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ABSTRACT 

This paper presents a new idea for fault detection and isolation (FDI) technique which is 

applied to industrial system. This technique is based on Neural Networks fault-free and Faulty 

behaviours Models (NNFMs). NNFMs are used for residual generation, while decision tree 

architecture is used for residual evaluation. The decision tree is realized with data collected 

from the NNFM’s outputs and is used to isolate detectable faults depending on computed 

threshold. Each part of the tree corresponds to specific residual. With the decision tree, it 

becomes possible to take the appropriate decision regarding the actual process behaviour by 

evaluating few numbers of residuals. In comparison to usual systematic evaluation of all 

residuals, the proposed technique requires less computational effort and can be used for on line 

diagnosis. An application example is presented to illustrate and confirm the effectiveness and 

the accuracy of the proposed approach. 
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1. INTRODUCTION 

In a process, early diagnosis of faults, that might occur, allows performing important prevention 

actions. Therefore, fault detection is a crucial task in the automatic control of large system as 

manufacturing systems (Diag, 2009). Moreover, it allows avoiding heavy economic losses due to 

production stop, replacement of spares parts, etc. The need of performing and reliable developed 

methods for the systems diagnosis becomes increasingly pressing. These methods should respects 

the following points: (1) Standards and quality improvement; (2) Diagnostic failure to improve 

the relationship and (3) The definition of new services as new technologies and economic 

interests. Most of the fault diagnosis methods found in the literature are based on linear 

methodology or exact models. Models of industrial processes are often very complex. It is 

difficult to accurately predict their behavior, especially with corrupted measures, and unreliable 

sensors. Therefore, a number of researchers have perceived artificial neural networks as an 

alternative way to represent knowledge about faults (Sorsa et al. 1992, Himmelblau 1992, Patton 

et al. 1994, Frank 1997, Patton et al. 1999, Calado et al. 2001, Korbicz et al. 2004). 

 
This paper presents a FDI method that generates a large number of residuals depending on the set 

of candidate faults. The residuals are analyzed and evaluated according to their mean values. A 

decision tree is introduced to manage the residuals evaluation and to decide on line which residual 
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must be evaluated or not. This technique is validated with the DAMADICS benchmark process, a 

European project under which several FDI methods have been developed and compared. This 

benchmark is based on industry requirements described in (Bartys et al. 2006). It is used with 

different approaches in the purpose of providing a training facility for both industry and 

academia. It gains a better understanding for the way in which the various FDI methods can 

perform in a realistic control engineering application setting. In the literature, different analytical 

FDI approaches have been developed. In (Puig et al. 2006), passive robustness fault detection 

method using intervals observers is presented. In (Previdi et al. 2006), authors introduce signal 

model based fault detection using squared coherency functions. An actuator fault 

distinguishability study is presented in (Koscielny et al. 2006). Several soft computing techniques 

used in FDI methods have been developed under the scope of DAMADICS. A data-driven 

method in FDI is presented in (Bocaniala et al. 2006), where a novel classifier based on particle 

swarm optimization was developed. Group method of data handling (GMDH) neural networks 

have been used in (Witczak et al. 2006) for robust fault detection. A computer-assisted FDI 

scheme based on a fuzzy qualitative simulation, where the fault isolation is performed by a 

hierarchical structure of the neuro-fuzzy networks is presented in (Calado et al. 2006). A neuro-

fuzzy modeling for FDI, involving a hybrid combination of neuro-fuzzy identification and 

unknown input observers in the neuro-fuzzy and decoupling fault diagnosis scheme, has been 

proposed in (Uppal et al. 2006). 

 
The paper is organized as follows: In section 2 the proposed technique for FDI issues is 

presented. This method uses models of faulty and fault-free behaviors with Neural Networks. The 

design of decision tree is proposed in section 3 to assist the diagnosis on line with early decision. 

Section 4 presents the DAMADICS actuator benchmark and application of our approach. Finally, 

in the last section a conclusion about the effectiveness of this approach and future research 

directions are presented. 

2. NEURAL NETWORKS FAULTY AND FAULT-FREE MODELS 

2.1. Fault-free Model 

Physical processes are often very complex dynamic systems, having strong non linearities. As a 

consequence, knowledge based models are not easy to obtain. Simplifications are essential to 

formulate an exploitable model, but they may degrade the accuracy of the mathematical model. 

Other problems remain with some model parameters that are not easy to measure or estimate and 

that could be variable in time. Another problem lies in the systematic processing of data collected 

by sensors. 

