band at the corresponding frame in x (red) and y(black) direction determined using the 

motion estimates of previous 5 frames 
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4. MOTION ESTIMATION USING INFORMATION FROM MULTIPLE 

BANDS 
 

Due to the decreasing scale information at higher bands, the errors in estimating the motion 

increases as higher and smaller bands in the decomposition are used for stabilization. To achieve 

the stabilization at a lower cost, while still keeping the stabilization quality, we use the 

interpolation property of wavelets to refine this estimate by averaging from multiple bands. 

Interpolation of a signal is, in essence, the up sampling of the signal followed by convolution with 

the interpolation filter.  

 

Taking inverse DWT of only the coefficients at a lower scale can be used to obtain a ‘low 

resolution’ estimate of the image motion. Consequently, in obtaining the motion estimate, the 

peak of the phase correlation follows a similar pattern in obtaining motion estimates in the ‘scale 

space’, as is seen in image coding algorithms such as SPIHT [7].With the use of the Haar 

wavelet, this interpolation reduces to the simple nearest neighbor case and the pixels duplicate in 

the direction of the transform. 

 

Performing phase correlation of the entire image gives us an exact location of the motion vector. 

Using phase correlation on the one-level decomposition of the vector allows localization to an 

area of 2 pixels x 2 pixels, where the exact motion vector may be located and hence the error, 

increases exponentially as the size of the band reduces. This increase is countered by a weighted 

average of the motion vectors from multiple bands.  

 

Let X, Y be the original motion estimates. Let X1 Y1 be the motion estimates from the phase 

correlation 1 level decomposition 

 

Using wavelet interpolation property of the Haar wavelet 

 

X1’=2*X1 +0.5*sgn(X1) 4.1 

Y1’=2*Y1 +0.5*sgn(Y1)  4.2 
 

Let X2 Y2 be the motion estimates from the 2 level decomposition 

 

X2’=4*X2 +1*sgn(X2) 4.3 

Y2’=4*Y2 +1*sgn(Y2) 4.4 
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The resultant motion estimate Xr, Yr 

 

Xr= (aX1’+bX2’) 4.5 

Yr= (aY1’+bY2’) 4.6 

 

Further results using the described method to stabilize videos can be seen at this URL  

 

“http://www.youtube.com/channel/UCyWEttTY774WqNy71fuCbFQ?feature=mhee”Videos with 

unstab in their name are not stabilized. The videos with stab in their name have been stabilized by the 

method described. 

 

Fig. 3. (TOP) original motion vector (blue) stabilized with estimate from 1 band (red) and estimate from 

multiple bands( green) in horizontal direction ( above ) and vertical direction ( below) (BOTTOM) 

stabilization with unscaled phase 
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5. COMPLEXITY ANALYSIS 
 

It is important to note that the computational complexity with regards to our Fourier computation 

needs would never reach the computation of the full Fourier transform, in spite of application to 

multiple sub bands. Considering an NXN image, the complexity of the Fourier transform for one 

frame is O (N
2
log2N)  For a 1 level decomposition of the wavelet sub band the Fourier time 

domain complexity is  reduced to O ((N/2)
2
log2 (N/2)).  

 

Refining the motion with estimates from sub bands of higher level decomposition and still lower 

resolution (say second level of decomposition, with equal scaling in both x and y directions, The 

total complexity of the Fourier transforms becomes 
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Thus, in the limiting case, the complexity of performing the 2D Fourier transform is reduced to a 

fraction   of the original number of operations. Further, using the separable nature 

of the wavelet transform the decomposition may be performed asymmetrically at a given sub 

band, in this case, the complexity of the Fourier transform is O (N/2
i
)(N/2

j 
)log2(N/2

j
). In the 

multi-sub band case with asymmetric scaling, the total cost is now 

  

       
 

which reduces to 

  

        
 

where i and j are sub band decomposition levels in x and y directions respectively and typically, 

i,j <=k (see 5.2), as motion in one direction need not rely on information from motion in another 

direction. 

 

Due to the inherent low pass nature of the wavelet scaling function  and repeated scaling 

there is a loss of detail at each sub band level. This will inevitably reduce the amount of available 

frequency information available in the sub bands as the number of sub bands increase till the 

point where the frequency information in a given sub band does not have any change in phase 

from frame to frame thus placing a lower bound on the number of sub bands to be considered. 

 

The table below shows a comparison of our proposed method against existing phase correlation 

method for 3 sets of 10 random Gaussian motion sequences, each of length 40 frames  on frames 

of resolution 256x256.The variance and time taken were averaged over the 10 sequences in each 

set. The mean baseline variance of the 3 motion sequences was 93.23 in x and 94.15 in y 

direction. The simulations were performed in MATLAB on a HP 8640 laptop with i5 processor 

 
Table 3. Comparison of motion in X and Y with time taken against PC method. 

  

 

 

 

 

 

 

 

 

 

 

 

Motion 

sequence 

set 

Normal phase correlation 

(variance in X, Y, and Time 

taken) 

Proposed method 

(variance in X, Y, and Time taken) 

1 7.16 7.14 0.8725s 5.70 5.55 0.5855s 

2 6.92 8.80 0.8715s 4.18 5.67 0.615s 

3 8.21 8.85 0.8728s 4.69 5.704 0.608s 
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Fig. 4.  Pipeline of motion adaptive scalable stabilization system 

 

 

6. CONCLUSIONS 
 

Dense image-domain global stabilization methods like Lucas-Kanade (including optic flow) are 

very expensive in terms of time, taking O(N
3
) time and  are affected by variation in illumination. 

Transform domain global approaches such as phase correlation are illumination invariant and are 

computationally cheaper but can become computationally intense at large image sizes due to 

expensive large resolution. We have shown here that wavelet transforms can be used to achieve 

significant speedup in this Fourier domain computation without sacrificing much accuracy, by 

focusing on specific sub-bands and using wavelet interpolation capability utilized in image 

coding algorithms such as SPIHT. Our approach yields an equally accurate scalable, motion-

adaptive, transform domain global stabilization algorithm at a lower computational complexity as 

determined by the recent motion history. 
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