

David C. Wyld (Eds) : ICCSEA, SPPR, CSIA, WimoA - 2013

pp. 293–301, 2013. © CS & IT-CSCP 2013 DOI : 10.5121/csit.2013.3530

APPLY HIBERNATE TO MODEL AND

PERSIST ASSOCIATIONS MAPPINGS IN

DOCUMENT VERSION SYSTEM

Neetu Gupta

AIIT, Amity University, Sector- 125, Noida
neetugupta78@gmail.com

ABSTRACT

To implement any system using hibernate, a XML (Extensible Markup Language) mapping is

defined that specifies how the various objects will persist in the database. The XML specifies

mapping between classes and tables, properties and columns, association and foreign keys. In

this paper we primarily focus on how different association among classes should be mapped in

XML configuration file for persistence. A particular type of association should be specified in

XML configuration file using valid elements and tags provided by hibernate. Such a defined

XML document then create the valid schema, and the constraints between respective tables in

the database to implement any system. Here we present how the different types of associations

should be implemented in hibernate to have desired effect on the database. We also tested the

use cases those may violate the constraints specified by XML configuration and studied the

results.

Keywords

ORM (Object Relational Mapping), Hibernate, XML, Association

1. INTRODUCTION

The paper presents the implementations of different types of associations between classes in a

document versioning system using Hibernate. In any system there exist different types of

relationship between classes. ORM tool requires a mapping that specifies persistence of objects or

classes as tables and properties of classes as columns. Similarly an association between classes

should also be properly specified in XML mapping in order to persist it correctly in the database

usually as foreign keys. Hibernate provides various elements and tags for defining different types

of associations in XML configuration file.

We developed and tested a prototype of Document versioning system to model, understand and

implement all the possible existing unidirectional associations. Our focus was to understand and

test how each type of association should be specified in the XML configuration to have desired

constraints implemented in the database. We studied the all possible different relationship types

and how these can be mapped in XML to create desired schema and database entities on the other

side in Hibernate. We have used Eclipse IDE (Interactive Development Environment) to develop

and test the prototype. We also used hsqldb (HyperSQL DataBase) to simulate the database part

required for the project.

294 Computer Science & Information Technology (CS & IT)

2. PROPOSED SYSTEM FOR STUDYING ASSOCIATION

Versioning systems have always supported the document / code base management for any

organization. Any such software always acts as a book keeping system for documents repository

or for maintaining source code base of any developing software. It gives the facility to track the

changes done in the particular document with other important associated information like user

name that has changed the document, purpose for the change, and to see the exact changes done

between two versions of a particular document. Based on entities discussed, the classes and

associations between them are shown in fig. 1 and fig. 2 respectively.

2.1 Entities Involved The proposed system has the entities discussed in this section.

Document, an entity represents a document, a source code file, an image file etc. DocumentType

an entity represents type like doc, jpg, htm etc. Version represents the changed version of the

original document. User represents an authorized user who can create a new document or version.

Tag, represent a series that have multiple documents say for a particular release. Contact,

represents the contact of a user.

2.2 Implementation Details

To create a valid schema of the system, each class will have a source code java file and a

mapping XML configuration file.

Source code. An entity is defined as a class and attributes as members of the class. A class will

have one or more public constructors with a mandatory default constructor. Class will also define

pair of get and set method for each property defined in it. Such a java code for Document class

with basic attributes is as below. Similarly, we have implemented the classes for other entities as

well.

public class Document {

private long documentId;

private String name;

public Document() {} //default constructor

public Document(String name) { this.name = name ;}

public long getDocumentId() {return documentId;}

public void setDocumentId(long documentId) {

 this.documentId = documentId;}

public String getname() { return this.name;}

public void setname(String name) {this.name = name;}

}

Mapping File. To persist each class, we defined a XML based configuration file that maps a

class as a table and its members as columns. A member can be defined Whereas an attribute could

also be mapped with reference of other class representing the relationship between tables. One

such XML configuration mapping file mapping Document class and its basic attributes in is

presented here.

Computer Science & Information Technology (CS & IT) 295

Fig. 1. Complete Class diagram of the system depicting the associations among classes

Fig. 2. Corresponding schema created on the database representing different association types

<? Xml version="1.0"?>

<hibernate-mapping>

<class name="docs.Document" table="DOCUMENT">

<id name="documentId" column="DOC_ID">

 <generator class="native"/> </id>

296 Computer Science & Information Technology (CS & IT)

<property name="name" type="string" length="100" not-null="true"

column="DOC_NAME"/>

</class>

</hibernate-mapping>

In discussed mapping file we have not yet included the attributes those create an association

between classes. Refer to figure 1 such attributes for class (or say entity) Document are type,

version and user. We discuss these attributes and related association in next section in detail.

