

Natarajan Meghanathan, et al. (Eds): SIPM, FCST, ITCA, WSE, ACSIT, CS & IT 06, pp. 397–406, 2012.

© CS & IT-CSCP 2012 DOI : 10.5121/csit.2012.2339

A STRATEGY TO IDENTIFY COMPONENTS

USING CLUSTERING APPROACH FOR

COMPONENT REUSABILITY

N Md Jubair Basha1 and Dr Chandra Mohan
2

1Assistant Professor, IT Department, Muffakham Jah College of Engineering

& Technology Hyderabad, India.
jubairbasha@mjcollege.ac.in

2 Associate Professor, CSE Department, JNT Univerity College of

Engineering, Hyderabad, India.
c_miryala@yahoo.com

ABSTRACT

Component Based Software Engineering (CBSE) has played a very important role for

building larger software systems The current practices of software industry demands

development of a software within time and budget which is highly productive. It is necessary

to achieve how much effectively the software component is reusable. To achieve this, the

component identification is mandatory. The traditional approaches are presented in the

literature. However effective reuse is still a challenging issue. In this paper, a strategy has

been proposed for the identification of a business component using clustering methodology.

This approach will be useful in identifying the reusable components for different domains.

The proposed approach has identified the reconfigured component using the CBO measure to

reduce the coupling between the objects. By considering this proposed strategy, the

productivity can be increased in the organization.

KEYWORDS

Software Reuse, Domain Engineering, clustering, component

1. INTRODUCTION

Component Based Software Engineering (CBSE) has played a very important role for building

larger software systems. Reduction of Cost [1] and shorter development i.e. within time gives a

good prospect for increasing the productivity in the organization. Components are connected by

assembling, adapting and wiring into a complete application. Although there is no IEEE/ISO

standard definition that we know of, one of the leading exponents in this area, Szyperski [2],

defines a software component as follows:

“A software component is a unit of composition with contractually specified interfaces and

explicit context dependencies only. A software component can be deployed independently and is

subject to composition by third parties”.

398 Computer Science & Information Technology (CS & IT)

Effective software reuse helps in the development of quality product within time and budget. This

also helps in reducing the high effort needed for testing and maintenance of the software

products.

Several approaches are proposed in the literature which provides only subset of operation

requirements of effective software reuse. Though some of the approaches identify the

components[21] as an artifact, but they may won’t identify business components. In this paper, a

strategy to identify the components using clustering is proposed for the effective software reuse.

The remaining part of this paper is organized as follows: section-2 presents the advantages of

reusing software systems, section-3 describes about the domain engineering with its process and

approaches for the domain engineering, section-4 describes the proposed strategy for the

identification of components using clustering methodology which maintains low coupling and

high cohesion. This calculates the component reconfiguration using CBO measure and section -5

concludes the paper.

2. SOFTWARE REUSE

Software Reuse is the use of available software or to build new software from software

knowledge. Reusable assets can be either reusable software or software knowledge. Reusability is

a property of a software asset that indicates it’s probability of reuse [3]. Software Reuse means

the process that use “designed software for reuse” again and again [4]. By reusing software, we

can manage complexity of software development, increase product quality and makes faster

production in the organization.

Recently, design reuse has become popular with (object-oriented) class libraries, application

frameworks, design patterns and along with the source code [5]. Jianli et al. proposed two

complementary methods for reusing existing components. Among them one allows component

evolution itself, which is achieved with binary class level inheritance across component modules.

The other is by defined semantic entity so that they can be assembled at compile time or bind at

runtime. Although component containment still is the main reuse model that leads to contribute

the software product lines development [6]. Regarding the components much information has to

be collected, maintained and processed for the retrieval of the components. Maurizio has

proposed a methodology to automatically build a software catalogue tools for archiving and

retrieval of information are presented [7]. Software Reuse can be broadly divided into two

categories viz. Product reuse and Process reuse. The product reuse includes the reuse of a

software component and by producing a new component as a result of module integration and

construction. The process reuse represents the reuse of legacy component from repository. These

components may be either directly reused or may need a minor modification. The modified

software component can be archived by versioning these components. The components may be

classified and selected depending on the required domain [8].

The construction of a components is fundamental to their use. Reuse does not come as a side

effect. Specification, construction and testing must all be done for reuse. This makes a component

more expensive (up to 10 times) to develop a new software.