 
At this stage, unknown nonlinear systems are considered with input vector U(t) = (ui(t)), i =1,...,q 

and output vector Y(t) = (yk(t)), k =1,...,n. The state variables are not measurable. Neural 

Networks (NN) are introduced to generate accurate models of the system in normal operating 

conditions (Kourd et al., 2008, 2010, 2011). The comparison between the output of the system 

and the output Y0’(t) = (y’k0(t)), k =1,...,n, of the NN model gives the error vector E(t) = (ek(t)), k 

=1,...,n, with: 

ek(t)= yk(t) - y'k0(t)              (1) 

 
The Neural Network model is trained with data collected from the fault-free system utilizing 

Levenberg-Marquardt algorithm with early stopping that uses three data sets (training, testing and 

validation) to avoid overfitting. Moreover, this algorithm is known in its fast convergence. The 

obtained model is then tested and validated again with other sets of data. In order to get the best 

model, several configurations are tested according to a trial error processing that uses pruning 
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methods to eliminate the useless nodes. 

 

2.2. Faulty Models 

When multiple faults are considered, the isolation of the detected faults is no longer trivial and 

early diagnosis becomes a difficult task. One can multiply the measurements and use some 

analysis tools (residuals analysis) in order to isolate them. In particular, a history of collected data 

can be used to improve the knowledge about the faulty behaviors.  This knowledge is then used to 

design models of faulty behaviors and additional residuals. Such models will be used to provide 

estimations for each fault candidate. The decision results are then provided from the comparison 

between estimations with the measurements collected during system operations. 

 
The design of faulty models is similar to the method described in previous section (2.A). The 

learning of faulty behaviors is obtained according to the Levenberg-Marquardt algorithm with 

early stopping. Each model is built for a specific fault candidate fj that is considered as an 

additional input. The vectors Y’j(t) = (y’kj(t)), k =1,...,n, j = 1,…p stand for the outputs of the 

Neural Networks models designed for the faults fj, j = 1,…p. 

3. DECISION TREES FOR RESIDUAL EVALUATION 

3.1. Fault detection technique 

During monitoring, the direct comparison of the system’s outputs Y(t) and the outputs Y'0(t) of 

fault-free model leads to residuals R0(t) = (rk0(t)) and  k = 1,…,n with: 

 
rk0(t)= yk(t)-y'k(t), k =1,…,n.                (2) 

 
The residual R0(t) provides information about faults for further processing. Fault detection is 

based on the evaluation of residuals magnitude. It is assumed that each residual rk0(t), k = 1,…,n 

should normally be close to zero in the fault-free case, and it should be far from zero in the case 

of a fault. Thus, faults are detected by setting threshold Sk0 on the residual signals (Fig. 1 up, 

single residual and a single fault are considered for simplicity). The analysis of residuals rk0(t) 

also provides an estimate τk of the time of occurrence tf used for diagnosis issue. When several 

residuals are used, the estimate τ of the time of occurrence of faults is given by: 

 

τ = min {τk, k = 1,…,n}                   (3) 

 

 

 

 

 

 

 

 

 

Figure 1.  Fault detection by thresholding technique 

The faults are detected when the magnitude of one residual |rk0(t)| augments the threshold Sk0: 
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The main difficulty with this evaluation is that the measurement of the system outputs yk(t) is 

usually corrupted by disturbances (for example, measurement noise). In practice, due to the 

modeling uncertainties and disturbances, it is necessary to assign large thresholds Sk0 in order to 

avoid false alarms. Such thresholds usually imply a reduction of the fault detection sensitivity and 

can lead to non detections. In order to avoid such problems, one can run also the models of faulty 

behaviors from t=0 and use the method described below. The idea is to evaluate the probability of 

the fault candidates at each instant. A fault is detected when the probability of one neural network 

faulty model NNFM(j),  j = 1,..., p becomes larger than the probability of the fault-free model 

NNFM(0) (Kourd et al., 2010). 

 

3.2. Fault diagnosis based on three valued residuals 

The proposed approach is based on the analysis of the outputs obtained after applying the input 

U(t) on the real system. Obtained outputs are also analyzed in parallel with fault-free and faulty 

behaviors models constructed by Neural Networks technique (Kourd et al., 2012). Detection and 

diagnosis are achieved from residuals generation Rj(t), j = 0,...,p  according to a decision block. 

