

Sundarapandian et al. (Eds) : ACITY, AIAA, CNSA, DPPR, NeCoM, WeST, DMS, P2PTM, VLSI - 2013

pp. 227–237, 2013. © CS & IT-CSCP 2013 DOI : 10.5121/csit.2013.3424

A FAST FAULT TOLERANT PARTITIONING

ALGORITHM FOR WIRELESS SENSOR

NETWORKS

Dibakar Saha
1
 and Nabanita Das

2

Advanced Computing and Microelectronics Unit,

Indian Statistical Institute Kolkata, India
1dibakar.saha10@gmail.com, 2ndas@isical.ac.in

ABSTRACT

In this paper, given a random uniform distribution of sensor nodes on a 2-D plane, a fast self-

organized distributed algorithm is proposed to find the maximum number of partitions of the

nodes such that each partition is connected and covers the area to be monitored. Each

connected partition remains active in a round robin fashion to cover the query region

individually. In case of a node failure the proposed distributed fault recovery algorithm

reconstructs the affected partition locally utilizing the available free nodes. Simulation studies

show significant improvement in performance compared to the earlier works in terms of

computation time, the topology of each partition, message overhead and network lifetime.

KEYWORDS

Wireless Sensor Network (WSN), Self Organization, Coverage, Partition, Network Lifetime,

Fault Resilience

1. INTRODUCTION

In a Wireless Sensor Network (WSN), a large number of sensor nodes are randomly deployed to

monitor a large geographical area. Each sensor node is integrated with processing elements,

memory, battery power and wireless communication capabilities. Once deployed, they are, in

general left unattended. Due to power drainage, hardware degradation, environmental hazards etc.

sensor nodes may fail. To combat frequent failures of non-repairable nodes, the networks are

generally over-deployed. For better utilization of the over-deployed nodes to save energy and to

extend the lifetime of the network, this paper addresses the problem of finding the maximum

number of partitions of the sensor nodes such that each partition is connected and covers the

whole query region. Instead of keeping all the sensor nodes active always, these partitions will

remain active one after another in a round robin fashion. Therefore, if there exists K such

partitions, the network lifetime can be enhanced by at most K times. Here, given a random

uniform distribution of sensor nodes over a 2-D plane, a fast distributed algorithm is developed

for finding the maximum number of partitions of connected nodes such that each partition ensures

coverage. In case of node failures, a distributed algorithm is developed for fault recovery that

rearranges the affected partition locally to tolerate single node faults within a partition.

Simulation studies show that compared to the earlier techniques, the proposed algorithm is faster

and results better partition topology with reduced diameter and requires less message overhead.

Also, in case of unpredictable node faults the neighboring nodes in the same partition execute the

228 Computer Science & Information Technology (CS & IT)

localized fault recovery algorithm that rearranges the partition locally to make the system fault

resilient. Simulation results show that it extends the network lifetime significantly.

The rest of the paper is organized as follows. Section 2 presents a brief outline of related works.

Section 3 describes the proposed model. Section 4 presents the proposed algorithms. Simulation

results are included in Section 5 and Section 6 concludes the paper.

2. RELATED WORKS

Extensive research results have been reported so far addressing the problems of sensing coverage

and network connectivity in wireless sensor networks. In many works, the authors considered

only the coverage issue in wireless sensor networks [1]–[6]. But unless the coverage and

connectedness problems are considered jointly, the data sensed by the nodes covering the region

cannot be gathered at the sink node in multi-hop WSN’s. The problem of finding a connected set

cover of minimum size is itself an NP-hard problem [7]. Authors of [7], [8] focused on both

connectivity and coverage problems with the objective of finding a single connected set cover

only. But finding just a single connected cover keeps a large number of sensors unutilized. Some

of the papers considered the fault tolerant connected set cover problem. An approximation

algorithm is proposed in [9] for fault tolerant connected set cover problem. In [10], a coverage

optimization algorithm based on particle swarm optimization technique is developed. In [11]–

[14], authors proposed several dynamic localized algorithms to achieve the coverage and

connectivity. But dynamic algorithms, in general, require substantial message overhead to collect

recent neighborhood information at regular intervals. Hence, the authors in [15], propose a

localized algorithm for finding maximum number of connected set covers that is to be computed

just once during network initialization only.

