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ABSTRACT 

Given a simple connected undirected graph � = ��, ��  with |�| = 
 and |�| = �, the Wiener 

index ���� of � is defined as half the sum of the distances of the form 
��, �� between all 

pairs of vertices u, v of  � . If ��, ��� is an edge-weighted graph, then the Wiener 

index  ���, ��� of ��, ���  is defined as the usual Wiener index but the distances is now 

computed in ��, ���. The paper proposes a new algorithm for computing the Wiener index of a 

Fibonacci weighted trees with Fibonacci branching in place of the available naive algorithm for 

the same. It is found that the time complexity of the algorithm is logarithmic. 
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1. INTRODUCTION 

Let � = �����, ����� be a connected unweighted undirected graph without self-loops and 

multiple edges. Let |����| = 
 and |����| = �.  

The Wiener index ���� of � is defined as half the sum of the distances between all pairs of 

vertices of a graph �. Wiener index is a distance based graph invariant which is one of the most 

popular topological indices in mathematical chemistry. It is named after the chemist Harold 

Wiener, who first introduced it in 1947 to study chemical properties of alkanes. It is not 

recognized that there are good correlations between ���� and physico-chemical properties of the 

organic compound from which � is derived, especially when � is a tree. Wiener index have been 

studied quite extensively in both the mathematical and chemical literature. For chemical 

applications of Wiener index, see [7, 9]. The Wiener index is also studied to investigate a related 

quantity the average distance (defined as 2����/
�
 − 1��of a graph, which is frequently done 

in pure mathematics [3]. 

In this paper we are concerned with a tree called Fibonacci weighted tree with Fibonacci 

branching. Let η = 1 + F1 + F2 + F3 +∏ �� +���� …. + ∏ ������  be the number of vertices in �� , 
where �� = i-th Fibonacci number. One way to compute the Wiener index of Fibonacci weighted 

tree with Fibonacci branching is to compute the distances between all pairs of vertices of a graph. 

It is known [2] that the straightforward approach for solving the distances on a weighted graph 

between all pairs of vertices of � is to run Floyd-Warshall algorithm which takes a time O(n3); 

thus for Fibonacci weighted tree with Fibonacci branching of order k with η vertices, such an 

algorithm can compute the Wiener index in time O(η
3
) and requires as an input a description of 

Fibonacci weighted tree with Fibonacci branching of order k, e.g., an adjacency matrix. In this 

note, we propose a new algorithm for computing the Wiener index of Fibonacci weighted tree 



472                                     Computer Science & Information Technology ( CS & IT ) 

 

with Fibonacci branching in time O(log η), assuming that the input is only the order k of the 

Fibonacci weighted tree with Fibonacci branching. 

2. PRELIMINARIES 

The Wiener index ���� of � is defined as 

                                ���� =  1
2 � � 
��, ��

  ∈"�#�
,

$∊"�#�
                                                                          �1� 

where 
��, �� denotes the distance (the number of edges on a shortest path between u and v 

between u, v in �. 

Wiener index ���� comes under different names such as sum of all distances [5, 10], total status 

[1], gross status [6], graph distance [4], and transmission [8]. A related quantity is the average 

distance µ��� defined as  

                                          µ��� =  2����

�
 − 1� .                                                                       

Let ��', (� denote the edge weight on the edge {i, j}. Then 

��', (� =  )�*'+ℎ- ./ *
+* �', (� '/ �', (� ∈ ����,
+∞                                 '/ �', (� ∈ ����. 0 

Consider an edge-weighted graph � with weight function ��  : ���� � R
+ 

denoted as ��, ���. 

Then the weight of a path is the sum of the weights of its edges on that path. A shortest path 

between two vertices u and v is a path of minimum weight. The shortest-path distance 


�#,12���, �� (or simply 
��, ��) is the sum of the weights of the edges along the shortest path 

connecting u and v. For � ∈  ���� and H ⊆ ����, let 
4��, 5� =  ∑ 
��, �� ∈7 . The Wiener 

index  ���, ���  of ��, ���  is defined as the usual Wiener index, that is,  � ��, ��� =
�
8 ∑ ∑ 
��, �� ∈"�#�$∈ �#�  where 
��, �� is now computed in  ��, ���. Clearly if all the edges 

have weight one, then ���, ��� = ����.  In the sequel, for notational convenience we assume 

that ���� = ���, ���. 

