
Sundarapandian et al. (Eds) : ACITY, AIAA, CNSA, DPPR, NeCoM, WeST, DMS, P2PTM, VLSI - 2013

pp. 67–74, 2013. © CS & IT-CSCP 2013 DOI : 10.5121/csit.2013.3408

DESIGN OF A RULE BASED HINDI

LEMMATIZER

Snigdha Paul, Mini Tandon, Nisheeth Joshi and Iti Mathur

Apaji Institute, Banasthali University, Rajasthan, India
snigdha.pal18@gmail.com, minitndn200@gmail.com,

nisheeth.joshi@rediffmail.com,mathur_iti@rediffmail.com

ABSTRACT

Stemming is the process of clipping off the affixes from the input word to obtain the respective

root word, but it is not necessary that stemming provide us the genuine and meaningful root

word. To overcome this problem we come up with a solution- Lemmatizer. It is the process by

which we crave out the lemma from the given word and can also add additional rules to make

the clipped word a proper stem. In this paper we have created an inflectional lemmatizer which

generates the rules for extracting the suffixes and also added rules for generating a proper

meaningful root word.

KEYWORDS

Stemming, Lemmatization, Lemma, Hindi, Over-stemming and Under-stemming.

1. INTRODUCTION

In today’s era we live in a computerized world where almost everything is done by computers.

With this advent we have a lot of data to store and retrieve. This stored data can be accessed for

retrieving information from anywhere. This is a very good application of Natural Language

Processing. Since language is so vast and has its own grammar structure, it is very necessary to

study the word structure. For example – ‘indicate’ can be written as indicative, indication,

indicated, indicator, indicatable. Here we need some mechanism to drop all the word forms to a

common base form which is called as a root word or stem. This is done by stemming or

lemmatization. Stemming is the process of reducing the words to a common stem by clipping off

the unnecessary morphemes. These morphemes are called as suffixes. This suffix stripping is

done by generating various rules. For example – ‘introduce’ has many word forms like

introduction, introducing, introduced. After stemming, all the forms are contracted to the word

introduce- which is not a proper root word. This problem is resolved by lemmatizer where the

inflectional ending is detached and the base or dictionary form of the word is generated. If we

find the root word of the above example then we get it as ‘introduce’ but not ‘introduc’. Thus in

stemming we have two kinds of problem – Under-stemming and Over-stemming. Under-

stemming is a case which occurs when the words need to be grouped together, but are not actually

grouped. It occurs mostly in case of semantically same words. For example – in Hindi we have a

68 Computer Science & Information Technology (CS & IT)

word गल�तय� which when stemmed gives गल�तय, but it is not a proper root. Over-stemming is a

case which occurs when the words need not to be grouped together, but are actually grouped. It

occurs mainly in case of semantically distant words. For example – the Hindi word चहेता when

stemmed gives us चहे which is again not a proper root word. Thus we can say that stemmer does

not provide us the contextual knowledge which is provided by the lemmatizer. Since English and

other European languages are not highly inflected therefore there have been many stemmers and

lemmatizers developed for them, but if we talk about Indian languages, they are highly inflected.

Lemmatizer for such languages is rarely found. In this paper we are emphasizing on Hindi

language. Hindi is the official language of India. It is most widely spoken in almost all the parts

of the country. So, in order to preserve the language and its root words we have developed a

lemmatizer which contains various rules. The study however does not include all the rules but can

be taken as a prototype for extending the functionality of the system. We have made an attempt to

make an automated lemmatizer using the rules. This system can be efficiently used for retrieving

the information.

The paper is organized as follows: the first section described the introduction and problems of

stemming. The next section discusses the literature work done in this research area. Further we

discuss the linguistic background of Hindi. Then we propose our work in which we have shown

the methodology and approach that we have used. Further we have shown the processing

technique in which we have discussed some examples and provide some limitations of the system

depending on the evaluation result. The final section concludes the study of the paper.

2. RELATED WORK

A lot of research work has been done and is still going on for the development of a stemmer as

well as lemmatizer. The first stemmer was developed by Julie Beth Lovins [1] in 1968. Later the

stemmer was improved by Martin Porter [2] in July, 1980 for English language. The proposed

algorithm is one of the most accepted methods for stemming where automatic removal of affixes

is done from English words. The algorithm has been implemented as a program in BCPL. Much

work has been done in developing the lemmatizer of English and other European languages. In

contrast, very little work has been done for the development of lemmatization for Indian

languages.