3. ASSOCIATIONS AND THEIR IMPLEMENTATION

Here we discuss implementation of all possible types of unidirectional associations. We discuss

how each association type is mapped into configuration file and various elements suggested in

hibernate. We also discuss the affect of mappings on database.

3.1 Many-to-one unidirectional association Using Foreign Key.

Association from Document to DocumentType is a many-to-one kind of unidirectional

association. For a DocumentType instance, there can be multiple Document instances, whereas, a

Document can be of one DocumentType only. With the same explanation we can define

association from Document to User as many-to-one (fig 3).

Fig. 3. Many-to-one unidirectional association using foreign key

This is mapped as foreign key constraint in the Document table as depicted in the fig. 3. To

specify this mapping in Document class, we used the element <many-to-one> in corresponding

mapping xml file Document.hbm.xml as

<many-to-one name=" docType" class="docs.DocumentType"

column="DOC_TYPE" cascade="save-update"

not-null="true" />

Computer Science & Information Technology (CS & IT) 297

On defining this association, the object reference returned by getDocType() method of Document

class is mapped to a foreign key column DOC_TYPE in the DOCUMENT table with reference to

DocumentType class. The specified not-null attribute creates a not null constraint for column

DOC_TYPE so we cannot have a DOCUMENT without a value from the domain for the field

DOC_TYPE. Element cascade with “save-update” tells hibernate to navigate this association

while transaction is committed and save the newly instantiated transient instances

(DocumentType here) and persist changes to detached instances if any. Similarly, the association

from Document to User is defined. Relevent java code and mapping would be

public class Document {

……

 private User user;

 public User getUser() { return this.user; }

 public void setUser(User user) {this.user = user;}

……

}

<many-to-one name="user" class="docs.User"

column="DOC_USER" cascade="save-update"

not-null="true"

/>

An object reference returned by getUser () is mapped to a foreign key column DOC_USER in the

DOCUMENT table. Attribute not-null is true implementing not null constraint for DOC_USER

and cascade is set to save-update to make transient object persistent. The application code to

persist an instance of Document, User and DocumentType is like

………

1. tx = session.beginTransaction();

2. DocumentType doctype = new DocumentType ("txt", "MS Word Document");

3. User user = new User ("Neetu");

4. Document doc1 = new Document("projectReport1", doctype, user);

5. session.save(doc1); // Persist Document instance

6. tx.commit();

Saving an instance of Document (line 5) will insert a row to DOCUMENT table and transient

objects of DOCTYPE and USER due to cascade attribute set to save-update. Without setting the

cascade attribute, we should be saving the instances of DocType and User independently (line 5

and 8 below) before saving the Document object like

3.2 One-to-many Unidirectional Using join table.

Unidirectional one-to-many association is not recommended using foreign key column. We used

join table to implement the same. Mapping from class Document to Version is one-to-many. For a

Document instance we can have multiple Version instances. To implement this, a join table

DOCVERSION is created as shown in fig. 4.

298 Computer Science & Information Technology (CS & IT)

Fig. 4. One-to-many unidirectional using join table

We implemented the version in Document class using a collations type Set as

.............

private Set versions = new HashSet();

public Set getVersions () {return this.versions;}

public void setVersions (Set versions) {

this.versions= versions; }

Hibernate element <many-to-many> is used with unique constraint set to true. Unique property is

used to map the “one” side of one-to-many resulting in the uniqueness constraint to makes sure

that a particular Version instance is not associated with multiple instances of Document.

Corresponding update the configuration file Document.hbm.XML metadata using <set> element

as

<set Name = "versions" table="DOCVERSIONS">

<key column = "DOC_ID"/>

<many-to-many column="VERSION_ID"

 class ="docs.Version" unique="true" />

</set>

We tested application to create a new version for an already existing Document object. Line 5, 7

saves two objects of type Version, to add two instances in VERSION table. Line 10, 11 will

attach two versions to a Document doc1that results in saving two rows in table DOCVERSION.

1.

2. tx = session.beginTransaction ();

3. Version ver1 = new Version ("verison1", user);

4. session.save (ver1);

5. Version ver2 = new Version ("verison2", user);

6. session.save (ver2);

7. // Load the already saved Document instance

8. Document doc1 = (Document) session.load

(Document.class, doc1Id);

Computer Science & Information Technology (CS & IT) 299

9. // Add version instance ver1, ver2 to Document doc1

10. doc1.getVersions().add(ver1);

11. doc1.getVersions().add(ver2);

We tested unique constraint attaching ver1 to another document doc2

Document doc2 = (Document)session.load

(Document.class, doc2Id);

doc2.getVersions ().add(ver1);

It throws an exception saying violation of integrity constraint. Result is that we can save multiple

Version instances with a single Document but not otherwise.