Several different criteria for a good component have been suggested. These criteria can be

summarized in the following:

• The component should represent an abstraction. It should have high cohesion and offer

only the operations needed to make it useful in an efficient manner. It must also have well

defined interface, both syntactically and semantically. If two operations in two different

components have the same name, they should act in a similar manner. But their style should

be similar to facilitate understanding.

Computer Science & Information Technology (CS & IT) 399

• The component must be independent of surrounding entities; it should be loosly

connected and thus have low coupling to other units. An object-oriented philosophy leads to

independence.

• The component should be general abstraction which is useful in several applications

without having to go unnecessary changes.

Understandability must be internal as well as external. Since good components will have a long

life, they will be maintained for a long time.

The component system includes the selecting, classifying and managing the components included

in the repository and also the development of new components. The component repository should

be spread throughout the development organization and that the components are accessible. The

component repository should preferably be shared between several different products. It means

that the component system should serve several projects. Whenever the new projects to be taken

up, then the relevant components shall be needed for the development process. The project

proposals should be reviewed by a group consisting of experienced designers and also someone

from component department forming a software component committee. They should judge

whether the proposed components are needs to be developed or not. If it is decided to construct

the component, it is forwarded to component construction with a deadline. When ready, it is

added to the component repository which then takes a new version state as showed in the Figure

1. As component is being used, the software component group should analyze it’s value. Which

component is used most? Which are not used at all? How much you gain from the components?

This analysis helps to develop the component system.

Figure: 1. An Organization for Component Management

3. DOMAIN ENGINEERING

Software Reuse can be improved by identifying objects and operations for a class of similar

systems, i.e. for a particular domain. In the context of software engineering domains are

application areas [9].

There are various definitions of what a domain is. Czarnecki’s defines [10]:” an area of

knowledge scoped to maximize the satisfaction of the requirements of stakeholders, which

400 Computer Science & Information Technology (CS & IT)

includes concepts and terminology understood by practitioners in the area and the knowledge of

how to build (part of) systems in the area”.

Domain Engineering is a process in which the reusable component is developed and organized

and in which the architecture meeting requirements of the domain is designed [11].

Domain Engineering can be defined by identifying the candidate domains and performing domain

analysis and domain implementation which includes both application engineering and component

engineering. Domain Analysis is a continuing process of creating and maintaining the reuse

infrastructure in a certain domain. The main objective of domain analysis is to make the whole

information readily available. The relevant components (if available) has to be extracted from the

repository rather than building the new components from the scratch for a particular domain.

Domain Analysis mainly focuses on reusability of analysis and design, but not code.This can be

achieved by building common architectures, generic models or specialized languages that

additionally improve the software development process in the specific problem area of the

domain. A vertical domain is a specific class of systems. A horizontal domain contains general

software parts being used across multiple vertical domains. Mathematical functions libraries

container classes and UNIX tools are the examples of horizontal reuse. The purpose of domain

engineering is to identify objects and operations of a class in a particular problem domain [9].

In the process of domain analysis, each component identified can be categorized as follows.

• General-purpose components : These components can be used in various applications of

different domains (horizontal reuse).

• Domain-specific components :They are more specific and can be used in various

applications of one domain (vertical reuse).

• Product-specific components : They are very specific and custom-built for a certain

application, they are not reusable or only useful to a small extent.

Figure:2. Domain Engineering Process

Computer Science & Information Technology (CS & IT) 401

Domain engineering process [18] is depicted in figure 2. DE consists of three main stages i.e.

domain analysis, domain design and domain implementation. For Domain Analysis support,

DARE-COTS tool is presented [3]. Initially, in a particular domain it is mandatory to get the

universal and variable characteristics of group systems. By abstracting the characteristics, domain

analysis model can be generated. Based on this model the domain specific software architecture

can be designed and then reusable components will be generated and organized.

3.1. Approaches For Domain Engineering

There are several known domain engineering tools. Each of these tools specifies a subset of

operation requirements

• Domain Analysis and Reuse Environment (DARE) is a tool developed in 1998 to support

capturing information from experts, documents and code. Captured domain information

is stored in a database that typically contains a generic architecture for the domain and

domain-specific reusable components. DARE provides a library search facility with a

windowed interface to retrieve the stored domain information [12].

