

Sundarapandian et al. (Eds) : ACITY, AIAA, CNSA, DPPR, NeCoM, WeST, DMS, P2PTM, VLSI - 2013

pp. 21–27, 2013. © CS & IT-CSCP 2013 DOI : 10.5121/csit.2013.3403

RELEVANT UPDATED DATA RETRIEVAL

ARCHITECTURAL MODEL FOR

CONTINUOUS TEXT EXTRACTION

Srivatsan Sridharan
1
, Kausal Malladi

1
 and Yamini Muralitharan

2

1
Department of Computer Science,

International Institute of Information Technology - Bangalore, India.
{vatsansridharan,kausalmalladi}@gmail.com

1
Department of Software Engineering,

International Institute of Information Technology - Bangalore, India.
{yams25}@gmail.com

ABSTRACT

A server, which is to keep track of heavy document traffic, is unable to filter the documents that

are most relevant and updated for continuous text search queries. This paper focuses on

handling continuous text extraction sustaining high document traffic. The main objective is to

retrieve recent updated documents that are most relevant to the query by applying sliding

window technique. Our solution indexes the streamed documents in the main memory with

structure based on the principles of inverted file, and processes document arrival and expiration

events with incremental threshold-based method. It also ensures elimination of duplicate

document retrieval using unsupervised duplicate detection. The documents are ranked based on

user feedback and given higher priority for retrieval.

1. INTRODUCTION

Data intensive applications such as electronic mail, news feed, telecommunication management,

automation of business reporting etc raise the need for a continuous text search and monitoring

model. In this model the documents arrive at the monitoring server as in the form of a stream. Each

query Q continuously retrieves, from a sliding window of the most recent documents, the k that is

most similar to a fixed set of search terms. Sliding window. This window reflects the interest of

the users in the newest available documents. It can be defined in two alternative ways. They are a)

count-based window contains the N most recent documents for some constant number N, b) time-

based window contains only documents that arrived within last N time units. Thus, although a

document which may be relevant to a query, it is ignored, because it may not satisfy the time and

count constraints of the user. Incremental threshold method. The quintessence of the algorithm is

to employ threshold-based techniques to derive the initial result for a query, and then continue to

update the threshold to reflect document arrivals and expirations. At its core lies a memory-based

index similar to the conventional inverted file, complimented with fast updated techniques.

MapReduce technique. MapReduce is a powerful platform for large scale data processing. This

technique involves two steps namely a) map step: The master node takes the input, partitions it up

22 Computer Science & Information Technology (CS & IT)

into smaller sub-problems, and distributes them to worker nodes. A worker node may do this again

in turn, leading to a multi-level structure. The worker node processes the smaller problem, and

passes the answer back to its master node, b) reduce step: The master node then collects the

answers to all the sub-problems and combines them in some way to form the output – the answer

to the problem it was originally trying to solve. Unsupervised duplicate detection
. [3]

 The problem

of identifying objects in databases that refer to the same real world entity, is known, among others,

as duplicate detection or record linkage. Here this method is used to identify documents that are all

alike and prevent them from being prepared in the result set. Our paper also focuses on ranking the

documents based on user feedback. The user is allowed to give feedback for each document that

has been retrieved. This feedback is used to rank the document and hence increase the probability

of the document to appear in the sliding window.

Visual Web Spider is a fully automated, multi-threaded web crawler that allows us to index and

collect specific web pages on the Internet. Once installed, it enables us to browse the Web in an

automated manner, indexing pages that contain specific keywords and phrases and exporting the

indexed data to a database on our local computer in the format of our choice. We want to collect

website links to build our own specialized web directory. We can configure Visual Web Spider

automatically. This program’s friendly, wizard-driven interface lets us customize our search in a

step-by-step manner. To index relevant web pages, just follow this simple sequence of steps.

After opening the wizard, enter the starting web page URL or let the program generate URL links

based on specific keywords or phrases. Then set the crawling rules and depth according to your

search strategy. Finally, specify the data you want to index and your project filename. That’s

pretty much it. Clicking on ‘Start’ sets the crawler to work. Crawling is fast, thanks to multi-

threading that allows up to 50 simultaneous threads. Another nice touch is that Visual Web Spider

can index the content of any HTML tag such as: page title (TITLE tag), page text (BODY tag),

HTML code (HTML tag), header text (H1-H6 tags), bold text (B tags), anchor text (A tags), alt

text (IMG tag, ALT attribute), keywords, description (META tags) and others. This program can

also list each page size and last modified date.

