
David C. Wyld (Eds) : ICCSEA, SPPR, CSIA, WimoA, SCAI - 2013

pp. 431–439, 2013. © CS & IT-CSCP 2013 DOI : 10.5121/csit.2013.3545

TENSOR VOTING BASED BINARY

CLASSIFIER

Mandar S. Kulkarni, Shankar M. Venkatesan, M. Arunkumar

 Philips Research India, ManyataTech Park, Nagavara, Bangalore 560045,

India
{Mandar.Kulkarni, Shankar.Venkatesan, Arunkumar.M}@Philips.com

ABSTRACT

We propose two novel Tensor Voting (TV) based supervised binary classification algorithms for

N-Dimensional (N-D) data points. (a) The first one finds an approximation to a separating

hyper-surface that best separates the given two classes in N-D: this is done by finding a set of

candidate decision-surface points (using the training data) and then modeling the decision

surface by local planes using N-D TV; test points are then classified based on local plane

equations. (b) The second algorithm defines a class similarity measure for a given test point t,

which is the maximum over all inner products of the vector from t (to training point p) and the

tangent at p (computed with TV): t is then assigned the class with the best similarity measure.

Our approach is fast, local in nature and is equally valid for different kinds of decisions: we

performed several experiments on real and synthetic data to validate our approach, and

compared our approaches with standard classifiers such as kNN and Decision Trees.

1. INTRODUCTION

Classification of data points based on training data is an important and highly researched

problem. A number of approaches exist for both labeled (supervised) and unlabeled

(unsupervised) training data [16] [11]. Where the data has high dimensions like object recognition

and data mining, the class decision surfaces are usually non-linear – here methods like Support

Vector Machines (SVM) [5][6][8][9] come to our help. Even SVM with its theoretical and

practical advantages (e.g. testing complexity is proportional only to the number of support vectors

as opposed to the large set used in k Nearest Neighbors (kNN)) cannot handle decision surfaces

which are very highly complex, and many modifications of SVM and localized methods like

Local SVM (LSVM) [2] have been attempted for that. Here we introduce two novel localized

binary classification approaches based on the theory of Tensor Voting (TV) [7][1][13][14][15]

that can handle complex decision surfaces (with a simple scale parameter), and evaluate them

experimentally.

In what follows, we propose two TV based binary classification approaches (TVBC 1 and TVBC

2), which can deal with both linear as well as non-linear decision boundaries. The first (TVBC 1)

approach (Section 2) uses a greedy implementation of Euclidean bipartite (induced by the two

classes) minimum cost matching to identify potential points on the decision boundary, prunes

these points, and smoothes this boundary with local planes with a call to TV: then during the test

432 Computer Science & Information Technology (CS & IT)

phase, these planes on the pruned boundary are used to decide class membership. Details of this

approach are as follows: For each training data point in class 1, based on Euclidean distance, we

find the closest training data point from class 2. These form a pair, and these two data points are

excluded when this process is repeated until no data points are left to be considered. As explained

later, the average vector of this pair (i.e. the midpoint of the line connecting these two data points)

of closest data points is a candidate to belong to decision boundary. Using the mid points of pairs

of closest data points from two classes, we form the decision boundary and model it by local

planes using TV. Using the estimated local plane equations, we then assign test data points to

either of the class. Time complexity of TV is of order O(N M log M) [1] where N is the

dimensionality of data and M is the number of data points as opposed to traditional SVM which

is of O(M
3
).

The second (TVBC 2) approach (Section 3) computes for any test data point an interesting class

similarity measure that combines distance and orientation alignment with training data points and

uses this measure for deciding membership: this approach yields a surprisingly accurate classifier

(results outlined in later sections) showing the efficacy of TV as a binary classifier; the second

approach is also conveniently useful for multiclass problems. We performed numerous

experiments on synthetic as well as real data to validate our approach. Accuracy as well as time

comparison results are given in the experimentation section.

2. TV BASED BINARY CLASSIFICATION – FIRST APPROACH (TVBC 1)

The major modules of our approach in TVBC1 are finding pair of closest data points from two

classes, modeling decision boundary by local planes and classifying data points based on local

plane equations. We now explain each of these modules in detail.