In some papers [12], [14], [15], it has been assumed that the query area is a dense grid [16], [17]

composed of unit cells. The knowledge of exact location of each node is needed here. A sensor

node computes the covered area by counting the cells covered by each neighbor that makes the

procedure computation intensive. To avoid this, in [18] the DCSP algorithm is proposed where

authors assume that the monitoring area is divided into a limited number of square blocks such

that a sensor node within a block completely covers it irrespective of its position within the block.

Therefore, the coverage problem can be solved easily with much less computation. However, the

proposed distributed algorithm was a slow one requiring p rounds to achieve a partition with p

nodes. Also, the fault model considered the faults due to energy exhaustion only where a node

can predict its failure and can inform its neighbors in advance. In this paper, a faster distributed

algorithm requiring less message overhead is proposed that is executed during network

initialization only. It attempts to create maximum number of connected partitions of sensor nodes

with reduced diameter such that each partition covers the area under investigation and being

active in round robin fashion it enhances the network lifetime manifold. The reduced diameter of

the partition keeps the communication latency low. Moreover, a distributed fault recovery

algorithm is developed for a stronger fault model that in presence of any unpredictable node

faults, can rearrange the affected partition locally, so that it remains operational. Simulation

studies show that this fault recovery scheme enhances the network lifetime by more than 50%.

3. PROPOSED MODEL AND PROBLEM FORMULATION

Let n homogeneous sensor nodes be deployed over a 2-D region P each with sensing range S and

transmission range T. It is assumed that P is divided into a finite number of square blocks [18].

Each side of the block is R/√2 as shown in Figure1, where R=min(S, T). Therefore, it is evident

that each sensor node within a block B completely covers B and all nodes within the same block

are always connected to each other.

Computer Science & Information Technology (CS & IT) 229

Hence, activating just a single sensor node from each block is sufficient to cover the region P. But

it is not guaranteed that any such set is connected.

As for example, Figure 2 shows a partition where the selected nodes (shown by solid circles) are

connected but a block B is left uncovered. Whereas, Figure 3 shows a partition where all blocks

are covered but the selected nodes are not connected, and finally, Figure 4 shows the desired

topology where the partition covers all blocks as well as it is connected. Assuming this grid

structure of the query region P , this paper addresses the connected set cover partitioning problem

introduced in [15]. For completeness, the problem is defined below.

Definition 1. Consider a sensor network consisting of a set S of n sensors and a query region P .

A set of sensors N⊆ S is said to be a connected K-cover for P if, each point p ∈ P is covered by at

least K sensors from N and the communication graph induced by N is connected.

a) Connected Set Cover Problem: Given n sensor nodes distributed over a query region,

the Connected Set Cover Problem is to find a connected 1-cover of minimum size. This problem is

known to be an NP-hard problem [7].

b) Connected Set Cover Partitioning Problem: The Connected Set Cover Partitioning

Problem is to partition the sensors into connected 1-covers such that the number of covers is

maximized [15].

Figure 1. Region P divided into a

square blocks with diagonal R

Figure 2. A Connected partition of nodes

Figure 4. A partition with coverage

and connectivity

Figure 3. A partition that covers P but is

disconnected

230 Computer Science & Information Technology (CS & IT)

It is evident that the problem (b) is at least as hard as problem (a). The following section

describes the algorithms developed for solving the Connected Set Cover Partitioning Problem.

4. ALGORITHM FOR CONNECTED SET COVER PARTITIONING

In pervasive computing environments, it is evident that in most of the cases the system captures

data in distributed nodes communicating through poorly connected network. Since, in WSN large

number of sensor nodes is deployed over a geographical area, to collect information of the whole

network at a central node is not feasible. Instead, it is better to compute in a distributed fashion

based on the local neighborhood information using less communication. Hence the focus of our

work is on distributed computation of the connected partitions. In this section, a distributed

algorithm is developed to find the maximum number of connected-1 covers of a WSN. Also, in

case of node fault, a distributed algorithm is presented to rearrange the affected partition locally

to make the system fault resilient.