Once the web pages have been indexed, Visual Web Spider can export the indexed data to any of

the following formats: Microsoft Access, Excel (CSV), TXT, HTML, and MySQL script.

1.1 Key Features

A Personal, Customizable Web crawler. Crawling rules. Multi-threaded technology (up to 50

threads). Support for the robots exclusion protocol/standard (Robots.txt file and Robots META

tags);Index the contents of any HTML tag. Indexing rules; Export the indexed data into Microsoft

Access database, TEXT file, Excel file (CSV), HTML file, MySQL script file; Start crawling

from a list of the URLs specified by user; Start crawling using keywords and phrases; Store web

pages and media files on your local disk; Auto-resolve URL of redirected links; Detect broken

links; Filter the indexed data;

2. EXISTING SYSTEM

Drawbacks of the existing servers that tend to handle the heavy document traffic are: Cannot

efficiently monitor the data stream that has highly dynamic document traffic. The server alone

does the processing hence it involves large amount of time consumption. In case of continuous text

search queries and extraction every time the entire document set has to be scanned in order to find

Computer Science & Information Technology (CS & IT)

the relevant documents. There is no confirmation that duplicate documents are not retrieved for the

given query. A large amount of documents cannot be stored in the main memory as it involves

large amount of CPU cost.

Naïve solution: The most straightforward approach to evaluate the

above is to scan the entire window

intervals, compute all the document scores, and report the

incurs high processing costs due

3. PROPOSED SYSTEM

3.1 Problem Formulation

In our model, a stream of documents flows into a central server. The user registers text queries at

the server, which is then responsible for continuously monitoring/reporting their results. As in

most stream processing systems, we store all the data in main memory in order to cope with

frequent updates, and design our methods with the primary goal of minimizing the CPU cost.

Moreover it is necessary to reduce the work load of the monitoring server.

3.2 Proposed Solution

In our solution we use the MapReduce technique in order to reduce the work load of the central

server, where the server acts as the master node, which splits up the processing task to several

worker nodes. The number of worker nodes, which have been assign

depends on the nature of query that has been put up by the user. Here the master node, upon

receiving a query from the user, assigns the workers to find the relevant result query set and

return the solution to the master node. The

the workers, integrates the results to produce the final result set for the given query. This can be

viewed schematically in the following

incremental threshold algorithm

for the given query. The overall system architecture can be viewed as in the following

Fig. 1. System Architecture for the proposed Re

Computer Science & Information Technology (CS & IT)

ts. There is no confirmation that duplicate documents are not retrieved for the

given query. A large amount of documents cannot be stored in the main memory as it involves

The most straightforward approach to evaluate the continuous queries defined

above is to scan the entire window contents D after every update or in fixed time

mpute all the document scores, and report the top-k documents. This method

igh processing costs due to the need for frequent re computations from scratch.

YSTEM

3.1 Problem Formulation

In our model, a stream of documents flows into a central server. The user registers text queries at

responsible for continuously monitoring/reporting their results. As in

most stream processing systems, we store all the data in main memory in order to cope with

frequent updates, and design our methods with the primary goal of minimizing the CPU cost.

eover it is necessary to reduce the work load of the monitoring server.

In our solution we use the MapReduce technique in order to reduce the work load of the central

server, where the server acts as the master node, which splits up the processing task to several

worker nodes. The number of worker nodes, which have been assigned the processing task,

depends on the nature of query that has been put up by the user. Here the master node, upon

receiving a query from the user, assigns the workers to find the relevant result query set and

return the solution to the master node. The master node, after receiving the partial solutions from

the workers, integrates the results to produce the final result set for the given query. This can be

viewed schematically in the following Fig.1. Each worker/slave node is responsible uses the

incremental threshold algorithm for computing the result set of k relevant and recent documents

for the given query. The overall system architecture can be viewed as in the following

System Architecture for the proposed Relevant Updated Architecture Model.

 23

ts. There is no confirmation that duplicate documents are not retrieved for the

given query. A large amount of documents cannot be stored in the main memory as it involves

tinuous queries defined

contents D after every update or in fixed time

documents. This method

to the need for frequent re computations from scratch.