The diagnosis results either from the usual thresholding technique or from the on-line 

determination of fault probabilities and confidence factors (Kourd et al., 2011). In the second 

method, the faulty models run simultaneously from time t = τ  where τ is the time when the fault 

is detected. Each model will behave according to a single fault candidate and the resulting 

behaviors will be compared with the collected data to provide rapid diagnosis. In case of 

numerous fault candidates fj, j = 1,…,p, the output Y'j(t) = (y’k(t, fj,τ)) of the model NNFM(j) is 

compared with the measured vector Y(t) to compute additive residual Rj(t)= (rkj(t,τ)), k = 1,…,n. 

The most probable fault candidate is determined according to the comparison of all residuals 

rkj(t,τ), k = 1,…,n, j = 1,…,p resulting from the n outputs and p models of faults: 

 �����, �	  =  ���	 −   ��" ��, �	                     (5) 

 
According to the residual analysis of rkj obtained by equation (5), and adopting positive and 

negative thresholds, threes values of these residuals are obtained (positive, negative or null). The 

comparison of the current residual with the signatures matrix leads to diagnosis (Chen et al. 

1999). 

 

3.3. Decision trees for residual evaluation 

The aim of this section is to propose a hierarchical structure to simplify the diagnosis of 

automation systems when numerous residuals are computed. The idea is to organize the residuals 

in a decision tree. This tree is used to compute only the selection of residuals that are the most 

significant for the current signal. The tree starts with the evaluation of the residual that 

corresponds to the fault free model (step 1). The value of the residual is used to classify the fault 

candidates in several subgroups (figure 2, G1 to Gm). Each subgroup limits the number of fault 

candidates. The algorithm continues by evaluating second residual that depends on the subgroup 

resulting from the first step (step 2). Another time the fault candidates are separated into 

subgroups (figure 2, G11 to G1t for example).  
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Figure 2. FDI decision tree proposed 

According to that evaluation, the algorithm continues until a subset of faults with a single 

candidate is isolated (presented by the leaves of tree in figure 2). Finally the faults are isolated by 

the computation of selected residuals. Thus the computational effort is reduced in comparison 

with the systematic evaluation of all residuals. In practice, the use of hierarchical architecture is 

feasible online or offline depending on the complexity of the system. 

4. APPLICATION IN INDUSTRIAL SYSTEM 

To evaluate FDI methods proposed, The DAMADICS benchmark is an engineering research 

case-study that can be used. This is electro-pneumatic valve actuator in the Lublin sugar factory 

in Poland (Bartys et al., 2006). Its main characteristics are: 

(a) The DAMADICS benchmark is based on the physical phenomena that give origin to faults in 

the system. 

(b) The DAMADICS benchmark clearly defines the process and data sets; the fault scenarios are 

standardized. This is done in view of industrial applicability of the tested FDI solutions, to cut off 

methods that have no practical feasibility. 

 

4.1. Actuator description 

The actuator consists of a control valve, a pneumatic servomotor and a positioner (Figure 3). In 

the actuator, faults can appear in: control valve, servo-motor, electro-pneumatic transducer, piston 

rod travel transducer, pressure transmitter or microprocessor control unit. A total number of 19 

different faults is considered (p = 19, Table 1). The faults are emulated under carefully monitored 

conditions, keeping the process operation within acceptable limits. Five available measurements 

and one control value signal have been considered for benchmarking purposes: process control 
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external signal (CV), liquid pressures on the valve inlet (P1) and outlet (P2), liquid flow rate (F), 

liquid temperature (T1) and servomotor rod displacement (X). 

 

 
Figure 3. Electro-pneumatic valve Schema. 

Within the DAMADICS project the actuator simulator was developed under MATLAB Simulink. 

This tool makes it possible to generate data for the normal and 19 faulty operating modes. The 

considered faults can be either of abrupt or incipient origins. Abrupt faults are of small (S), 

medium (M) or big (B) magnitude. 

 

4.2. Neural Network Fault-free Model for Actuator 

Two Multi Layer Perceptron (MLP) neural networks are designed to model the outputs y1(t) = 

X(t) and y2(t) = F(t) of the DAMADICS system in case of fault-free behaviors. y’10(t) = X’(t) and 

y’20(t) = F’(t) are the estimated values of X(t) and F(t) processed by NNs: 

 

(X’, F')= NNFM(0) {CV, P1, P2, T1, X, F}                 (6) 

 

Where NNFM(0) stands for the double MLP structures. To select the structure of NNFM(0), 

several tests are carried out to obtain the best architectures (with minimal number of hidden layers 

and number of neurons by layer) for modeling the operation of the actuator. The training, testing 

and validating data is simulated using Matlab Simulink actuator model. Validation is done by the 

measured data provided by 'Lublin Sugar Factory'.  