4.1. Distributed Algorithm for Partitioning

It is assumed that a set of n sensor nodes S={s1, s2, s3,, sn} is deployed on a 2-D plane P

divided into say, m square blocks P= { p1, p2, p3,...., pm}, each with side R/√ 2 where R= min(S,T),

as has been described in Section 3. Each block has unique id. Each sensor node knows its location

in terms of its block within which it is located. After deployment, by the neighborhood discovery

phase, each node knows its neighbor-id's, their degrees and block-id's respectively.

To generate the partitions the following types of messages are exchanged among nodes.

• Selectlist (Ci, i, {j}) : This message is sent by a node- i that selects a list of neighbors {j}

for inclusion in its partition Ci.

• Selected (Ci, {j}) : This message is initiated by the leader node li of Ci and is sent to nodes

{j} for inclusion in its partition.

• Confirm (Ci, j) : A node ∈ {j} sends this message to the leader after joining its partition

Ci.

• Include (Ci, j) : The leader broadcasts this message within Ci to include node j∈ Ci.

Depending on the node density, a probability value 0 < lprob < 1 is determined to select p number

of leader nodes randomly. Each node i in S generates a random number r to check if r ≤ lprob, the

leader probability. If yes, it becomes a leader node and sets its parent as null. Say, p leader nodes

emerge and L ={ l1, l2, l3, ... , lp}. Next each leader node li ∈ L initiates the creation of one partition

Ci concurrently to generate a disjoint connected 1-cover.

 (a) In Round 1 (b) In Round 2

Computer Science & Information Technology (CS & IT) 231

 (c) In Round 3

 (d) In Round 4 (e) In Round 5 (f) In Round 6

Figure 5. steps for constructing connected 1-cover in successive rounds

In round 1, each leader li in L initiates a partition Ci={li}. In each round, each node i ∈ Ci prepares

'Selectlist' consisting of neighbors of itself and its children in Ci, each one from an uncovered

block with minimum degree D. If it finds none, it includes a neighbor from any block with

maximum degree D. In case, a node gets more than one node from the same block, it selects the

neighbor with minimum D. Node i sends a 'Selectlist' message to its parent in Ci if it is a leaf

node in Ci. Else, after receiving the 'Selectlist' messages from all its children in Ci, node j ∈ Ci

sends the 'Selectlist' message to its parent node if it is not a leader node.

The leader node finally selects the nodes to be included and sends the ’Selected’ message to them.

If a node receives ’Selected’ messages from more than one nodes, it selects the parent with

232 Computer Science & Information Technology (CS & IT)

minimum degree D and confirms the request by sending a ’Confirm’ message to the

corresponding leader. The leader includes the node in Ci and broadcasts the ’Include’ message to

all nodes in Ci. On receiving an ’Include(Ci, j)’ message, all nodes k ∈ Ci include node-j in its

partition and make necessary updates. In each round, this procedure is repeated until either all

blocks are covered by a partition Ci, or no neighbors are left for inclusion.

The formal description of the algorithm is given below.

Algorithm 1: Distributed algorithm for connected set cover partitioning

Input: 1-hop neighbor list of each node NL(i) with degree D, Block-Id, Block status, Status,

 Leader Probability : lprob

Output: Partition Ci from leader li

 for each node-i do

 if node-i is a leader then Ci ← {i}; parent = ∅; status = 1;

 end
 if Status = 1 and not all blocks covered then

 prepare ’Selectlist’ with neighbors from uncovered blocks with minimum D or

 neighbor from covered block with maximum D;

 if received ’Selectlist’ messages from all children ∈Ci and Parent ≠ ∅ then

 prepare ’Selectlist’ to cover maximum number of uncovered blocks with

 neighbors having minimum D;

 Send ’Selectlist’ to the parent node;

 else

 if 'Selectlist' =∅ then

 Broadcast success=0 and terminate;

 else
 Send ’Selected’ message to the nodes in ’Selectlist’ ;

 end

 end

 end
 if Status = 0 receives ’Selected’ message then

 Select that partition where the sender have minimum D and send ’Confirm’

 message to leader;

 Update NL(i), Block status, Status and include in Ci;

 end

 if leader node and receives ’Confirm’ message then

 Broadcast ’Include’ message to all nodes in Ci and update NL(i) , Block status,

 Status;

 if all blocks are covered then

 Broadcast success=1 and terminate;

 end

 else
 if status=1 and receives ’include’ message then

 update NL(i);

 end

 end

 end

Correctness Proof: From the algorithm, it is clear that in each round of the procedure, the nodes

already existing in a partition include several neighbors in it. As the partition starts with a single

leader node, it always remains connected including new neighbors of the nodes covering

additional blocks. The process terminates when at least one node from each block has been

included i.e. a successful partition always satisfy the condition of connectedness and coverage. In

case of a failure, the nodes in the incomplete partition declare them as free nodes, and take part in

other partitions or remain as stand by nodes to facilitate the fault recovery phase.