• Family-Oriented Abstraction, Specification and Translation (FAST) is a system family

generating method based on an application modelling language(AML) and was guiding

developers to create the tools needed to generate software product line using domain

engineering phase and application engineering phase.

• Feature Oriented Reuse Method (FORM) as an extension to the Feature Oriented Domain

Analysis (FODA), a systematic method of capturing and analyzing commonalities and

differences of applications in a domain (features). By using the results to develop domain

architectures and components and modelling to discover and understand and capture

commonalities’ and variability’s of a product line [13].

• Kobra (KomponentenbasierteAnwendungsentwicklung) is used for component-based

development [3]. Kobra method consists of product line development, component based

software development and frameworks to provide systematic approach to developing

high quality component based application frameworks [14]. Kobra is “technology

independent” in the sense that it can be used with all the three major component

implementation technologies CORBA, Java Beans and COM.

• Product Line UML-Based Software Engineering (PLUS) is a model-driven evolutionary

development approach for software product lines. Apart from the analyzing and

modelling a single system, it provides a set of concepts and techniques to explicitly

model the commonality and variability in a software product line. With these techniques,

object oriented requirements, analysis and design models of software product lines are

developed using UML 2.0[15].

• Component Oriented Reverse Engineering (CORE) is a systematic and concrete model

used to identify and develop reusable software components by using the reverse

engineering techniques. This is used to extract architectural information and services

from legacy system and later on convert the services into components [16].

3. A PROPOSED STRATEGY FOR COMPONENT IDENTIFICATION

Researchers from 1990, Component Identification has been considered as a sole problem and

wide issue. Considering from software reuse cost optimization, researchers focused to cluster

the business models according to the “high cohesion and low coupling” strategy and

combined each cluster into a component [17].

The fundamental methodology is as follows:

1. Calculate the strength of semantics dependencies between two business elements.

402 Computer Science & Information Technology (CS & IT)

2. Transforms business models into the form of weighted directional graph, in which

business elements are categorized as nodes and semantics dependency strength are the

weight of the edges between two nodes.

3. Cluster the graph using clustering or matrix analysis techniques.

The above explained methodology [18] is known as Clustering Analysis in Mathematical

statistics for precise classification. It aggregates those elements with high cohesion together to

form specific patterns, which is widely used in the field of data mining and pattern recognition.

The above methodology can be imported into Component Identification and expected to obtain

components with high cohesion and low coupling to reduce composition cost. Depending on

different strategies of calculating dependency strength (DS) between nodes, clustering analysis

may produce different results. The fundamental methodology is presented as follows:

1. Denote n elements that need to be classified as set N, and initially each element in N form

a cluster.

2. Specify the principles for calculating Dependency Strength (DS) i.e. similarity between

arbitrary two nodes, and denote DS between Ni and Nj as Fij,

3. Calculate DS between arbitrary two nodes in N and obtain the DS metric D of n elements.

4. Choose a sound “Minimum DS” Fmin as the judgment principle for merge two elements

into one cluster.

5. According to Fij in D, execute the following clustering process.

5.1. (Value value) if Fij>=Fmin, then set Ni and Nj into one cluster.

5.2. (Transitivity) if Ni and Nj, Ni and Nk belong to the same cluster respectively. Then

merge Ni Nj, Nk into one cluster.

6. Map elements in each cluster together into a business component.

With this methodology, it is possible to achieve the clustering for the identification of business

components. By considering low coupling and high cohesion, component reusability can be easily

realized.

The proposed strategy, has realized using an HR Portal application. This application includes

three components i.e. Web-Tier(WBR), Business-Tier(BR), Data Access Object(DAO). These

three components consist of 13 classes. Web tier component contains 5 classes, business tier

contains 3 classes and DAO contains 5 classes.

Figure: 3 Merging of nodes to a single cluster

Computer Science & Information Technology (CS & IT) 403

If the object contains one method, then there exists one initial and one final node. If the object

contains two methods then there exist four possible nodes[20]. The nodes depend on the

sequential execution of the methods. Based on the execution logic of a method the object might

change to another or might remain with the same node or with different nodes.

The following table depicts the no. of nodes transitions for different methods: m1(), m1(m2()),

m2(), m2(m1()).

