

Sundarapandian et al. (Eds): CoNeCo,WiMo, NLP, CRYPSIS, ICAIT, ICDIP, ITCSE, CS & IT 07,

pp. 483–489, 2012. © CS & IT-CSCP 2012 DOI : 10.5121/csit.2012.2447

Creation of a Test Bed Environment for Core
Java Applications using White Box Testing

Approaches

Priya R. L
1
, Dhanamma Jagli

2

1Assistant professor, Department of Computer Engineering, V. E. S. Institute

of Technology, Mumbai, India.
priyas_24@rediffmail.com

2Assistant professor, Department of MCA,

 V. E. S. Institute of Technology, Mumbai, India.
dhana1210@yahoo.com

ABSTRACT

A Test Bed Environment allows for rigorous, transparent, and replicable testing of scientific

theories. However, in software development these test beds can be specified hardware and

software environment for the application under test. Though the existing open source test bed

environments in Integrated Development Environment (IDE)s are capable of supporting the

development of Java application types, test reports are generated by third party developers.

They do not enhance the utility and the performance of the system constructed. Our proposed

system, we have created a customized test bed environment for core java application programs

used to generate the test case report using generated control flow graph. This can be obtained

by developing a new mini compiler with additional features.

KEYWORDS

Test Bed, Token Parser, Flow graph analyzer, Watch variable Handler, Path Synthesizer, Plan

synthesizer, Test case generator.

1. INTRODUCTION

Software testing is a process of inspecting the performance of software. As a part of any software

development process, software testing represents an opportunity to deliver quality software and

substantially reduce development cost. It is a great challenge to design test bed environments to

achieve effective testing whereby most of the defects in the system are revealed by utilizing a

limited quantity of resources.

The existing systems such as Net Beans and Eclipse have their own text editor for writing java

programs and generating test cases for the same. But the drawback is that they cannot read as an

input any other java source file written in any of the text editors like notepad, command prompt.

Our system overcomes NetBeans and Eclipse drawbacks by building up a test bed environment

484 Computer Science & Information Technology (CS & IT)

that accepts java source file written in any text editor, check for the syntax, structure of the same

and hence generate the test case reports for the core java program.

The rest of the paper is organized as follows; Section 2 presents about the proposed system. The

architecture and implementation details are described in sections 3 and 4 respectively. In section

5, presents the conclusion. Section 6 we outline further enhancement in the area of test bed

environment.

2. PROPOSED SYSTEM

System Strategy

We proposed to browse the *.java file as an input file. This .java file is then passed to the token

parser, flow graph analyzer and watch variable handler. *.xml file is generated by them which are

then passed to path synthesizer and plan synthesizer. Control flow is then passed to test case

generator engine generating test case reports and modified *.java files.

White box Testing

White box testing strategy deals with the internal logic and structure of the code is also called as

glass, structural, open box or clears box testing. The tests written based on the white box testing

strategy incorporate coverage of the code written, branches, paths, statements and internal logic

of the code etc. This testing needs the tester to look into the code and find out which unit or

statement or chunk of the code is malfunctioning.

Control flow Graph

Control flow (or alternatively, flow of control) refers to the order in which the individual

statements, instructions, or function calls of an imperative or a declarative program are executed

or evaluated.

3. SYSTEM ARCHITECTURE

Figure below gives an architectural view of the system. .java file is been browsed for which the

test cases are to be generated. This .java file is then passed to the token parser. Tokens generated

here are then passed to the flow graph analyzer and watch variable handler. .xml files generated

by them are then passed to path synthesizer and plan synthesizer. Control flow is then passed to

test case generator engine. Test case engine then generates the test case reports and .java files.

Computer Science & Information Technology (CS & IT) 485

.java file Token parser

Language

Metadata

Watch variable handler Flow graph analyzer

Path synthesizer & Plan synthesizer

Test case Generator Engine

Flow

Metadata

.java file

Flow

Metadata

.xml file

Tokens

Control Flow Graph

Synthesized XML file

 Figure 1.System Architecture

3.1 SYSTEM IMPLEMENTATION

A. Browsing .java files

A java file for which the test cases are to be generated is written in any text editor and is

compiled. This java program is then browsed by the system. The system is not concerned about

the editor file in which the program is written.

B. Token parser

The token parser reads in a sequence of characters and produces a sequence of objects called

“Tokens”. The rule used to break the sequence of characters into the sequence of tokens depends

on the language. The parser refers the language repository which stores the tokens for java

language. The tokens generated by the token parser are then passed on to the flow analyzer and

watch variable handler.

C. Flow graph analyzer

Flow graph analyzer uses the token produced by the token parser and analyzes the control flow of

the program using control table, functions and ‘JGraphX’ Application Program Interface (API).

Control table gives the syntax of the controls and function gives the flow of the function along

with the proper entry and exit conditions.

486 Computer Science & Information Technology (CS & IT)

D. Watch variable handler

Watch variable handler will take up the tokens produced by the token parser and will give the

changes in the values of the variable occurring in a particular loop or class or global variable and

also identifies the type of variable. It will also generate the .xml file for the same.

E. Path synthesizer and Plan synthesizer

The .xml files being received from flow graph analyzer and watch variable handler are combined

by the path synthesizer and plan synthesizer to generate another .xml file containing the flow

analysis along with the changes in variable value and variable type. This .xml file is given to test

case generator engine.