Computer Science & Information Technology (CS & IT) 233

Example 1. In Figure 5, it is shown that in round 1, the leader node (red) selects the neighbors

(the green ones) from uncovered blocks. In the next round, all black nodes are selected by the red

and green nodes. This procedure is repeated to include brown and blue nodes until all blocks are

covered. In the last round, all purple nodes are selected and the process is terminated as no

uncovered block exists.

4.2. Distributed Fault Recovery Algorithm

As it has been mentioned in Section 1, once deployed the sensor nodes may fail due to low

energy, hardware degradation, inaccurate readings, environmental changes etc. This paper

focuses on the fault recovery problem in case of a single unpredictable node fault within a

partition. It is assumed that when an active node f of a partition Ci fails abruptly, its parent (if

exists) and the children (if exists) in Ci can detect it.

A fast fault recovery algorithm by which all children and the parent of the faulty node in the

partition after detecting the fault rearrange the partition quickly to make the partition connected

with full coverage. In case, the faulty node is the leader node, its children with the minimum

node-id becomes the new leader otherwise the parent node becomes the leader and the fault

recovery procedure is initiated by the new leader.

The formal description of the algorithm is given below.

Algorithm 2: Distributed fault recovery algorithm

 Input: faulty node-id : f, partition: Ci, parent & children of f: Si

 Output: Recovered partition Ci

 If f is a leader node then leadertemp ← Minimum ID child of f, otherwise

 leadertemp ← parent of f;

 Make a block list BS[] covered by (f U Si) \ leadertemp with status ← 0 ;

 include leadertemp in temp[];

 end
 for each node-i in temp[] do

 find neighbors in Si or from uncovered block. If none, select the free neighbor

with maximum D; Include neighbors in ’Selectlist’, ;

 if node-i not leadertemp then

 Send ’Selectlist’ message to leadertemp;

 else
 if leadertemp receives ’Selectelist’ message from all nodes-j in temp[]

then

 Include nodes in temp[]; Update BS[];

 if BS[] == ∅ then

 Send ’FaultRecovered’ message with temp[] to ∀j ∈ Ci

and

 terminate;

 if ’Selectlist’ = ∅ for ∀j ∈ temp[] then

 Broadcast ’RecoveryFailed’ and terminate;

 else
 send temp[] and BS[] to all nodes in temp[];

 end

 end

 end

end

Correctness Proof: In the fault recovery algorithm, in case a node i ∈ Ci fails, a unique leader

node leadertemp ∈ Ci is selected from the parent or children of i. leadertemp marks the set of blocks

234 Computer Science & Information Technology (CS & IT)

of the remaining children of i as uncovered. Then it initiates the fault recovery procedure, in the

same fashion as it has been done in algorithm 1, only with the difference that here the children of

the faulty node in the uncovered blocks are preferred than other nodes to be included in Ci. It

guarantees that when the procedure is successful, the repaired partition is again connected and

covers the whole region.

(a) Fault Detection (b) Disjoint Sub Partition (c) Fault Recovery

Figure 6. Fault Detection and Recovery

Example 2. In Figure 6, say, the red node is faulty. It will be detected by all its children and

parent (colored by green). The partition is broken into three disjoint components as shown in

Figure 6(b). The leader node selects its neighbor the blue node from the faulty node’s block for

maintaining the coverage and it is also connected to at least one node from the disjoint

components. Therefore, the connectivity is preserved. Now the new partition including the blue

node, is ready for monitoring the area.