At any particular point of time, if the designer wants to know about which part of the system is

not effectively reused then a lookup is to be performed on the component management relation. A

Central repository maintains a table for managing a component reuse. This table contains three

fields. One field specifies the name of the component and the second field contains the count

specifies the number of times the component was reused by several systems. The last field

contains the mapping of the nodes with the related components.

Table 1. Component Management Relation

Component Count of Reuse Node

Webtier(WBR) 24 Ni

Businesstier(BR) 10 Nj

DAO 36 Nk

The above strategy is considered for the component identification. By following this strategy, an

algorithm has to be developed so that the results for the different systems can be made for the

component identification. This idea is to identify the reusable components which are highly

cohesive.

With this, component identification techniques, the reusable component can be measured by

considering the metrics for the components as proposed in [19]. The components which are

highly cohesive needs to be reconfigured. Coupling Between Object Measure (CBOM) is used to

identify the highly cohesive components.

Coupling between object measure (CBOM) for a component is defined as the number of

invocations by the specified component. Those components whose CBOM is high or those

component(s) of the system whose CBOM is greater than certain scalar value are the components

which needs to be reconfigured at the earliest.

Hence a Reconfigurable Component(Cr) can be identified as follows

Cr = Max { CBOM(Ci) }, where Ci=C1, C2,... Cn are components of the system (or)

Crj = { CBOM(Ci) > P}, where P is a scalar value whose value differs from one domain to the

other.

Based on the invocations specified in the HR Portal application[9], CBOM is evaluated to

identify one reconfigurable component.

As there are three components of the HR Portal application viz., Web-tier, Business-tier and

DAO, the component with highest CBOM is the candidate for reconfigurable component.

In order to understand, the Coupling Between Objects Measure of Web tier component as well

404 Computer Science & Information Technology (CS & IT)

Coupling Between Objects Measure of of Business tier and Coupling Between Objects Measure

of DAO are considered for identification of Reconfigurable Component(Cr).

Hence,

Cr = Max { CBOM(WBR), CBOM(BR), CBOM(DAO) }

Cr = Max { 180, 95,224}= 224

As Coupling between Object Measure of DAO component is maximum, it is needed to

reconfigured.

Hence the DAO component has to further reconfigured to reduce the coupling. This is achieved

by dividing the DAO component into two sub DAO components viz., DAO1 & DAO2. The

division of the DAO component makes the DAO component less cohesive. This is realized later

by evaluating the CBO measure of DAO1 & DAO2.

5.CONCLUSIONS

As there is a need to identify the business reusable components, the proposed strategy has given

an idea for the component identification by using clustering method. In order to identify the

components, it is necessary to maintain the high cohesion and low coupling. Whenever the

components are loosely coupled it is easy to extract. This criteria will increases the reusability of

the component. As a future scenario, it is needed to implement this strategy to realize on any

domain with some results. By identifying the reconfigured component, helps to reduce the

coupling between objects using CBO measure. By considering this strategy , the productivity

can be easily increased in the organization.

ACKNOWLEDGEMENTS

The work was partly supported by the R & D Cell of Muffakham Jah College of Engineering &

Technology, Hyderabad, India. The authors would like to thank to all the people from Industry

and Academia for their active support.

REFERENCES

[1] L.D.Blak, A.Kedia, PPT: A COTS Integration Case Study, Proceeding of 22nd International

Conference on Sofwtare Engineering (ICSE) Orlondo, 2002, pp.41-48

[2] Clemens Szyperski,” Component Software: Beyond Object-Oriented Programming” 2nd Edition,

Addison-Wesley Publications.

[3] William B. Frakes, Kyo Kang: Software Reuse and Research: Status and Future, IEEE Transactions

on Software Engineering”, Vol. 31, No. 7, July 2005

[4] Xichen Wang, Luzi Wang: Software Reuse and Distributed Object Technology, IEEE Transactions on

Software Engineering, 2011.

[5] Sametinger: Software Engineering with Reusable Components, Springer-Verlag, ISBN 3- 540-62695-

6, 1997.

[6] Jianli He, Rong Chen, Weinan Gu: A New Method for Component Reuse, IEEE Transactions on

Software Engineering, 2009.

[7] Maurizio Pighin: A New Methodology for Component Reuse and Maintenance, IEEE Transactions on

Softwrae Engineering, 2001.

