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ABSTRACT 
 

This paper demonstrates an effective application of artificial neural networks for online 

identification of a multimachine power system. The paper presents a recurrent neural network 

as the identifier of the benchmark two area, four machine system. This neural identifier is 

trained using the static Backpropagation algorithm. The trained neural identifier is then tested 

using datasets generated by simulating the system under consideration at different operating 

points and a different loading condition. The test results clearly establish a satisfactory 

performance of the trained neural identifier in identification of the power system considered.  
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1. INTRODUCTION 
 

With electric power consumption set to increase many fold worldwide, there is an imminent need 

of augmenting the power carrying capacity of the existing power grid. Continuous monitoring 

and intelligent control of the grid activities is becoming important to improve the reliability, secu-

rity and efficiency of the electric power system. However, with increasing complexities in the 

modern power grid, it is becoming difficult and time consuming to generate acceptable approx-

imate mathematical models of the system and the uncertainties involved therein, required by the 

conventional controllers. Artificial neural networks (ANNs) have been known to have the capa-

bility to learn the complex approximate relationships between the inputs and the outputs of the 

system and are not restricted by the size and complexity of the system [1]. Since these approx-

imate relationships are learnt on the basis actual inputs and outputs, they are generally more accu-

rate as compared to the relationships based on assumptions. This makes ANNs a promising and 

attractive tool for modern power system applications. ANNs have been proposed for detection of 

power system harmonics [2-4], fault section estimation [5-6], fault diagnostics of power plant [7] 

and in protection strategies [8-9]. Applications of ANNs in reactive power transfer allocation [10] 

and ATC estimation [11] have been reported. Stability issues like damping of oscillations [12-

14], prediction of loadability margins [15] and voltage contingency screening [16]  have been 

successfully addressed by ANN based solutions. ANNs have the potential of application for real-

time control as reported [17]. In today’s time, accurate system identification is of great impor-
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tance in power system operation and control. The capability of the ANNs to approximate non 

linear functions sufficiently accurately makes them a suitable choice for use in identification of 

non linear systems. Multilayer feedforward artificial neural networks using Backpropagation al-

gorithm for training have been proposed for successful online model identification of synchron-

ous generator [18] and a UPFC equipped single machine infinite bus system [19]. A neural net-

work based estimation unit has been proposed to estimate in real time, the parameters for an inter-

facing scheme for grid-connected inverters and simultaneously estimating the grid voltage [20]. 

The authors have employed neural network for system identification for predictive control of a 

multimachine power system operating under widely varying operating conditions and subjected 

to transient conditions [21]. 

 

The work undertaken proposes to use a recurrent neural network for online identification of a 

multimachine power system. This work aims to investigate the performance of such a neural net-

work in online identification of a multimachine power system. The testing performances of the 

trained neural identifier are also investigated to establish the accuracy of the trained identifier. 

 

2. SYSTEM DESCRIPTION 
 

The system under consideration for the undertaken work is a two area system with active power 

flowing from Area 1 to Area 2 [22]. In spite of the small size of the system, its behavior mimics 

the behavior of a large power system in actual operation. Each area comprises of two 900 MVA 

machines and the two areas are connected by a 220 kV double circuit line of length 220 km. The 

load voltage profile is improved by installing additional 187 MVAr capacitors in each area. The 

system under study is equipped with PSS and has a UPFC installed between bus 11 and bus 12 

with bus 11 common to the shunt and series converters and the other side of the series converter 

connected to bus 12 as shown in Figure 1. 

 

The effective utilization of the UPFC in the system requires implementation of various control 

schemes, many of which require the system to be identified. In this work, the active power at bus 

12, 12P   corresponding to a specific value of the quadrature component, qV   of the series voltage 

injected by the UPFC is to be predicted under various operating conditions. This next step value 

of 12P  is predicted using the values of qV and 
12

P   at some preceding instants. 