2.1 Finding Closest Pairs of Data Points

The best decision boundary is the one which maximally separates the two classes. Ideally, it

should be mid-way between the two classes. As each class may have an unknown distribution,

decision boundary should locally pass through centre of pair of closest data points from two

classes. We aim to find such decision boundary using the training data. We use an average

operation for closest inter-class data points which sets decision boundary such that classes are

separated maximally in the local sense. Therefore, decision boundary adapts itself according to

local variations within the classes. For a class 1 training data point, we find the nearest data point

from class 2. We use Euclidian distance as the closeness measure. We then find an average vector

of this pair which probably is a part of separating hyper plane/hyper surface. We then exclude this

pair from further computation and in the similar way find the average of closest data points from

the remaining training set recursively. Fig. 1(a) shows the example of two classes in 3D. The

classes are Gaussian distributed with same co-variance and with different mean. Note that these

classes are linearly separable. Blue color points indicate class 1 while red color points indicate

class 2. Fig. 1(b) shows the average vectors of pairs of closest data points with black color. Note

that the boundary formed due to mean vectors lies exactly at the center of two classes. As two

classes have similar distribution, decision boundary is planar (linear) in nature as expected. Fig.

2(a) shows an interesting example of non-linearly separable classes. Two classes are part of

spheres with different radius. Class 1 and class 2 points are indicated by blue and red color

respectively. In Fig. 2(b) the probable decision surface points computed are shown with black

color. Note that as we compute the averages of closest inter-class data points, decision boundary

adjusts itself according to the local structure of the data.

Computer Science & Information Technology (CS & IT) 433

The above exact nearest neighbor approach can be extended to k-nearest neighbors where k is

inversely proportional to the density of the neighborhood, thus giving a more uniformly sampled

space consisting of synthetic decision-surface points for TV to work on, but this will add a factor

k to the expensive time complexity of O(M
2
) computations (in our current implementation this

will not improve even with a careful use of data structures like k-d trees which degenerates into

almost same complexity for more than a few dimensions). Our timing for this part perhaps will

come down substantially if we settle for some reasonable choice of approximate nearest neighbor

(ANN) search using approaches like Locality Sensitive Hashing [12], or perhaps invoke some

optimized internal data structures in [13]. Also, if we select k closest data points (k is inversely

proportional to neighborhood density), but keep the total increase in number of data points to a

smaller constant factor, we can perhaps do better.

2.2 Decision Boundary Modeling

To build a classifier, we need to model the probable decision boundary points computed in the

previous step. If the data is noisy in nature, which is the case for most of the real datasets, the

decision boundary computed will be distorted by many outliers. It is important to remove these

outliers prior to modeling. We use the geometric structure inference framework TV [7] for this

purpose. The only variable parameter in the framework is scale of voting which defines the extent

of neighborhood. Higher scale of voting corresponds to larger extent of neighborhood and thus

more smoothness. A decision hyper plane in N dimension space has 1 normal and N-1 tangents.

As described in [1], the saliency of N-1 dimensional structure in N-D can be computed as

Saliency = λ1-λ2 (1)

where λ1 and λ2 indicate top two eigenvalues of tensor matrix at a given decision boundary point.

The more the saliency value, the more likely is the point being part of a decision hyper plane/

hyper surface. Outliers (if any) receive less or no support from the neighborhood and can be

identified with their low saliency values. We remove points which have lower saliency value

than the predefined threshold. The appropriate threshold for the saliency is chosen

experimentally. Thus, the subsequent modeling of the decision boundary becomes robust to noise.

Fig. 1. (a) Linearly separable classes, (b) probable decision boundary points (in black), (c) TV based noise

removal. Green points indicate refined points. (d) estimated plane normal (green arrow)

(a) (b)

434 Computer Science & Information Technology (CS & IT)

(c) (d)

Fig.1 (c) shows the output of noise removal on probable decision boundary points (shown in black in

Fig. 1(b)). In Fig. 1(c), green points indicate the points which satisfy the saliency threshold criterion. Note

that points which are little away from the decision boundary plane (still in black) are identified as outliers.