A rule based approach proposed by Plisson et al. [3] is one of the most accepted lemmatizing

algorithms. It is based on the word endings where the suffix should be removed or added to get

the normalized form. It emphasizes on two word lemmatization algorithm which is based on if-

then rules and the ripple down approach. The work proposed by Goyal et al. [6] focuses on the

development of a morphological analyzer and generator. They aimed to develop a translation

system especially from Hindi to Punjabi. Nikhil K V S [8] built a Hindi derivational analyzer

using a specific tool. He used supervised approach by creating a SVM classifier. Jena et al. [9]

proposed a morphological analyzer for Oriya language by using the paradigm approach. They

classified nouns, adjectives and finite verbs of Oriya by using various paradigm tables. Anand

Kumar et al. [7] developed an automatic system for the analysis of Tamil morphology. They used

various methodologies, rule based approach and sequence labeling containing the non linear

relationships of morphological features from the training data in a better way.

Computer Science & Information Technology (CS & IT) 69

Chachoo et al. [5] used an extract tool named Extract v2.0 for the development of the

orthographic component of Kashmiri Script. A method has been proposed by Majumder et al.

[12] in which a clustering based approach is used for discovering the equivalent classes of root

words. This algorithm was tested for two languages French and Bangla. A rule based approach

for stemming in Hindi was proposed by Ramanathan & Rao [11]. The approach is based on

stripping off suffixes by generating rules emphasizing on noun, adjective and verb inflections in

Hindi. Bharti Akshar et al. [4] proposed the work on natural language processing where they

gave a detailed study of morphology using paradigm approach.

3. LINGUISTIC BACKGROUND OF HINDI

Morphemes play a vital role in lemmatization. This is the major way in which morphologists

investigate the words. Their formation and internal structure is studied in deep. Morphology is

broadly categorized into two parts: derivational morphology and inflectional morphology.

Derivational morphology processes the words and form new lexemes from the existing ones. This

is done by either adding or deleting affixes. For example – सजा + वट= सजावट. Here the word

class is changed from adjective to noun. Similarly, in English we have words like employ + ee =

employee, where the word class is changed from verb to noun. Inflectional morphology processes

the words by producing various inflections without changing the word class. For example – कलम

+ दान = कलमदान where both कलम and कलमदान is noun/singular. The word class remains same

here. The root form of the words basically comes under noun and verb classes. This knowledge

lead us to trace the paradigm approach. According to Smriti Singh and Vaijayanthi M Sarma [10],

Hindi noun classification system shows only the number and case for morphological analysis.

Number basically includes either singular or plural. By default a word is kept singular. In Hindi

we have two types of Cases – direct and oblique. Oblique words show the case as well as the

number of the word. For example – लड़क – ◌ा, लड़क – ◌,े here ◌ा shows singular number whereas

◌ े shows plural number. Similarly we have some gender rules. In Hindi, words ending with the

suffix ◌ी are termed as feminine whereas the words that end with suffix ◌ा are termed as

masculine. For example लड़का, नेता, घोड़ा, कटोरा, ब�चा and many more are masculine ending with

◌ा while लड़क�, धोबी,प ुी, कटोर!, ब�चीand many more are feminine ending with ◌ी. But we have

many more words that contradict this concept. For example – the word पानी (water) is masculine,

although it is ending with ◌ी. Similarly the word माला (garland) is feminine even though ending

with ◌ा. There are some other words from which the suffix cannot be removed. For example – let

us consider the suffix ◌ा, the words "पता, माता, ब�चा, कटोरा, नेता, and many more does not

require stemming. Such words need to be maintained as it is and should be refrained from being

stemmed. So it is found that Hindi is a highly inflected language and needs a deep study of word

structure and its formation.