 

4.3. Neural Network faulty Model for Actuator 

The preceding method is applied to build NNs models corresponding to the 19 fault candidates 

that are considered in DAMADICS benchmark. For that purpose, it is necessary to create a data 

base that contains samples for all faults (Kourd et al., 2011) exposed to the DAMADICS system. 

The method is illustrated in Figure 4 for the fault fj with j=1 to 19 faults. The network NNFM(j) 

learns the mapping from q=6 inputs to n=2 outputs when fault fj is assumed to affect the system 

from time t = 0. Equation (7) holds: 

 

(X’j, F'j)= NNFM(j) (CV, P1, P2, T1, Xj, Fj)            (7) 

 
To select the structure of NNFM(j), numerous tests are carried out to obtain the best architectures. 

The training and test data are generated using Matlab-Simulink DABLIB models (DAMADICS 

2002). The best structure is a Neural Network with 6 nodes in the first hidden layer, 3 nodes in 

the second hidden layer and two output neurons. Validation is done with the measured data 

provided by the Lublin Sugar Factory in 2001 (DAMADICS 2002). 
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Figure 4. Schema of Neural Networks faulty model NNFM(j). 

4.4. Residual by Three valued for Actuator system:  

The residuals analysis is an essential step in FDI systems. The first parameter to be defined in the 

design of a fault detection system is the threshold value, which value allows the system to meet 

the required false alarm probability. The problem of the threshold selection is closely linked to the 

behavior of residuals and also to constraints that may be imposed such as security margins 

tolerance (Lefebvre et al., 2010). The residual vector R0(t) = (rk0(t)), k = 1, 2 for DAMADICS 

actuator is first considered for fault detection: 

 

#�$���	 = %��	 −  % ′��	
�&���	  = '��	 −  '′��	�                          (8) 

 

Where X’ and F’ are the outputs of the NN model of fault-free behaviors. The detection is 

obtained by comparing residuals with appropriate thresholds. Three-valued signal are obtained 

(positive, negative and zero). The thresholds are figured out according to the standard deviation 

of the residual for fault-free case (Kourd et al., 2011). Let us notice that the choice of constant or 

adaptive thresholds strongly influences the performance of the FDI system. The thresholds must 

be thoroughly selected. For the continuation of our work, the thresholds S10=5*σ1 = 0.0027 and 

S20 =5*σ2 =0.004 are selected where σ1 and σ2 are the standard deviations obtained from the 

learning process. Table 1 sums up the detection performances for the 19 types of faults according 

to the sign of the residual vector R0. 

 

Table 1 Signature matrix for DAMADICS Actuator with residual R0 

G0 f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 

r10 0 +1 -1 0 -1 0 0 +1 0 0 +1 -1 -1 -1 0 -1 +1 +1 0 0 

r20 0 -1 +1 -1 -1 +1 -1 -1 0 -1 -1 +1 +1 -1 0 +1 -1 -1 -1 +1 

 
The signification of (+1) is the case where the residual is above the positive threshold, (-1) is the 

case where the residual is below the negative threshold and (0) when the residual is between both 

thresholds. 
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Figure 5. Residuals r10 and r20 in the case where f1 was simulated during time interval [350s 

1000s]. 

The evaluation of residual vector R0 leads to a first stage in detection and isolation. From Table 1, 

six groups of faults with similar symptoms can be separated: 

 

• Group 1 : ($ = )*+ *, *- *$./ with signature 0 �1$2  

• Group 2 :  (& = )*$ *3 *$� *$, *$3/ with signature 04$1$2 

• Group 3 : (+ = )*5 *$-/ with signature 0 �4$2 

• Group 4 : (6 = )*& *$$ *$& *$5/ with signature 01$4$2 

• Group 5 : (5 = )*6 *$+/ with signature 01$1$2 

• Group 6 : (, = )*� *. *$6/ with signature 0��2 

 

The faults in groups G1 to G5 are detected but not isolated because the signatures over r10 and r20 

are similar within the group. One can also notice that the faults in group G6 have the same 

signature as the fault-free behaviors. Thus faults in group G6 cannot be directly detected with 

residuals r10 and r20. 