Similarly, Fig. 2(c) shows the decision boundary points in green which satisfy the saliency criteria.

We then model the noise removed decision boundary points by linear local planes. For a point of

the decision boundary, we first find its neighboring points. The extent of the neighborhood is

kept same as the scale of voting. We run a pass of ND TV on these points. With eigen

decomposition of the tensor matrix, we get eigenvectors and eigenvalues at each decision

boundary point. The eigenvector with the highest eigenvalue represents the normal direction at a

point. We take normal directions at all neighboring points and find the co-variance matrix. As all

points of a same plane have a unique normal direction, the eigenvector of the co-variance matrix

with highest eigenvalue is treated to be the normal direction to the plane. To make normal

estimation robust, normal direction vector at each decision boundary point is weighted by

saliency value (computed as in Eq. (1)) prior to calculation of co-variance matrix. As can be

inferred, TV inherently takes care of local geometry through neighborhood interactions and

estimate normal direction accordingly.

Fig. 2. (a) Non-linearly separable classes, (b) probable decision boundary points (in black), (c) TV based

noise removal. Green points indicate refined points. (d) estimated local plane normals (thick arrows)

(a) (b)

(c) (d)

We then find a point whose normal vector is most aligned with the estimated plane normal

direction. We use dot product operation to find the similarity between normal directions. That

Computer Science & Information Technology (CS & IT) 435

point is considered as the representative plane point. If A is the plane normal direction and x is

the representative plane point, then the equation of the plane in ND can be written as

Ax=b (2)

where b is computed using estimated plane normal direction and plane point. The decision

boundary can be a hyper plane i.e. for linearly separable case or can be a hyper surface i.e. for

non-linearly separable case. As we do not know a priori whether the separating boundary is a

hyper plane or a hyper surface, we first find a local plane equation as discussed above and

evaluate all other decision boundary points against the estimated plane equation. A point is on an

estimated plane if it satisfies following equation

Ax-b<=Threshold (3)

To identify the points which are following Eq. (3), the value of Threshold is set close to zero. We

eliminate points which satisfy Eq.(3) as they are redundant. For the remaining decision boundary

points, we iteratively perform the above procedure until all the points get modeled by their local

planes. Thus, we get a set of local plane equations and corresponding plane points which facilitate

the classification. Fig. 1(d) shows the modeling of a decision boundary with the approach

described above. As separating boundary is a plane, all the points got modeled by a single plane

equation as expected. Fig. 1(d) shows the estimated normal direction with the green arrow. Fig.

2(d) shows the separating surface with blue color and estimated normal directions are shown with

thick arrows at the corresponding plane point positions. Note that as the separating boundary is a

non-linear surface, it automatically got modeled by large number of local planes.

2.3 Classification

Once the separating boundary is completely modeled by local planes, we classify test data points

based on local plane equations and corresponding plane points. Intuitively, data points in the

direction of the normal belong to class 1 and data points in the opposite direction of normal

belong to class 2. Given a test data point, we find the nearest plane point. We again use Euclidian

distance as the closeness measure. Then a test data point is evaluated against the corresponding

plane equation. We find the value of classification measure CM as

CM = Ay-b (4)

where A and b are the parameters of the plane selected and y indicates the test data point. Then

the test data point is assigned to class 1 or class 2 based on the value of Classification measure as

follows

If (CM >=0) assign y to Class 1 Else assign y to Class 2 (5)

Classification accuracy was 100% on test data for linearly separable (Fig. 1) as well as for non-

linearly separable (Fig. 2) cases described above.

436 Computer Science & Information Technology (CS & IT)

3. TV BASED BINARY CLASSIFICATION – SECOND APPROACH

(TVBC 2)

We now describe our second classification approach using TV based on the intuition that a test

data point will be closer and/or aligned to its true class. We utilize this property for classifying

test data points more accurately. Our approach performs better than lazy learning approaches

(such as KNN) as it takes into account orientation information along with proximity.