F. Test case generator engine

The syntax analyzer passes the result to the Test case generator engine. The test case generator

engine makes the graphical visualization of the result obtained from syntax analyzer and then

performs cyclomatic testing. The test report is then been generated.

 Figure 2.Test case Generator Engine

i. XML Parser

The Synthesized XML file obtained from the path synthesizer and plan synthesizer is given to

XML parser. SAXP is one of Java XML programming API, provides capability of validating and

parsing XML documents. Finally, it creates Java objects and manipulates them.

ii. Stub Insertion Logic

Stubs are classes that provide replacement implementations for the generated java objects by the

xml parser. This stub is a replacement class is given as input to debug profile generator.

iii. Debug Profile Generation

Debug profile generator gives a modified .java file to the user with some additional information

related to stub output. This helps to detect errors and causes of errors.

Stub Insertion

Logic

X

M

L

P

A

R

S

E

R

Test Case Reporting

Debug Profile

Generator

.java file

Synthesized

xml file as

input

Computer Science & Information Technology (CS & IT) 487

iv.Test Case Reporting

Test case reporting takes the input from xml parser to directly generate the test reports for the

user or tester. Report can also identify any remaining deficiencies, limitations or constraints that

were detected by the testing performed.

4. RELATED WORK

We have been successful in building up an IDE or an application that accepts java source file

written in any text editor and we check for the syntax and structure of the same. Thus, our

application can now generate the control flow graph for the java programs as shown in the figure

3.

The table given below illustrates the comparison between automated testing tools available and

that generated by our system.

488 Computer Science & Information Technology (CS & IT)

Comparison

5. CONCLUSION

The existing systems such as Net Beans and Eclipse which are two of them have their own text

editor for writing java programs and generating test cases for the same. But the drawback is that

they cannot read as an input from any other java source file written in any of the text editors like

notepad, command prompt etc.

6. FURTHER ENCHANCEMENTS

We have developed the test cases for Java it is possible to extend the project domain to JavaEE

and Java ME. We aspire to generalize our domain for any program file extensions like .CPP or .C

taken as an input for the application. These all can form sub-module and all the test generation of

different languages can be integrated. It is also extend for resolving expressions with the search

mechanism. The Speed at which the report is generated will be increased efficiently. In future

improvement in the system Syntax analyzer can check for compilation errors.

 Advantages Disadvantages

Netbeans It has its own text editor, rich

IDE support for J2EE

application. Multi browser

support

It requires plug-ins to support other server-side

languages such as ASP, PHP etc.

Eclipse Multi browser & different

language support. Has its

own text editor and very

user- friendly.

Plug-ins are used to generate test reports,

which cannot accept the input file from other

text editors like command prompt, notepad etc.

Sahi Multi browser support - Has

its own IDE - Record and

playback tests

Confusing interface - Least developed/smallest

community

Our system Has its own test bed,

independent of the editor file.

Supports only Java programs.

Computer Science & Information Technology (CS & IT) 489

REFERENCES

[1] Andreas S. Andreou, Christos Schizas, Gianna Ioakim, Extending and enhancing a basic program.

[2] Hiroaki Hashiura, Saekomatusuura ,Seiichikomiya, A Tool for Diagnosing the Quality of Java

Program and a Method for its Effective Utilization in Education.

[3] Bor-Yuan Tsai∗, Simon Stobart, Norman Parrington, and Ian Mitchell, An Automatic Test Case

Generator Derived from State-Based Testing.

[4] Bor-Yuan Tsai*, Simon Stobart, Norman Parrington and Ian Mitchell, Automated Class Testing

[5] Using Threaded Multi-way Trees to Represent the Behaviour of State Machines.

[6] Sinnott, R.O. (2003) Architecting specifications for test case generation. In: Cerone, A. and Lindsay,

P.A. (eds.) First International Conference on Software Engineering and Formal Methods Proceedings:

Brisbane, Australia, September 22 to 27, 2003. IEEE Computer Society, LosAlamitos, USA, pp. 24-

32. ISBN 0769519490 http://eprints.gla.ac.uk/7292/

[7] Hojun Jaygarl, Kai-Shin Lu, Carl K. Chang, GenRed: A Tool for Generating and Reducing Object-

Oriented Test Cases. Stefan Wappler and Joachim Wegener Evolutionary Unit Testing Of Object-

Oriented Software Using A Hybrid Evolutionary Algorithm, 2006 IEEE Congress on Evolutionary

Computation Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada July 16-21, 2006

Authors

Ms. Priya R. L, Lecturer, V.E.S Institute of Technology, having 8 years of teaching

experience for undergraduate students of Computer Engineering and Information

Technology disciplines in different Engineering Institutes, was obtained her Bachelors

degree in Engineering from Manonmaniam Sundarnar University, Tirunelveli,

Tamilnadu during the year 1999. Also, she had worked as a Software Engineer in

different firms in Chennai and Mumbai for 4 years. Her research interest is more into

Software testing, Service Oriented Architecture (SOA) and Web Engineering.

Ms Dhanamma Jagli,Lecturer ,V.E.S Institute of Technology, having total 8 year of

teaching Ex perience for Post graduate and under graduate students of Master of

Computer applications, computer Engineering, Inforamtion Technology and

Electronics& Telecommunication disciplines in different Engineering institutes, was

obtained Master Degree in Information Technology from Jawaharlal Nehru

Technological University, Hyderabad, Andhra Pradesh during the year 2004.her

research interest is more into Software Engineering, Data base Systems, Data mining

and embedded Real time systems.