It is well known that the Fibonacci numbers are defined recursively as follows: (i) The Fibonacci 

numbers �9 = 0 and �� = 1, and (ii) For k ≥ 2, the Fibonacci number �� = ��;� + ��;8. 
We define Fibonacci weighted path <=>  of order n, as a path on n + 1 vertices, where the 

consecutive edges are assigned weights ��,   .  .  .  ,�? starting from an edge incident on a pendent 

vertex. 

Let k be a positive integer. The Fibonacci weighted tree with Fibonacci branching �� of order k, 

is defined recursively in the following way: 

i. �� = ���, ���is a rooted tree, where �� = @��9, ���A and �� = @���9, ����A, with      ����9, ���� =
 ��. 

ii. �8 = ���  ∪  �8, ��  ∪  �8�  is a rooted tree, where V2 = @��8A  and  �8  = @����, ��8�A , with 

����9, ���� =  �� and w����, ��8� = �8 . 

iii. For k ≥ 3, the rooted tree �� is constructed as follows: 

Let p =  ∏ ���;8���  , C = D��;� and E = C��. Let V = (V1 ∪ ...∪ Vk-1) and E = (E1 ∪… ∪ Ek-1), 

where Vk-1 = {���;�, … , �G�;� } and Ek-1 = { (���;8, �H�;� ) : 1 ≤  i  ≤  p, 1 ≤  j ≤  q and          (i-

1)Fk-1 + 1 ≤  j  ≤  iFk-1}. If  ��;� = ��, �� is a rooted tree, then �� = �� ∪ �� , � ∪  ���, 

where Vk = {���, . . . . , �I� } and Ek = { (���;�, �H� ): 1 ≤  i  ≤  q, 1 ≤  j ≤  r and (i-1)Fk+ 1 ≤  j  ≤  

iFk } and ∀ (u, v) ∊ Ek , w(u, v) = Fk . 

Figure 1 shows the Fibonacci weighted trees with Fibonacci branching �� through ��. 
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Figure 1: Fibonacci weighted trees with Fibonacci branching �� through ��. 

3. COMPUTING WIENER INDEX OF FIBONACCI WEIGHTED TREES WITH 

FIBONACCI BRANCHING 

We begin with the following lemma which gives a closed-form expression for ��<=>� . 

Lemma 1: 

Let <=>  be a Fibonacci weighted path with n + 1 vertices. Then for n ≥ 2, the Wiener index 

��<=>� is given by  

 

                              �L<=>M =  
��?4� +  2� − 2�?4N +  10 .                                         �2� 

 

Proof. From the Fibonacci weighted path <=> , it is clear that 

 

                            �L<=>M =  �L<=>OPM + � (
?

H��
�H  .                                                          �3� 

 

with initial condition �L<=PM = 1. Equation (3) can be simplified to  

 

                                    �L<=>M =  �L<=>OPM +  
�?48 +  2 −  �?4K .                                                �4� 

 

Simplifying (4) gives the desired expression for ��<=>� as given in (2). 

Lemma 2: 

Let E = ∏ �� ����  and Z = { ��� | 1 ≤  ' ≤  E }. For 1  ≤  ( ≤  r, let T�,H;� = ���, … �H;��   and  U = �(��)\ T�,H;� . For a positive integer k ≥ 5, let ��  be the Fibonacci weighted tree with 

Fibonacci branching of order k. Then WXY�(��) is given by  

WXY�(��) =  � 
4L�H� , UM = 2WXY�Z(�� [\ ∊ ]
)  
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Leaf nodes represent ���  to �I� vertices 

Figure 2: Fibonacci weighted tree with Fibonacci branching ��. 