In the training phase, we perform TV on the training data points of each class separately. A tensor

at each data point in the training set is computed. A tensor is represented by an ellipse in 2D and

by an ellipsoid in ND. Using the eigenvalue decomposition of a tensor matrix, the eigenvectors

and corresponding eigenvalues can be obtained. Later, at test time, if a test data point belongs to a

class, it should lie in the direction of one of the tangents of the training data points belonging to

its true class. So during the training phase, for each training data point, we need to find the

eigenvectors which are normals and eigenvectors which are tangents. For each training data point

an intrinsic dimensionality is estimated based on the eigenvalue differences of consecutive

eigenvalues arranged in descending order as in [1]: if intrinsic dimensionality is k, then first

 eigenvectors are taken as normals and the remaining k eigenvectors as tangents [1]. For

each test data point, we first compute a vector V with respect to each training data point from

class 1. The vector is computed as

V=test data point – training data point (6)

If a test data point actually belongs to class 1, vector V should be aligned to one of the tangents of

this training data point. We evaluate this alignment by simply using the dot product of V with a

tangent (as defined above) of the training data point under consideration. We compute this dot

product with each tangent of the training data point and pick the tangent that gives maximum

value among all dot products. Using the best aligned tangent of the training data point, the

similarity measure for a single test data point with respect to the training data point under

consideration is defined as

 Similarity measure 1= dot product/norm (V) (7)

This similarity measure for a test data point with respect to class 1 is chosen to be the maximum

of all its similarity measures with respect to each training data point of class 1.

Similarly, we compute the Similarity measure 2 with respect to class 2. A test data point is then

assigned to a class which has a better similarity measure value. Note that the similarity measure

we use has both proximity and orientation context, and therefore this simple classifier is able to

classify data points more accurately. In spite of the simplicity, our following experimentation

results show how well it performs on well-known datasets with respect to established classifiers.

4. EXPERIMENTATION

We start demonstration with 2D real data (Ripley) [17], which has 250 training data points and

1000 test data points. Fig.3 (a) shows the training data used where class 1 and class 2 are

represented by blue and red points respectively. We obtained the noise removed probable

decision boundary points (shown in green) as described in section 2 (shown in Fig. 3(a)). Fig.

Computer Science & Information Technology (CS & IT) 437

3(b) shows the normal of local planes/lines estimated by (with thick arrows) using the TV based

approach. Note that the decision boundary is non-linear in nature and hence was modeled by 4

local planes/lines. Test data points were then evaluated based on the plane/line normal equations.

Classification accuracy for this case was 89% on the test set.

Fig. 3. (a) Ripley training data, (b) estimated normals of local planes (thick arrows)

(a) (b)

Table 1. Accuracy and Speed Comparison (bold face indicates best result)

 Dataset DT KNN TVBC1 TVBC2

 Iris 1 [3] 99.33

(4.12s)

100

(5.52s)

100

(1.9s)

100

(6.2s)

 Iris 2 [3] 95.33

(4.3s)

 96

(5.7s)

96.67

(1.9s)

96.67

(6.1s)

 SVM guide3 [3] 80.68

(8.9s)

80.13

(10.3s)

87.65

(10s)

88

(11.1s)

 Solar flare [3] 66.61

(4.72s)

 66.8

(5.07s)

68.6

(2.8s)

68.7

(5.5s)

 Ripley [17] 90

(0.5s)

 91.5

(1.8s)

89

(0.3s)

89.5

(2.4s)

 Liver [3] 64.62

(5.2s)

64.02

(7s)

76.4

(5.4s)

66.16

(7.3s)

Our approach is generic in nature and is valid for any dimension space. We performed

experiments on other real datasets as well from UCI repository [3]: Iris 1, Iris 2, SVM guide3,

Solar flare, Liver. Iris 1 is classification of class ”setosa” vs others, Iris 2 is classification of class

“Virginica” vs others. Table I shows the comparison results of our TVBC1/TVBC2 approaches

with Decision Trees (DT), KNN classifiers in terms of 10-fold cross validation accuracy and

speed. We used WEKA’s [4] implementation of C4.5 DT, KNN for comparison. Our approach

was implemented in Matlab on 2.8 GHz P4 processor with 4 GB RAM. Total testing time across