In our model, a stream of documents flows into a central server. The user registers text queries at

responsible for continuously monitoring/reporting their results. As in

most stream processing systems, we store all the data in main memory in order to cope with

frequent updates, and design our methods with the primary goal of minimizing the CPU cost.

In our solution we use the MapReduce technique in order to reduce the work load of the central

server, where the server acts as the master node, which splits up the processing task to several

ed the processing task,

depends on the nature of query that has been put up by the user. Here the master node, upon

receiving a query from the user, assigns the workers to find the relevant result query set and

master node, after receiving the partial solutions from

the workers, integrates the results to produce the final result set for the given query. This can be

Each worker/slave node is responsible uses the

for computing the result set of k relevant and recent documents

for the given query. The overall system architecture can be viewed as in the following Fig.2

levant Updated Architecture Model.

24 Computer Science & Information Technology (CS & IT)

Fig. 2. A data Retrieval system for continuous data extraction technique using MapReduce.

Each element of the input stream comprises of a document d, a

document arrival time, a composition list

term t belonging to T in the document and wdt is the frequency of the term in the document d.

The notations in this model are as follows in Fig 3.

Fig. 3. A Detailed list of the notations used in the paper for the proposed system.

The worker node maintains an inverted index for each term t in the document. With the inverted

index, a query Q is processed as follows: the inverted lists for the terms t belongi

scanned and the partial wdt scores of each encountered document d are accumulated to produce

S(d/Q). The documents with the highest scores at the end are returned as the result.

Computer Science & Information Technology (CS & IT)

A data Retrieval system for continuous data extraction technique using MapReduce.

Each element of the input stream comprises of a document d, a unique document identifier, the

composition list. The composition list contains one (t, wdt) pair for each

term t belonging to T in the document and wdt is the frequency of the term in the document d.

The notations in this model are as follows in Fig 3.

A Detailed list of the notations used in the paper for the proposed system.

The worker node maintains an inverted index for each term t in the document. With the inverted

index, a query Q is processed as follows: the inverted lists for the terms t belongi

scanned and the partial wdt scores of each encountered document d are accumulated to produce

S(d/Q). The documents with the highest scores at the end are returned as the result.

A data Retrieval system for continuous data extraction technique using MapReduce.

unique document identifier, the

The composition list contains one (t, wdt) pair for each

term t belonging to T in the document and wdt is the frequency of the term in the document d.

A Detailed list of the notations used in the paper for the proposed system.

The worker node maintains an inverted index for each term t in the document. With the inverted

index, a query Q is processed as follows: the inverted lists for the terms t belonging to Q are

scanned and the partial wdt scores of each encountered document d are accumulated to produce

Computer Science & Information Technology (CS & IT) 25

3.3 Incremental Threshold Algorithm

Fig.3 represents the data structures that have been used in this system. The valid documents D are

stored in a single list, shown at the bottom of the figure. Each element of the list holds the stream

of information of document (identifier, text content, composition list, arrival time). D contains the

most recent documents for both count-based and time-based windows. Since documents expire in

first-in-first-out manner, D is maintained efficiently by inserting arriving documents at the end of

the list and deleting expiring ones from its head. On the top of the list of valid documents we

build an inverted index. The structure at the top of the figure is the dictionary of search terms. It

is an array that contains an entry for each term t belonging to T. The dictionary entry for t stores a

pointer to the corresponding inverted list Lt. Lt holds an impact entry for each document d that

contains t, together with a pointer to d’s full information in the document list. When a document

d arrives, an impact entry (d, wdt) (derived from d’s composition list) is inserted into the inverted

list of each term t that appears in d. Likewise, the impact entries of an entries of an expiring

document are removed from the respective inverted lists. To keep the inverted lists sorted on wdt

while supporting fast (logarithmic) insertions and deletions.

Initial Top-k Search: When a query is first submitted to the system, its top-k result is computed

using the initial search module. The process is an adaptation of the threshold algorithm. Here, the

inverted lists Lt of the query terms play the role of the sorted attribute lists. Unlike the original

threshold algorithm, however we do not probe the lists in a round robin fashion. Since the

similarity function associates different weights wQt with the query specifically, inspired by [4],

we probe the list Lt with the highest ct=wQt.wdnxtt value, where dnxt is the next document in Lt.