where, 

WXY�Z(��)   =  ^ ��
�

��� _̀
à � (��48

�;�
���H��;�

−  1) − ( �H48  − 1)
bc
cd             

+  ^ ��
�

���  e(��48 −  1) � f^ �H  L(��48 −  3) + (��48 − 3)M�
H�� g�;�

��� h  
+  �� 2 ^ ��

�
��N e(��48 −  2) � f^ �H  L(��48 −  5) +  (��48 − 5)M�

H�N g�;�
��N  h

+  6 ^ ��8(��48 −  5)  +  ^ ����K  + ^ ��8(��48 −  3)�
���

�;�
���

�
��N  .                          (5)   
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Proof.  Consider the Fibonacci weighted tree with Fibonacci branching shown in Fig. 2. Let the 

leftmost path  <� =  ��9�����8 … ���;8���;����  . We begin by finding the shortest-path distance 

from ��9 to ���. That is, 

                                               
L��9, ���M =  ∑ �L��� , ���4�M .���9  

                                                                      =  ∑ ������  .                                                             (6) 

Let the Wiener index on path <� denote WlP. Then similar to (6), we can write as WlP as 

WlP =  � ��
�

��� +  � ��
�

��8 + . .  . .  . . + � ��  �
���;8 +  � ��  .�

���;�  

Since in the left subtree there are  I8 = ∏ �� ���� paths originating from ��9, the Wiener index on all 

such paths is  

                                                             ∏ ��  ���� WlP  .                                                                   (7) 

Consider the path  <8 =  ������;� … ��K��8  followed by �8K . Then 

                                               
L�� � , �8KM = ∑ �����K +  �K .                                                          (8) 

In Fig. 2 we can see that the node �8K  has ��  branches. Similar to (8), for a path <8 followed 

by �8K�m� , 4 ≤ l ≤ 6, we get 

                                        ��L
L�� � , �8KM + ��M =  �� L∑ �� + ���K ∑ �� ���K M .                                (9) 

Let  Y = {�H �;� ∶  G8 + 1 ≤ ( ≤ C}. Now consider the paths from �8 K  to all vertices u ∊ S preceded 

by the path <8 . Then similar to (9), the shortest-path distances on such paths is  
L�� � , ��8M +  
4(��8, Y) =  �� L∑ �� + ���K ∑ �� ���K M  +  �� �NL∑ �� + ���K ∑ �� N��K M + … ���N … ��;�L∑ �� + ���K ∑ �� �;���K M .                                                                                     (10)  

Let  Wlo = 
L�� � , �8KM +  
L���, ��8M + 
4(��8, Y) . Since there are r/2 paths in the subtree 

originating from �� 8down the tree, the shortest-path distances on all such paths and on the paths 

considered in (8) and (10), we get 

                                                             ∏ ��  ���� Wlo  .                                                                 (11)    

Let the path <K =  ������;� … ��K. Let p = ∏ ��  ���N and q = ∏ ��  �;���� . Let <K� = <K�8�,           <KN =<K���N (6 ≤ i ≤ 10), <Kk = <KN�Hk (6 ≤ i ≤ 10, 41 ≤  ( ≤ 80),...,<K�;� = <K�8���N�Hk … �r�;� (6 ≤ i ≤ 

10, 41 ≤  ( ≤ 80 and y+1 ≤  s ≤ 2y). Then similar to (8)-(10), the shortest-path distances on 

paths <K�,  <KN, … , <K�;�denoted Wlt is Wlt = L∑ ������ +  ��M +   �NL∑ �� + ���� ∑ �� N��� M + … +  �N�k …  ��;�L∑ �� + ���� ∑ �� �;���� M .                              
(12) 

Since there are x paths that originates from ��K followed by ��� down the tree, the shortest-path 

distances on all such x paths and on paths <KK, <K� , … . , <K�;�, (12) now becomes 

                                                      ∏ ��  ���N Wlt  .                                                                        (13) 

Since there ��  branches at node ��K and since each branch down the tree from ��K (3rd-level to 

kth-level of the tree) has t paths, the shortest-path distances on all such x paths of one branch and 

on the paths of the other two branches up to k – 1 th-level of the tree, (13) now becomes 

                                                            2�� ∏ �� Wlt���N  .                                                            (14) 



476                                     Computer Science & Information Technology ( CS & IT ) 

 

Let <K� = <K�;��ru� , where x+1 ≤ z ′ ≤ 2x. Now consider three branches down the tree at node ��K. 