 

 
Fig.1. 2-Area system equipped with UPFC 
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3. DESIGN OF THE NEURAL IDENTIFIER 
 

Recurrent neural networks have the capability to predict the future values based on the values at 

the preceding instants. The nonlinear autoregressive network with exogenous (independent) in-

puts i.e. NARX, is a recurrent dynamic network defined by  

 ( ) ( ) ( ) ( ) ( )( )uy ntutuntytyfty −−−−= ,,1,,,1 KK       (1) 

Where ( )ky and ( )ku  are the outputs and inputs at the kth instant and yn , un  are the number of 

time steps for which the current output is regressed on the output and input respectively. A dia-

gram showing the implementation of the NARX model using a feedforward neural network to 

approximate the function f in (1) is given in Figure 2. 

 

Fig.2. Implementation of NARX model 

 

A neural identifier that predicts the next step value of 12P on the basis of the values of qV  and
12

P at 

four preceding instants is proposed. As the objective clearly requires that the output of the neural 

network should depend on the current input as well as on current and/or previous inputs and out-

puts, the NARX model is used. A two layer neural network with sigmoidal hidden layer neurons 

and linear output layer neurons can identify any system with any degree of accuracy, subject to 

the availability of sufficient number of hidden neurons [23]. Therefore, the NARX model is im-

plemented using the two layer feedforward neural network. Since the true value of the output 

12
P for the preceding instants are available, the series parallel architecture is used. As the values 

of  
q

V  and
12

P at four preceding instants are to be used, the total number of inputs to the neural 

network is eight as shown in Figure 3. The number of sigmoidal neurons in the hidden layer has 

been fixed at thirteen using trial and error approach and the output layer has one linear neuron. 

 

 

Fig.3. Architecture of the proposed neural identifier 
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The system under consideration is modeled and simulated using MATLAB / SIMULINK to gen-

erate data for training and testing the proposed neural identifier. The operation of the system is 

simulated by applying qV  restricted within the range +0.1 pu and -0.1 pu (restricting the quadra-

ture component of the series injected voltage to 10% of the nominal line-to-ground voltage) and 

sampling the input, 
q

V   and output, 
12

P  at the rate of 32 samples per second. The neural network 

is presented with the following inputs 

 ( ) ( ) ( ) ( ) T
qqqq tVtVtVtV ]321[ −−−=qV  (2) 

And 

 ( ) ( ) ( ) ( ) T
tPtPtPtP ]4321[

12121212
−−−−=

12
P  (3) 

for predicting ( )tP
12

. For linear input neurons, the output of the input neurons is same as the input 

given by 

 T][
12q

0

18
PVa =

×
 (4) 

The output of the hidden layer (layer 1), consisting of 13 sigmoidal neurons is given by 

 ( )1

113

0

18

1

813

1

113
baWa

××××
+= sigtan  (5) 

where, 1
813×W is the weight matrix between input and hidden layers and 1

113×b  is the bias to the hid-

den layer neurons. Similarly, the output of the output layer (layer 2), comprising of one linear 

neuron is given by 

 ( )21
113

2
13112

ˆ bpurelinP += ×× aW  (6) 

where, 2
131×W  is the weight matrix between hidden and output and layers and

2
b  is the bias to the 

output layer neurons. 
 

4. TRAINING OF THE NEURAL IDENTIFIER 
 

Identification requires setting up a suitably parameterized identification model and adjustment of 

these parameters of the model to optimize a performance function based on the error between the 

outputs from the plant and the identification model [24]. It is assumed that the weight matrices of 

the neural network proposed as the identifier exists, for which, both plant and the identifier have 

the same output for any specified inputs, for the same initial conditions [24]. 

 

The system under consideration is simulated for different operating conditions ranging over a 

wide range of steady state active power flow level between the two areas to generate data for 

training. The training data set consists of 1288 data points spread over a wide range of operation. 