10-folds (in seconds) is given in the bracket below the accuracy count. The only variable

438 Computer Science & Information Technology (CS & IT)

parameter for both our approaches based on TV framework is the scale of voting. Higher sigma

(i.e. scale of voting) corresponds to larger extent of neighborhood and thus more smoothness. In

the case of TVBC1, larger sigma may not be able to model minute structural variations (if any) in

the decision boundary. We iteratively increase the value of sigma in steps of 0.01, model the

decision boundary and perform 10-fold classification. We then select the sigma which gives

maximum accuracy. The plot of change in accuracy with respect to the value of sigma for SVM

guide3 [3] dataset is shown in Fig. 4. It can be seen that, accuracy does not vary significantly with

change in the value of sigma. We observed that, for linearly separable case, classification

accuracy is independent of value of sigma over a large range, as expected.

Fig. 4. Sigma vs accuracy: X-axis: Scale of voting, Y-axis: Percentage accuracy for SVM guide3

[3] dataset

5. CONCLUSION

We proposed two novel binary classification methods (TVBC1/TVBC2) based on tensor voting

framework.

In the first approach, the decision boundary was modeled by local planes and test data points

were classified based on estimated local plane equations. Our approach is robust, computationally

efficient and gives almost same accuracy as other known classifiers.

In the second approach, during training phase we pre-compute the relevant tangent directions at

each training data point using tensor voting framework. In test phase, we assign a test data point

to one of the classes based on a novel similarity measure that considers both proximity and

orientation. We validated the proposed approach on real world datasets and it performs at

par/better than other well-known classifiers. We are investigating some approaches to bring the

time complexity further down.

REFERENCES

[1] Mordohai P., Medioni G., Dimensionality Estimation, Manifold Learning and Function

Approximation using Tensor Voting, JMLR, 2010

[2] Haibin, C., et al.,, Localized Support Vector Machine and Its Efficient Algorithm SIAM Conf. on

Data Mining, 2007

[3] Frank A., et al., UCI Machine Learning Repository: http://archive.ics.uci.edu, CA, 2010

[4] Hall M., et al., The WEKA Data Mining Software: An Update; SIGKDD Explorations, 2009

[5] Burgess, C., Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and

Knowledge Discovery,1998

[6] Cortes, C., Vapnik, V. N., Support Vector Networks, Machine Learning, 1995

Computer Science & Information Technology (CS & IT) 439

[7] Guy G., Medioni, G., Inference of surfaces, 3d curves, and junctions from sparse, noisy, 3-d data.

IEEE Trans. on PAMI, 1997

[8] B. E. Boser, I. M. Guyon, and V .Vapnik. A training algorithm for optimal margin classifiers. In Fifth

Annual Workshop on Computational Learning Theory, pages 144–152, Pittsburgh, 1992. ACM

[9] C.J.C. Burges, P. Knirsch, and R. Haratsch. Support vector web page: http://svm.research.bell-

labs.com. Technical report, Lucent Technologies, 1996

[10] S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias / variance dilemma. Neural

Computation, 4:1–58, 1992

[11] C.M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, Oxford, 1995.

[12] Gionis, A., Indyk, P., Motwani, R., Similarity Search in High Dimensions via Hashing, Proceedings

of the 25th Very Large Database Conference (VLDB), 1999

[13] Tensor voting implementation available at: http://iris.usc.edu/people/medioni/ntensorvoting.html

[14] G. Medioni, M.S. Lee, C.K. Tang, A computational framework for segmentation and grouping

(Elsevier, New York, NY, 2000)

[15] P. Mordohai, G. Medioni, Unsupervised dimensionality estimation and manifold learning in high

dimensional spaces by tensor voting, International Joint Conference on Artificial Intelligence, 2005

[16] Duda, Hart, and Stork, Pattern Classification, Wiley

[17] B. D. Ripley and N. L. Hjort, Pattern Recognition Neural Networks, Cambridge University Press,

1995