Since at ��K each branch down the tree (up to kth-level) has x paths, we compute the shortest-path 

distances on paths mentioned below: 

• From the leftmost branch consisting of x paths starting from �H�, 1≤ j ≤ x, to the other two 

branches each consisting of x paths ending with �m�, x+1 ≤ l ≤ 3x, we get  

                          2p8L∑ ������ +  ∑ ������ M = 4p8 ∑ ������  .                                             (15) 

• From the middle branch consisting of x paths starting from �H�, x+1 ≤ j ≤ 2x, to the rightmost 

branch consisting of x paths ending with �m�, 2x+1 ≤ l ≤ 3x,  similar to (15), we get  

                                                            2p8 ∑ ��  .����                                                                    (16) 

Since p = ∏ �����N , adding equation (15) and (16) yields  

                                                        6 ∏ ��8 ∑ ���������N  .                                                             (17) 

Let D1 denote addition of (7), (11), (14) and (17). That is 

        W� =  ∏ ��  WlP + ����  ∏ ��  Wlo + ����  2�� ∏ ��  Wlt +  6���N  ∏ ��8���N ∑ ������  .                 (18) 

Observe that all the paths considered in deriving (18) begin with a vertex labelled in the left 

subtree of  ��  . Similarly, if we consider all such similar paths that begin with a vertex in the right 

subtree of  ��  we get an expression identical to (18). Thus considering paths that begin with a 

vertex both in the left subtree and in the right subtree, we get 

           2W�  .                                                                   (19) 

Finally, the following paths are considered: 

Let the leftmost path <m =  <8  and rightmost path <I =  �8K�k� … �w�;8�G�;��I� . Let  <mI =  <m<I . 

Clearly the shortest-path distances on <mI  leads to the formula 
                                     
L�� 8 , ���M +  
L��8, �I�M = 2 ∑ ��xy�K  .                                                   (20) 

Since each of the left subtree and the right subtree of �� at k-th level consists of                      
I8 =∏ ��  ���N nodes, implies that there exist r/2 paths on either side of  ��  . Thus the shortest-path 

distances on such paths starting from vertex ���, 1≤ ' ≤ E/2, to vertex �H�, I8 + 1 ≤ ( ≤ E, (20) 

can be extended by taking (r/2)
2
 paths as 

                                                        2 ∏ ��8 ∑ �����K����  .                                                             (21) 

Let Q = z���, �8�, … , �{\OP� , �{\� | be a subset of leaf nodes at k-th level of the left subtree. Clearly 

|Q| = ��, and the shortest-path distances between all vertex pairs in Q is ��K. Since there are       q 

= 2 ∏ ���;����  nodes at k-1th-level of  �� . Thus the shortest-path distances between all vertex pairs 

in q vertex sets, we get 

                                                       C��K = 2 ∏ ����K�;����  .                                                           (22) 

Therefore, adding (19), (21) and (22) yields WXY�(��) as 

                             WXY�(��) =  2LD� +  ∏ Fy8xy�� ∑ Fyxy�K +  ∏ ����K�;���� M .                               (23) 

It is well known that ∑ ������ =  ��48 − 1. Then simplifying (23), we get 



Computer Science & Information Technology ( CS & IT )                               477 

 

WXY�Z(��) =  ^ ��
�

��� _̀
à � (��48 − 1) −  L�H48 − 1M�;�

���H��;� bc
cd

+  ^ ��
�

��� e(��48 − 1) +  � f^ �HL(��48 −  3) +  (��48 −  3)M�
H�� g�;�

��� h
+  ��2 ^ �� e(��48 − 2) +  � f^ �HL(��48 − 5) + (��48 − 5)M�

H�N g�;�
��N h�

��N
+  6 ^ ��8(��48 − 5) +  ^ ����K +  ^ ��8(��48 − 3) .�

���
�;�
���

�
��N  

                                                                                                                                                   (24) 

Therefore, 

                                                       WXY�(��) = 2 WXY�′(��) .                                                (25) 

We now give a simple formula for computing �(��) as given Lemma 3. 

 

Lemma 3:  

 

For a positive integer k, let �� be the Fibonacci weighted tree with Fibonacci branching of order 

k. Then the Wiener index �(��) is given by  

   1     k = 1, 

   4     k = 2, 

 �(��) = 26     k = 3,                                 (26) 

   320     k = 4, 

   �(��;�) + WXY�(Tx)               k ≥ 5. 