This training dataset is employed in training the proposed neural identifier offline through simula-

tion to make it learn the forward dynamics of the plant. During training the weights and biases of 

the network are iteratively adjusted to minimize the network performance function. The perfor-

mance function used for the neural identifier under consideration is the mean square error, mse, 

given by 

 ( ) ( )
2

1

2

1
1212

1ˆ1
∑=∑ −=
==

N

q
q

N

q

e
N

PP
N

V
qq

 (7) 
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where, N  is the size of training dataset, 12P and 12P̂  are the target and predicted value of the output 

of the neural network when the th
q  input is presented and qe  is the error (difference between the 

target and predicted value) for the th
q input. The performance index V  in (7) is a function of 

weights and biases, ][ 21 nxxx K=x and can be given by 

 

 ( ) ( )∑=
=

N

q
q xe

N
xV

1

21
 (8) 

 

The performance of the neural network can be improved by modifying x  till the desired level of 

the performance index, ( )xV is achieved. This is achieved by minimizing ( )xV with respect to x  

and the gradient required for this is given by 

 ( ) ( ) ( )xexJV
T

x =∇  (9) 

 

where, ( )xJ is the Jacobian matrix given by 
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and ( )xe  is the error for all the inputs.  

 

The gradient in (9) is determined using backpropagation, which involves performing computa-

tions backward through the network. This gradient is then used by different algorithms to update 

the weights of the network. These algorithms differ in the way they use the gradient to update the 

weights of the network and are known as the variants of the Backpropagation algorithm. This 

work compares the performance of the basic implementation of the Backpropagation algorithm 

i.e. Gradient descent algorithm with the Levenberg-Marquardt algorithm. A brief overview of the 

different algorithms considered in this work is given under: 

 
4.1 Gradient Descent Algorithm  

 

The network weights and biases, x  is modified in a direction that reduces the performance func-

tion in (8) most rapidly i.e. the negative of the gradient of the performance function [25]. The 

updated weights and biases in this algorithm are given by 

 
kkkk

Vxx ∇−=
+

α
1

 (11) 

Where, 
k

x  is the vector of the current weights and biases,
k

V∇  is the current gradient of the per-

formance function and
k

α  is the learning rate. 

 

4.2 Levenberg-Marquardt Algorithm 
 

Since the performance index in (8) is sum of squares of non linear function, the numerical opti-

mization techniques for non linear least squares can be used to minimize this cost function. The 

Levenberg-Marquardt algorithm (LM), which is an approximation to the Newton’s method is said 

to be more efficient in comparison to other methods for convergence of the Backpropagation al-

gorithm for training a moderate-sized feedforward neural network [26]. As the cost function is a 
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sum of squares of non linear function, the Hessian matrix required for updating the weights and 

biases need not be calculated and can be approximated as 

 

 ( ) ( )xJxJH T=  (12) 

 

The updated weights and biases are given by 

 

 ( ) ( ) ( ) ( )xexJIxJxJxx TT
kk

1
1 ][ −

+ +−= µ  (13) 

 

where, µ is a scalar and I is the identity matrix. 

 

This work compares the performance of the basic implementation of the Backpropagation algo-

rithm i.e. Gradient descent algorithm with the LM algorithm. 

 

5. SIMULATION RESULTS AND DISCUSSIONS 
 

5.1 Training 
 

The neural network proposed in section 3 was trained using the training set and the training algo-

rithms described in section 4. A Pentium (R) Dual-Core CPU T4400 @2.20 GHz was used to 

train the proposed neural identifier. The proposed neural identifier was trained 50 times each with 

the two training algorithms, with random initial weights taken for each trial to rule out the weight 

sensitivity of the performance of the two training algorithms. The network was trained in each 

case till the value of the performance index in (8) was 0.0001 or less. The training trials estab-

lished the inability of the Gradient Descent algorithm to converge for the required value of the 

performance index but the LM algorithm converges successfully during each of the 50 trials. The 

average time (from the 50 trials) required for training the network using the Levenberg-

Marquardt algorithm using the entire training set consisting of 1288 data points is 5.8675 

seconds. The minimum and maximum time required for training is 2.9393 and 9.4187 seconds 

respectively.  