4. PROPOSED WORK

In this paper we have discussed about the creation of a Hindi lemmatizer. The approach for the

creation is based on the key concept of optimization. Optimization includes both space and time,

70 Computer Science & Information Technology (CS & IT)

so our approach is based on these parameters. The lemmatizer that we discuss here mainly

focuses on the time complexity problem. Typically lemmatizer is built using a rule based

approach and paradigm approach. In rule based approach along with the rules, knowledgebase is

created for storing the grammatical features. Knowledgebase is also created for storing the

exceptional root words. That is we need some root words as it is containing the suffix. Although

the knowledgebase creation requires a large amount of memory, but in respect of time it gives us

the best, accurate and fast result. The reason behind this fast retrieval is that, a very short time is

taken to search the input word from the knowledgebase. The study [7] shows that Tamil words

have infinite set of inflections but Hindi words have finite set of inflections which are quite easy

to maintain in the knowledgebase. We have restricted our knowledgebase to commonly used

words which do not contain the proper nouns like the names of person and place.

4.1 SUFFIX GENERATION

We have gone through various words with their suffixes and examined the morphological

changes for the development of a lemmatizer. These suffixes and changes led to the development

of specific rules. For example – If we take the word खराबी (defect) then we find that the word is

derived by adding ◌ी suffix to the word खराब (bad) which transform noun to adjective. Similarly

there are many other words with the same suffix. Some of them are shown in table 1 and 2.

Table 1. Example of derived words with suffix ◌ी & ई (noun to adjective)

Root Word Derived Word

साफ़ सफ़ाई

ऊँचा ऊँचाई

मोटा मोटाई

गर!ब गर!बी

सद(सद)

Table 2. Some more suffixes are as follows

Root Word Derived Word Suffix

गाड़ी गा*ड़य� य�

मीठा ,मठाई ई

प"व प"व ता ता

जाद ू जादगूर गर

रोशन रोशनदान दान

चढ़ चढ़ाई ◌ाई

Hindi words are large in number and for this reason the extraction of suffixes had a large list.

Since the work has been done manually therefore this phase was quite time consuming. The

Computer Science & Information Technology (CS & IT) 71

suffixes were generated by processing a corpus of 40,000 sentences from which 75 lakh words

were manually stemmed among them 124 suffixes were derived.

4.2 RULES GENERATION

After generating the suffix list we have developed rules. We have created 124 rules which are

framed in such a way that the suffix gets removed from the input word and if required, addition of

character or ‘maatra’ takes place. For example – let us take the suffix ◌ो◌ं. Some of the words

containing this suffix are shown in table 3.

Table 3. Words showing the suffix ◌ो◌ं

 Rule application

Word Root Extraction of

suffix

Addition of character

लड़क� लड़का ◌ो◌ ं ◌ा

सड़क� सड़क ◌ो◌ ं __

लेखक� लेखक ◌ो◌ ं __

In the above table on removing the suffix ◌ो◌ ंwe get their respective root word, but the word

लड़क� is an exception here because on removing the suffix ◌ो◌ं we need to add ◌ा to the last letter

of the word to make it a genuine root word’ लड़का.’ Similarly there are many other rules for

removing the suffix and if necessary addition of character may also takes place. Similarly we also

have some other rules, like the rule for extracting the suffix ि◌य� which is shown in table 4.

Hindi has a grammar rule, according to which when the plural is removed, we need to add ◌ी to

the last letter of the word. Table 4 mentions the rule for the suffix ि◌य� in which we have created

a general rule for removing the suffix and adding ◌ी to the word, but we have some exceptions

here which include the addition of ि◌ instead of ◌ी. In the below table we have also shown an

exception in the last word 2च*ड़य� where the root form is 2च*ड़या. The word 2च*ड़य� contains two

suffixes together which are ि◌य� and ◌ो◌.ं This becomes hard for the system as it finds difficulty

in picking up the correct rule for the particular word. Similarly there are many more exceptions

for which we have generated different rules. To overcome such problems we have built a

database in which such exceptional words are kept. Although this work requires much time but

for the sake of fast and accurate result this approach is applied.