 

For this reason other residuals generated by faulty behavior neural models NNFM(j) can be added 

for each group. This allows the building of signatures matrix. An evaluation step that uses same 

thresholding technique is followed up. Tables 2 to 7 sum up the detection performances for the 19 

types of faults according to the sign of the residual vector Rj(t) generated by NNFM(j) with j= 

1,...,19. 
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Table 2             Table 3        Table 4 
Signature matrix for group G1      Signature matrix for group G2            Signature matrix for group G3 
 

 

 

 

 

 

                  
        Table 7 
Table 5         Signature matrix for group G6 

Signature matrix for group G4  Table 6     
    Signature matrix for group G5    

 

 

 

 

 

 

 

 

4.5. Decision tree for diagnosis DAMADICS Actuator: 

The introduction of probabilities to evaluate the significance of each residual and the reliability of 

the decision is another component of our approach. The proposed method uses a time window 

that can be sized according to the time requirement. Diagnosis with a large time window includes 

a diagnosis delay but will lead to a decision with a high confidence index. On the contrary single 

diagnosis with a small time window leads to early diagnosis but with a lower confidence index. 

The diagnosis results either from the usual thresholding technique or from the on-line 

determination of fault probabilities and confidence factors (Kourd et al., 2011). 

 

According to the values of residuals and selection of faulty model NNFM (j), we introduce 

decision trees to set the path of the branch that must be followed for the isolation of all detected 

faults. From this standpoint, we can configure many decision trees that lead to various 

computational complexities. 

5. CONCLUSION 

The accurate and timely fault diagnosis of safety critical systems is important because it can 

decrease the probability of catastrophic failures, increase the life of the plant, and reduce 

maintenance costs. In this paper, a multiple-model FDI scheme is presented for a DAMADICS 

actuator. NNs technique is applied for residual generation. In the first step of FDI, the use of NNs 

method is considered as an alternative to the traditional model-based approach for residual 

generation. When quantitative models are not readily available, a correctly trained NNs model 

can be used as a non-linear dynamic model of the system. The proposed NNFMs presented in this 

paper can be used to diagnose the faults in the DANMADICS actuator. In the second step of the 

FDI task, a decision tree was introduced for residual evaluation. An evolutionary technique was 

used to isolate the faults step by step by separating the fault candidates into several groups with 

same signatures. This study shows that the developed approach can produce good diagnosis 

results for a complex system exposed to numerous faults. The use of decision trees divides the 

computational effort by 10 for the DAMADICS system and can be implemented on line. 

 

G1 f3 f6 f9 f18 

r13 0 0 0 0 

r23 0 -1 -1 -1 

r16 0 0 0 0 

r26 -1 0 -1 -1 
r19 +1 +1 0 +1 

r29 -1 +1 0 +1 

r118 0 0 0 0 

r218 -1 -1 -1 0 

 

G2 f1 f7 f10 f16 f17 

r11 0 +1 +1 +1 +1 

r21 0 0 -1 -1 -1 

r17 -1 0 +1 +1 +1 
r27 0 0 -1 -1 -1 

r110 -1 -1 0 +1 +1 

r210 +1 +1 0 -1 -1 
r116 -1 -1 -1 0 +1 

r116 +1 +1 +1 0 -1 

r117 -1 -1 -1 -1 0 

r117 +1 +1 +1 +1 0 

 

G3 f5 f19 

r15 0 0 
r25 0 -1 

r119 0 0 

r219 1 0 

 

G4 f2 f11 f12 f15 

r12 0 +1 +1 +1 
r22 0 +1 +1 -1 
r111 -1 0 +1 +1 

r211 -1 0 -1 -1 

r112 -1 -1 0 +1 
r212 -1 +1 0 -1 

r1115 -1 -1 -1 0 

r215 +1 +1 +1 0 

G5 f4 f13 

r14 0 0 

r24 0 +1 

r113 -1 0 

r213 -1 0 

 

G6 f0 f8 f14 

r10 0 0 0 

r20 0 0 0 

r18 0 0 0 

r28 0 0 0 

r114 0 0 0 
r214 0 0 0 
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Applying this scheme on other types of operating systems will be the key issue of our interests in 

future research, in which other labeled faults will be investigated. This work can be extended to 

diagnose new faults using integrated set of decision tree which looks to be a worthwhile direction 

for future case study. Implementing this decision tree for the online diagnosis issues as well as 

choosing its components is an open task for more optimization and quick isolation.  
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