The global threshold gt, a notion used identically to the original algorithm, is the sum of ct values

for all the terms in Q. Consider query Q1 with search string “red rose” and k=2. Let term

t20=”red” and t11=”rose”. First the server identifies the inverted lists L11 and L20 (using the

dictionary hash table), and computes the values c11=wQ1t11.wd7t11 and c20=wQ1t20.wd6t20. In

iteration 1, since c20 is larger, the first entry of L20 is popped; the similarity score of the

corresponding document, d6, is computed by accessing its composition list in D and inserted into

the tentative R. c20 is then updated to impact entry which is above local threshold, but we would

still include it in R as unverified entry.

The algorithm is as follows,

Algorithm Incremental Threshold with Duplicate Detection

(Arriving dins, Expiring ddel)
1: Insert document dins into D (the system document list)

2: for all terms t in the composition list of dins do

3: for all documents in Lt

4: for all terms t in dins

5: Compute unique (dins)

6: wdinst != wdnxtt

7: Insert the impact entry of dins into Lt

8: Probe the threshold tree of Lt

9: for all queries Q where wdinst > =localThreshold do

10: if Q has not been considered for dins in another Lt then

11: Compute S (dins/Q)

12: Insert dins into R

13: if S(dins/Q)>= old Sk then

14: Update Sk (since dins enters the top-k result)

26 Computer Science & Information Technology (CS & IT)

15: Keep rolling up local thresholds while r <= Sk

16: Set new τ as influence threshold for Q

17: Update local thresholds of Q

18: Delete document ddel from D (the system document list)

19: for all terms t in the composition list of ddel do

20: Delete the impact entry of ddel from Lt

21: Probe the threshold tree of Lt

22: for all queries Q where wddelt >= localThreshold do

23: if Q has not been considered for ddel in another Lt then

24: Delete ddel from R

25: if S(ddel/Q) >= old Sk then

26: Resume top-k search from local thresholds

27: Set new τ as influence threshold for Q

28: Update local thresholds of Q

After constructing the initial result set R using the above algorithm, only the documents that have

a score higher than or equal to the influence threshold t(tow) are verified. The main key point is

that no duplicate documents from the part of the result set R. This is ensured using unsupervised

duplication detection. The idea of unsupervised learning for duplicate detection has its roots in

the probabilistic model proposed by Fellegi and Sunter. When there is no training data to compute

the probability estimates, it is possible to use variations of the Expectation Maximization

algorithm to identify appropriate clusters in the data.

Fig. 3. Data Structures used for Incremental Threshold Algorithm

Computer Science & Information Technology (CS & IT) 27

3. CONCLUSION

In this paper, we study the processing of continuous text queries over document streams. These

queries define a set of search terms, and request continual monitoring of a ranked list of recent

documents that are most similar to those terms. The problem arises in a variety of text monitoring

applications, e.g., email and news tracking. To the best of our knowledge, this is the first attempt

to address this important problem. Currently, our study focuses on plain text documents. A

challenging direction for future work is to extend our methodology to documents tagged with

metadata and documents with a hyperlink structure, as well as to specialized scoring mechanisms

that may apply in these settings.

REFERENCES

[1] B.Babcock, S. Babu, M.Datar, R.Motwani, and J.Widom, 2002, “Models and Issues in Data

Streaming System” PODS’02, 1-16.

[2] J.Zobel and A.Moffat, July 2006, “Inverted Files for Text Search Engines”, Computing Surveys,

vol.38, o.2, p1-55.

[3] VNAnh and A.Moffat, 2002, “Impact Transformation: Effective Efficient Web Retrieval”, Int’l ACM

SIGIR conf. Research and Development in Information Retrieval.

[4] V.N.Anh, O.de Krestser, and A. Moffat, 2001, “Vector-Space Ranking with Effective Early

Termination”, ACM SIGIR conf. Research and Development in Information Retrieval.

[5] Y. Zhang and J.Callan, 2001 “Maximum Likelihood Estimation for Filtering Tresholds,” ACM SIGIR

conf. Research and Development in Information Retrieval.

[6] M. Persin, J. Zobel and R. Sacks-Davis, 1996, “Filtered Document Retrieval with Frequency_Sorted

Indexes”, J.Am.Soc for Information Science, vol.47, no.10.