3.3 One-to-one unidirectional using foreign key.

For one-to-one association type, we introduced Contact class in the system. An instance of

Contact type stores contact for a User instance. We cannot have more than one Contact for a

User. This defines association from User to Contact as one-to-one.

Fig. 5. One-to-one using foreign key

We implemented this using a foreign key column CONTACT_ID in USER table as shown in fig 5.

We used element many-to-one with unique attribute set to true to enforce unique constraint on the

User side as well on Contact object as

<many-to-one name="contact" class="docs.Contact"

column="CONTACT_ID" cascade ="save-update" not-null="true" unique = "true" />

We tested application code that create a Contact instance and associate the same with an User

instance as

1.

2. tx = session.beginTransaction ();

3. Contact contact1 =

new Contact("xyz@abc.com", "12345", "12345");

4. User user1 = new User ("Neetu");

5. user.setContact (contact);

300 Computer Science & Information Technology (CS & IT)

6. session.save (user1);

7. tx.commit();

Persisting an object of type User (line 6) automatically saves the transient Contact instance

contact1 into CONTACT table. Attempt to attach contact1 with user2 object generates an

integrity violation error.

User user2 = new User ("user1");

User2.setContact (contact1);

Caused by: java.sql.SQLException: Unique constraint violation: SYS_CT_472 in statement

[insert into USER (USER_ID, USER_NAME, CONTACT_ID) values (null, ?, ?)] at

org.hsqldb.jdbc.Util.throwError(Unknown Source)at

rg.hsqldb.jdbc.jdbcPreparedStatement.executeUpdate(Unknown Source) at

org.hibernate.id.insert.AbstractSelectingDelegate.performInsert(AbstractSelectingDelegate.java:

33)

3.4 Many-to-many Unidirectional.

Association between Tag and Document is of many-to-many type. For an instance of Tag, there

will be multiple instances of Document and vice versa. We successfully implemented this

association using the join table as depicted in fig. 6.

We created a join table TAGDOCS to persist Collection docs added in Tag class. For now, we

only implemented it unidirectional from Tag to Document as

private Set docs = new HashSet();

public Set getDocs() {return this.docs;}

public void setDocs(Set docs) {this.docs = docs;}

……………..

Fig 6. Many-to-many unidirectional association and mapping using join table

Computer Science & Information Technology (CS & IT) 301

This association is defined using many-to-many property without setting unique to true opposite

to the case of one-to-many. We have used the property <Set> to persist the collection to create

join table TAGDOCS. Added the following mapping in XML configuration file of Tag class

 <set name = "docs" table="TAGDOCS">

 <key column = "TAG_ID"/>

 <many-to-many column="DOC_ID" class ="docs.Document"/>

</set>

The related java code to associate a Document instance to a Tag is tested. A Tag object is

persisted in TAGS table (line 4) and it is associated with already saved Document objects with

doc1and doc2 with tag object.

1.

2. tx = session.beginTransaction();

3. Tag tag = new Tag("3.0");

4. session.save(tag);

5. tag.getDocs().add(doc1);

6. tag.getDocs().add(doc2);

7. tx.commit();

8.

4. CONCLUSIONS AND FUTURE SCOPE

We have implemented and tested a prototype of Document versioning system using ORM

hibernate to understand how different types of possible associations among classes can be

implemented to generate a valid schema and database. We also studied how to incorporate the

constraints like uniqueness, cascading persistence of multiple objects by defining a suitable XML

in hibernate. We tested the code that creates and update database using hibernate query. In future

work, we will incorporate the bidirectional associations in system wherever possible and will

study and test the hibernate implementation required. The complete source code of the system is

available with the author.

ACKNOWLEDGMENT

The writer thanks Mr. Ashutosh Gupta, the reviewer of the paper for his continues support

towards understanding hibernate and troubleshooting during setting up the eclipse, hsqldb

framework and narrow down other technical issues.

REFERENCES

[1] Hibernate, http://www.hibernate.org

[2] Christian Bauer, Gavin King, “Hibernate in Action”, Manning

[3] Bauer, C, King, G 2006 Java Persistence with Hibernate, Manning, Manning 2007

[4] Dia, https://live.gnome.org/Dia

[5] http://www.eclipse.org/

[6] http://hsqldb.org