Computer Science & Information Technology (CS & IT) 405

[8] Yong-liu, Aiguang-Yang: Research and Application of Software Reuse, ACIS International

Conference on Software Engineeing, Artificial Intelligence, IEEE, 2007.

[9] N Md Jubair Basha, Salman Abdul Moiz, A.A.Moiz Qyser: Performance Analysis of HR Portal

Domain Components Extraction, IJCSIT, Vol. 2(5), 2011, 2326-2331.

[10] Czarnecki, K., Eisenecker, U.W.:Generative Programming: methods, tools and applications. Addison

Wesley, London, 2000.

[11] Fuqing Yang, Bing Zhu, Hong Mei : Reuse oriented requirements modeling, Tsinghua University

Press, Beizing, 2008.

[12] W B. Frakes, R. Prieto-Diaz, C. Fox: DARE-COTS. A Domain Analysis support tool, Computer

Science Society, 1997. Proceedings, XVII International Conference of the Chilean 10-15, Nov. 1997,

pp 73-77.

[13] J. Coplien, D. Hoffman and D. Weiss: Commanality and variability in software, IEEE Software vol.

15, No. 6, Nov-Dec. 1998, pp 37-45.

[14] K.C. Kang, J. Lee, P.Donohoe: Featured Oriented Product Line Engineering, IEEE Software vol. 15,

No. 6, pp 58-65, Jul- Aug 2002.

[15] C. Atkinson, J. Bayer, D. Muthig: Component Based Product Line : The KobrA Approach, 1st

International Conference on Software Product Line Conference, Denver, 2000. Pp 289-310.

[16] S.K.Misra, D.S.Kushwaha,A.K.Misra,”Creating Reusable Software Component from Obejct-Oriented

Legacy System through Reverse Engineering”, in Journal of Object Technology, Jan-Feb 2009, pp.

133-152.

[17] J.K.Lee, S.J.Jaung, S.D.Kim,”Component identification method with Coupling and Cohesion”, in

Proceedings of 8th Asia-Pacific Software Engineering Coneference, Macau, China, 2001 , pp. 79-86.

[18] K.Raine,” Atomic Architectural Component Recovery for Program Understanding and Evolution”,

Ph.D dissertation, Institute for Informatic University, Stuttgart, 2000.

[19] N Md Jubair Basha, Salman Abdul moiz, “ A Methodology to manage victim components using CBO

Measure”, in International Journal of Software Engineering & Applications (IJSEA), Vol. 3, No.2,

March 2012.

[20] Salman Abdul Moiz, N. Md. Jubair Basha, Extraction of State Transition Diagrams from Legacy C++

Application, Procedia Technology, Volume 4, 2012, Pages 543-547, ISSN 2212-0173,

10.1016/j.protcy.2012.05.086.

[21] Md Jubair Basha, N.; Moiz, Salman Abdul; , "Component based software development: A state of

art," Advances in Engineering, Science and Management (ICAESM), 2012 International Conference

on , vol., no., pp.599-604, 30-31 March 2012.

406 Computer Science & Information Technology (CS & IT)

Authors

N Md Jubair Basha received his B.Tech. (IT) and M.Tech (IT) from JNTUH, Hyderabad.

He is presently working as Assistant Professor in Department of Information Technology,

Muffakham Jah College of Engineering and Technology, Hyderabad, India. His research

interest includes Software Reusability, Component Based Software Development, Data

Mining and Cryptography. He has published many research papers in various National/

International Conferences and Journals. He is an active member of IEEE and CSI.

M. Chandra Mohan received B.E. (EEE) degree from Osmania University in 1994. He

worked as Assistant Engineer in AP State Electricity Board (APSEB) for 7 years (1994-

2001). He completed his M.Tech. (CS&E) from Osmania University in 2000. He is

working in JNT University Hyderabad since 2001. Presently he is working as an

Associate Professor in Dept of CS&E in JNTUH College of Engineering Hyderabad, JNT

University Hyderabad. He is the recipient of 3 Gold Medals from Osmania University at

the graduate level by securing University first rank. He completed his Ph.D in 2010 from

JNTU Hyderabad in Computer Science & Engineering. He has published 12 research publications in

various National and International Journals and conferences