 

5.2 Testing 
 

The trained neural network was tested on the same CPU. The test datasets consisted of data points 

not included in the training set. The system under consideration was simulated at two such oper-

ating points for which no data point was included in the training set. The operation of the multi-

machine power system under consideration at these two operating points was simulated using 

MATLAB/SIMULINK for a period of 13 seconds each. This period also included a 3-phase short 

circuit fault at point A at t=10 s for a duration of 200 ms with the circuit breakers auto reclosing 

after 12 cycles. The load on the system was then increased and the operation of the system under 

the new load condition was then simulated for a period of 45 seconds with the same fault at t=30 

s with auto reclosing circuit breakers. The data during these three simulations was sampled at the 

rate of 32 samples per second to form three test sets: Test Set I and Test Set II, corresponding to 

the two operating points at the initial loading condition and Test Set III, at the higher load operat-

ing point. As the Gradient Descent algorithm failed to converge for the desired value of the per-

formance index, the neural network that was trained using the LM algorithm was tested using 

these three test sets. 

 

Test Set I. Test Set I consists of 417 data points. The first four data points are used to predict the 

output at the next instant. Therefore, the number of predicted outputs for this test set is 413. A 
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three-phase short circuit fault is simulated at t=10 s which corresponds to the sample point num-

ber 321 in the test set. The actual output for the system after autoreclosure of the circuit breaker is 

available in the sample point number 329 of the test set.  The actual values of the output power 

and the values predicted for the same using the neural identifier during a part of the steady state 

and transient period are shown in Figure 4 and 5 respectively. The effect of the 3-phase short cir-

cuit fault on the system is captured in the sample point 322 of the actual output power as shown 

in Figure 5. However, the circuit breakers operate and an improved system performance is re-

flected in subsequent samples. As the neural network has been trained to use the information at 

four preceding instants to predict the next step output, the effect of decrease in the actual output 

in sample 322 is reflected immediately in the values predicted by the neural identifier in sample 

323. Figure 5 clearly shows that the values predicted by the neural identifier follow the actual 

values closely in the transient period. The effect of autoreclosure of the circuit breakers on the 

power level is visible in sample number 329 of the actual output power. The increased value of 

the actual output power in sample 329 due to the autoreclosure of the circuit breakers is reflected 

in the value predicted by the neural identifier in the subsequent instant. The average absolute er-

ror in the predicted values is determined as a measure to establish the predictive quality of the 

neural identifier. The value of the average absolute error over the entire set is 0.0103. 

 

Fig.4. Actual and predicted values of output power during steady state for test set I 

 

Fig.5. Actual and predicted values of output power during transient period for test set I 

 

Test Set II. Test Set II also consists of 417 data points and 413 predicted outputs. This test set is 

generated by simulating the system at an operating point corresponding to a different tie line 

power level and subjected to the same fault as in Test Set I. Figures 6 and 7 show the actual and 
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predicted output values for a section of steady state and transient period of the system respective-

ly, at the operating point under consideration. It is clear from these figures that the actual power 

output values and the values predicted using the neural identifier in steady state and transient pe-

riod are in close proximity even at this operating point. The average absolute error over this test 

set is 0.0078.  
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Fig.6. Actual and predicted values of output power during steady state for test set II 
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Fig.7. Actual and predicted values of output power during transient period for test set II 

 

Test Set III. Test Set III consists of 1441 data points. The actual and predicted output values for 

a section of steady state and transient period of the system are shown in figures 8 and 9 respec-

tively. These figures demonstrate the same trend as in Test Set I and II. The value of average ab-

solute error for this test set is 0.0367. 

 

Fig.8. Actual and predicted values of output power during steady state for test set III 
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Fig.9. Actual and predicted values of output power during transient period for test set III 

 

6. CONCLUSION 
 

A neural network has been proposed to predict the next step value of the output power on the 

basis of the values of the control input and output power at preceding time instants. The proposed 

neural network is trained using the Levenberg-Marquardt algorithm. The trained neural identifier 

is tested over a range of operating conditions and the test results establish a satisfactory perfor-

mance of the trained neural identifier over the entire range of testing conditions. The availability 

of fast computing machines in current times and the accurate predictions reported in this work 

clearly establish the scope for online application of neural networks for identification of multima-

chine power systems.  
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