5. SIMULATION RESULTS AND DISCUSSION

For simulation studies, we have used network simulator NS 2.34 to evaluate the performance of

our proposed algorithm. We have compared our results with [18] that show significant

improvement on the number of rounds for generating the partitions, the network diameter and the

number of transmitted messages per node during the procedure. The sensor nodes are deployed

over a grid P which is divided into a number of blocks (2 × 2), (3 × 3) to (7 × 7) respectively.

Figure 7 shows the variation of the average number of rounds to complete partitioning with the

grid size. Obviously, the number of rounds increases with the number of blocks. However,

compared to the DCSP algorithm proposed in [18], the present method completes in significantly

less number of rounds. Therefore, during initialization, the proposed method will converge faster

to achieve the connected covers of the nodes.

Computer Science & Information Technology (CS & IT) 235

In figure 8, it is shown that the proposed algorithm results significant improvement in terms of

the average network diameter of the generated partition over the DCSP algorithm [18]. In a

network with large diameter, the number of steps to route a message from a source node to a

destination node will require more delay and more massage exchanges between intermediate

nodes. Therefore, the low diameter network topologies are highly preferred for a partition that can

aggregate the data using less number of hops, i.e., with less delay and less number of broadcasts.

 Figure 9 shows the significant improvement in average number of transmitted messages per node

in computing the connected set covers. Since the procedure terminates faster using fewer rounds

of computation, the total number of messages exchanged per node is also less here. Therefore the

proposed technique is better in terms of energy efficiency also.

Finally, Figure 10 shows how the fault recovery algorithm enhances the network lifetime in

presence of faults. In the simulation, only node faults due to energy exhaustion has been taken

into account. Simulation results show almost 50% enhancements in network lifetime.

Figure 8. Comparison of diameter between

DCSP and the proposed algorithm

Figure 7. Comparison of average number of rounds

for partitioning between DCSP and the proposed

algorithm

Figure. 9. DCSP vs. Proposed algorithm in

terms of average number of transmitted

messages

Figure. 10. Extension of network lifetime using

fault recovery technique

236 Computer Science & Information Technology (CS & IT)

6. CONCLUSION

In this paper, we have focused on the connected set cover partitioning problem in Wireless Sensor

Networks. A self-organized fast distributed algorithm is proposed for finding maximum number

of connected partitions to cover the region. Also, distributed fault recovery technique is

developed to rearrange connected set covers in presence of unpredictable node faults to satisfy

both connectivity and coverage criteria. Reduction in network diameter of the partition and

significant improvements in terms of computation rounds and message overhead are also

achieved by the proposed method. In summary, the proposed connected set cover partitioning

technique along with the localized fault recovery scheme opens up new avenues for setting up

self organized wireless sensor networks with enhanced lifetime.

REFERENCES

[1] X. Li, P. Wan and O. Frieder, “Coverage in Wireless Ad-hoc Sensor Networks,” IEEE Transactions

on Computers, vol. 52, June 2003, pp. 753–763.

[2] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava, “Coverage problems in

wireless ad-hoc sensor networks,” in IEEE INFOCOM , 2001, pp. 1380–1387.

[3] D. Wang, B. Xie and D. P. Agrawal, “Coverage and Lifetime Optimization of Wireless Sensor

Networks with Gaussian Distribution,” IEEE Transactions on Mobile Computing, vol. 7, December

2008, pp. 1444–1458.

[4] J. Jiang and W. Dou, “A Coverage-Preserving Density Control Algorithm for Wireless Sensor

Networks,” in Ad-Hoc, Mobile, and Wireless Networks, 2004, pp. 42–55.

[5] Huang, Chi-Fu and Tseng, Yu-Chee, “The Coverage Problem in a Wireless Sensor Network,” in

Proceedings of the 2nd ACM International Conference on Wireless Sensor Networks and

Applications. ACM, 2003, pp. 115–121.

[6] S. Slijepcevic and M. Potkonjak, “Power efficient organization of wireless sensor networks,” in IEEE

International Conference on Communications , 2001, pp. 472–476.

[7] H. Gupta, Z. Zhou, S. R. Das and Q. Gu, “Connected sensor cover: self-organization of sensor

networks for efficient query execution,” IEEE/ACM Transactions on Networking, vol. 14, pp. 55–67,

2006.