Proof. The result of �(��) follows from Lemma 2 and a simple combinatorial argument. 

Theorem 1: 

For a tree ��  (k > 0), we can algorithmically compute  �(��) in time O(k). The input to the 

algorithm requires only the order k of the tree ��. 

Proof. We know that  �|��| = Ƞη. Clearly ��48  can be computed in time O(k). Thus (25) and 

(26) can be computed in time O(k) = O(log η) which computes the operations such as additions 

and multiplications. 

4. CONCLUSION 

We have presented a new algorithm for computing the Wiener index of a Fibonaccci weighted 

trees with Fibonacci branching in place of the available naïve algorithm for the same. The 

running time of this algorithm is logarithmic assuming that the input is only the order k of the 

tree. 

ACKNOWLEDGEMENTS 

The authors would like to thank the higher authorities of B.N.M. Institute of Technology, 

Bangalore, India, for supporting funding to this article. 

 



478                                     Computer Science & Information Technology ( CS & IT ) 

 

REFERENCES 

[1] F. Buckley and F. Harary, (1990) “Distance in Graphs” (Addison-Wesley, Redwood, Vol. 42. 

[2] T. H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, (2001) Introduction to Algorithms, McGraw-

Hill, 2nd edition. 

[3] P. Dankelmann, S. Mukwembi, and H. C. Swart, (2009) “Average distance and vertex connectivity”, J.   

Graph Theory, Vol. 62(2), pp 157-177. 

[4] R.C. Entringer, D.E. Jackson and D. A. Snyder, (1976) “Distance in graphs”, Czech. Math. J., Vol. 26, 

pp 283-296. 

[5] I. Gutman, (1988) “On distances in some bipartite graphs”, Publ. Inst. Math., (Beograd), Vol. 43, pp 3-

8. 

[6] F. Harary, (1959) “Status and contrastatus”, Sociometry, Vol. 22, pp 23-43. 

[7] S. Klavzar, and I. Gutman, (1997) “Wiener number of vertex-weighted graphs and chemical 

applications”, Discrete Appl. Math., Vol. 80, pp 73-81. 

[8] J. Plesnik, (1984) “On the sum of distances in graphs or digraph”, J. Graph Theory, Vol. 8,   pp 1-21. 

[9] S.G. Wagner, H. Wang, and G. Yu, (2009) “Molecular Graphs and the Inverse Wiener Index Problem”, 

Discrete Appl. Math., Vol. 157, pp 1544-1554. 

[10]  Y. N. Yeh and I. Gutman, (1994) “On the sum of all distances in composite graphs”, Discrete Math.,      

 Vol. 135, pp 359-365. 

AUTHORS 

K. R. Udaya Kumar Reddy completed his Diploma in Computer Science and Engineering from 

Siddaganga Polytechnic, Tumkur, Bangalore University in 1993. In 1998 he completed his Bachelor of 

Engineering in Computer Science and Engineering from Golden Valley Institute of Technology (now Dr. 

TTIT), K.G.F, Bangalore University, India. In 2004 he completed his Master of Engineering in Computer 

Science and Engineering from University Visvesvaraya College of Engineering, Bangalore, India. In 2012, 

he completed his Ph.D in the area of Graph Algorithms in Computer Science and Engineering, National 

Institute of Technology, Trichy, India (formerly Regional Engineering College). He held various positions 

at B.N.M. Institute of Technology, Bangalore, India, before joining Ph.D course and is currently a 

Professor at B.N.M. Institute of Technology, Bangalore, India. His fields of interests are Algorithmic graph 

theory and Theory of computation. 

Ranjana S. Chakrasali received her graduation in Computer Science & Engineering from Tontadarya 

College of Engineering, Gadag, Visvesvaraya Technological University (VTU), Belgaum, India in 2002. 

Thereafter entered into teaching profession as a Lecturer and worked for 6 years. Currently pursuing post 

graduate at BNM Institute of Technology, Bangalore, India, affiliated to VTU. Her areas of interests are 

Graph Theory, Computer Graphics and Computer Networks. 

 

 

 