72 Computer Science & Information Technology (CS & IT)

Table 4. Words showing the suffix ि◌य�

 Rule application

Word Root Extraction of suffix Addition of character

लड़3कय� लड़क� ि◌य� ◌ी

कहा�नय� कहानी ि◌य� ◌ी

क"वय� क"व ि◌य� ि◌ (exception)

2च*ड़य� 2च*ड़या ि◌य� ि◌या (exception)

5. PROCESSING TECHNIQUE

Fig 1. Schematic diagram of the system

The foremost step is to read the input word. The database contains all the root words. The input is

checked in the database, if it is present in the database then the word is displayed as it is. If the

word is not present in the database then it comes down to access the rules. After accessing the

rules the root word is generated and displayed. The rule is followed as -

If (root) present in (root list)

{

Fetch the root from the list

Display;

}

else if (root) not present in (root list)

{

If (source) ends with (suffix)

{

Computer Science & Information Technology (CS & IT) 73

Substring the source

Display the root;

}

}

6. ILLUSTRATION

As an illustration we gave a set of Hindi words in order to analyze the output. Some of them are –

Table 5. Stemmed Output

Input Output

2च*ड़य� 2च*ड़या

लड़3कय� लड़क�

भारतीयता भारत

6�तभाशाल! 6�तभा

गौरवां"वत गौरव

7. EVALUATION

The system is evaluated for its accuracy where we gave 2500 words for analysis. Among these

2500 words 2227 words were evaluated correctly and 273 words were incorrect because they

violated both the exceptional and general rules.

Fig. 1. Graphical representation of evaluation

Our system gave 89.08% accuracy. We used the following formula to calculate the accuracy.

 Accuracy % = Total correct lemmas / Total words

8. CONCLUSION

In this paper we have discussed the development of Hindi lemmatizer. The work focuses on rule

based approach along with this paradigm approach is also used in which we have created

knowledgebase containing all the Hindi root words that are commonly used in day to day life.

The main aim is emphasized on time optimization problem rather than on space. Since nowadays

74 Computer Science & Information Technology (CS & IT)

space is not at all a big problem, therefore our approach aimed to optimize time and generate

accurate result in a very short period. Our system gave 89.08% of accuracy.

REFERENCES

[1] Julie Beth Lovins, Development of stemming Algorithm, Mechanical Translation and Computational

Linguistics, Vol. 11, No. 1, pp 22-23, 1968.

[2] Martin F. Porter, An algorithm for suffix stripping, Program, Vol. 14, No. 3, pp 130-137,1980.

[3] Plisson, J, Larc, N, Mladenic, D.: A Rule based approach to word lemmatization, Proceedings of the

7th International Multiconference Information Society, IS-2004, Institut Jozef Stefan, Ljubljana, pp.

83-86, 2008.

[4] Bharti Akshar, Vineet Chaitanya, Rajeev Sangal, Natural Language Processing: A Paninian

Perspective. Prentice-Hall of India, 1995.

[5] Manzoor Ahmad Chachoo, S.M.K. Quadri. Morphological Analysis from the Raw Kashmiri Corpus

Using Open Source Extract Tool, Vol. 7, No. 2, 2011.

[6] Vishal Goyal, Gurpreet Singh Lehal, Hindi Morphological Analyzer and Generator, IEEE Computer

Society Press, California, USA pp. 1156-1159, 2008.

[7] Anand Kumar M, Dhanalakshmi V, Sonam K P, A sequence labeling approach to morphological

analyzer for tamil language, International Journal on Computer Science and Engineering, Vol. 20, No.

06, 2010.

[8] Nikhil K V S, Hindi derivational morphological analyzer, Language Technologies Research Center,

IIIT Hyderabad, 2012.

[9] Itisree Jena, Sriram Chaudhary, Himani Chaudhary, Dipti M. Sharma, Developing Oriya

Morphological Analyzer Using Lt-toolbox, ICISIL 2011, CCIS 139, pp. 124-129, 2011.

[10] Smriti Singh, Vaijayanthi M Sarma. Hindi Noun Inflection and Distributed Morphology.

[11] A. Ramanathan and D.D Rao, A Light Weight Stemmer for Hindi, In Proceedings of Workshop on

Computational Linguistics for South Asian Languages, 10th Conference of the European Chapter of

Association of Computational Linguistics, pp. 42-48, 2003.

[12] Prasenjit Majumder, Mandar Mitra, Swapan k. Pauri, Gobinda Kole, Pabitra Mitra and Kalyankumar

Datta, YASS: Yet Another Suffix Stripper, ACM Transactions on Information Systems, Vol.25,

NO.4, pp. 18-38, 2007.