[8] Z. Zhou and S. Das and H. Gupta, “Connected K-Coverage Problem in Sensor Networks,” in 13th

International Conference on Computer Communications and Networks, ICCCN 2004, October 2004,

pp. 373– 378.

[9] Z. Zhang, X. Gao and W. Wu, “Algorithms for Connected Set Cover Problem and Fault-Tolerant

Connected Set Cover Problem,” Theoretical Computer Science, vol. 410, 2009, pp. 812–817.

[10] P. Li, L. Kia and L. Gang, “Research on Wireless Sensor Networks Fault-Tolerant Coverage

Algorithm Based on Particle Swarm Optimization,” in International Conference on Wireless Sensor

Network, IET-WSN, November 2010, pp. 286–290.

[11] C. Lin, C. Chen and A. Chen, “Partitioning Sensors by Node Coverage Grouping in Wireless Sensor

Networks,” in International Symposium on Parallel and Distributed Processing with Applications

(ISPA) , September 2010, pp. 306–312.

[12] D. Tian and N. D. Georganas, “A Coverage-Preserving Node Scheduling Scheme for Large Wireless

Sensor Networks,” in Proceedings of the 1st ACM International Workshop on Wireless Sensor

Networks and Applications. ACM Press, 2002, pp. 32–41.

[13] X. Wang, G. Xing, Y. Zhang, C. Lu, Chenyang, R. Pless and C. Gill, “Integrated Coverage and

Connectivity Configuration in Wireless Sensor Networks,” in Proceedings of the 1st International

Conference on Embedded Networked Sensor Systems. ACM, 2003, pp. 28–39.

[14] A. Gallais, J. Carle, D. Symplot-Ryl, and I. Stozmenovic, “Localized sensor area coverage with low

communication overhead,” IEEE Transactions on Mobile Computing , vol. 7, no. 5, pp. 661–672,

2008

[15] N. Pervin, D. Layek and N. Das, “Localized Algorithm for Connected Set Cover Partitioning in

Wireless Sensor Networks,” in 1st International Conference on Parallel Distributed and Grid

Computing (PDGC). IEEE-xplore, October 2010, pp. 229–234.

Computer Science & Information Technology (CS & IT) 237

[16] W. Ke, B. Liu, M. Tsai, “The Critical-Square-Grid Coverage Problem in Wireless Sensor Networks is

NP-Complete,” Computer Networks, pp. 2209–2220, February 2010.

[17] R. S. S. Shakkottai and N. Shroff, “Unreliable sensor grids: Coverage, connectivity and diameter,” in

Proceedings of IEEE INFOCOM, 2003, pp. 1073–1083.

[18] D. Saha and N. Das, “Distributed Area Coverage by Connected Set Cover Partitioning in Wireless

Sensor Networks,” in 1st International Workshop on Sustainable Monitoring through Cyber-Physical

Systems (SuMo-CPS) in Conjunction with ICDCN 2013. ACM Digital Library , January 2013, pp.

17–22.

Authors

Dr. Nabanita Das is a Professor in the Advanced Computing and Microelectronics

Unit of Indian Statistical Institute, Kolkata, India, since 1996. Her area of interest

includes Mobile Ad Hoc Networking, Pervasive Computing, Parallel and

Distributed Computing and Multi-Core Computing. Dr. Das acted as the co-Editor

of ‘Distributed Computing- IWDC 2004’ LNCS, Springer, Guest Editor of special

issue on 'Resource Management in Mobile Communication Networks' of

'Microprocessors and Microsystems', 2004, Elsevier, Editor of 'Recent Trends in

High Performance Computing', Proc. of International Workshop on High

Performance Computing', 1998 – 99. She serves as the reviewer of many

International Journals like IEEE Transactions on Computers, IEEE Transactions

on Vehicular Technology, IEEE Transactions on Systems Man and Cybernetics,

Journal of Parallel and Distributed Computing etc. She is a senior member of

IEEE. She served as the Chair of Women in Engineering (WIE) affinity group of

IEEE Calcutta section during 2009-2011.

Dibakar Saha, received Master of Computer Applications (MCA) degree from

University of North Bengal, West Bengal, in 2010. Since 2010 he has been a

project researcher at Advanced Computing and Microelectronics unit, Indian

Statistical Institute, Kolkata. His research interests include parallel processing and

Distributed Computing.

