

Natarajan Meghanathan, et al. (Eds): SIPM, FCST, ITCA, WSE, ACSIT, CS & IT 06, pp. 193–202, 2012.

© CS & IT-CSCP 2012 DOI : 10.5121/csit.2012.2319

Glutter – A Visual Programming Environment

for Complex Event Processing

Nuwan Samarasekera
1
, Kasun Gunathilake

1
, Sehehani Silva

1
, Bimsara

Ratnayake
1
, Dr.Shehan Perera

1
, Dr.Srinath Perera

2

1
University Of Moratuwa

2
WSo2 (Pvt.) Ltd

ABSTRACT

Complex event processing typically requires studying the query language of a CEP engine and

writing the required queries by hand. This is an overwhelming task, and requires extensive prior

knowledge. In addition to that, the coding process becomes complicated with complex

requirements and multiple steps involved. Therefore a visual editor which lets users construct

CEP programs visually is a highly desirable addition to the CEP community. In this paper, we

present an approach to creating a Visual Editor for construction of CEP programs.

KEYWORDS

 Complex Event Processing, Flow based programming, Visual Editor

1. INTRODUCTION

With the increased availability of immense volumes of real-time data (specially through the

internet), more and more users are finding it essential to process those data in real time to derive

valuable information and be notified of the processed information in a timely manner. Complex

Event Processing (CEP), is a good solution for addressing the above requirement (compared to

storing the results in a database and running queries), since CEP is optimized to handle real-time

data [1]. This implies that CEP will be /can be utilized by a larger crowd than ever before. But

one drawback in reaching such a large crowd is the knowledge required to perform CEP querying

tasks. Typically this requires learning the specific query language and coding the queries by hand.

This limits the usability of CEP by the larger population of less tech savvy users. This can be

countered effectively with a visual editor for CEP application development, which would let users

drag and drop components, wire up them and express complicated CEP tasks diagrammatically in

a more intuitive manner.

2. METHODOLOGY

Since CEP programs are typically structured as multiple queries chained together, our approach

was to create a visual editor which supports creating data-flow like structures. In data flow

194 Computer Science & Information Technology (CS & IT)

languages a program is represented by a directed graph

primitive instructions. Directed arcs between the nodes represent the data dependencies between

the instructions [4]. In typical dataflow systems, instructions are scheduled for execution as soon

as their operands become available i.e

implies that each operator is limited to

operation is applied immediately upon arrival of data

dataflow systems since it becomes impossible to construct operators that are temporally aware

(operators that depend on the history of data events that occurred prior to the current event). In

the proposed system, each node has a queue associated with it on whi

carried out, thus making it possible to have temporally aware operators in the dataflow

a key feature in CEP). The governance of the queue is defined by a data window

defined as a length based, time based,

The following diagram shows the typical view of our visual editor. Each component is designed

to do a single task and the user can drag and drop the components as well as wire them up

according to the requirement in much resemblance to dataflow editors such as

and ProGraph [7]. The following diagram shows the editor with a sample program constructed in

it.

2.1 Execution

We used Esper[8] as the backend complex event processing engine on top of which the

constructed programs will be run.

contain the fields and the field values as key

operations supported in the workflows, some operations are implemented as EPL statements, and

in addition to those, some commonly used functionalities (String replace, tokenize etc.) are

implemented as plain old java classes (POJO). This a

supported in the workflows. All operators are limited to a s

conversion procedure) except for the multiplexer operator which takes in a single input and

duplicates the input to 2. By combining an operator with the mux, users can

operator fed to multiple operators.

in to a single workflow as explained in the following manner.

2.2 Chaining of operations

The operators in the workflow are expressed as esper queries. (If the operator is not EPL based, a

dummy statement is created). Chaining of the esper queries is done using the "insert into" clause

in the Esper Query Language [8]

Computer Science & Information Technology (CS & IT)

languages a program is represented by a directed graph [2, 3] and the nodes of the graph serve as

primitive instructions. Directed arcs between the nodes represent the data dependencies between

. In typical dataflow systems, instructions are scheduled for execution as soon

lable i.e.: When data becomes available in the input arcs

implies that each operator is limited to working on a single data item at a given time and the

immediately upon arrival of data. This is a common drawback in most

low systems since it becomes impossible to construct operators that are temporally aware

(operators that depend on the history of data events that occurred prior to the current event). In

the proposed system, each node has a queue associated with it on which the operation could be

carried out, thus making it possible to have temporally aware operators in the dataflow

. The governance of the queue is defined by a data window which could be

gth based, time based, data value based etc.

The following diagram shows the typical view of our visual editor. Each component is designed

to do a single task and the user can drag and drop the components as well as wire them up

in much resemblance to dataflow editors such as Yahoo! Pipes [

The following diagram shows the editor with a sample program constructed in

Figure. 1: Visual Editor

We used Esper[8] as the backend complex event processing engine on top of which the

constructed programs will be run. The events are represented as a Hash Map. The Map will

contain the fields and the field values as key-value pairs that describe a particular event. As for

operations supported in the workflows, some operations are implemented as EPL statements, and

in addition to those, some commonly used functionalities (String replace, tokenize etc.) are

implemented as plain old java classes (POJO). This allows for a wider range of operations to be

All operators are limited to a single output (in order to simplify

conversion procedure) except for the multiplexer operator which takes in a single input and

to 2. By combining an operator with the mux, users can get the output of an

operator fed to multiple operators. The POJO based and EPL based operators are chained together

plained in the following manner.

The operators in the workflow are expressed as esper queries. (If the operator is not EPL based, a

dummy statement is created). Chaining of the esper queries is done using the "insert into" clause

[8]. The Non-EPL based components are chained to the workflow

he nodes of the graph serve as

primitive instructions. Directed arcs between the nodes represent the data dependencies between

. In typical dataflow systems, instructions are scheduled for execution as soon

: When data becomes available in the input arcs [5].This

on a single data item at a given time and the

This is a common drawback in most

low systems since it becomes impossible to construct operators that are temporally aware

(operators that depend on the history of data events that occurred prior to the current event). In

ch the operation could be

carried out, thus making it possible to have temporally aware operators in the dataflow (which is

which could be

The following diagram shows the typical view of our visual editor. Each component is designed

to do a single task and the user can drag and drop the components as well as wire them up

Yahoo! Pipes [6]

The following diagram shows the editor with a sample program constructed in

We used Esper[8] as the backend complex event processing engine on top of which the

The events are represented as a Hash Map. The Map will

ar event. As for

operations supported in the workflows, some operations are implemented as EPL statements, and

in addition to those, some commonly used functionalities (String replace, tokenize etc.) are

llows for a wider range of operations to be

ingle output (in order to simplify the

conversion procedure) except for the multiplexer operator which takes in a single input and

get the output of an

are chained together

The operators in the workflow are expressed as esper queries. (If the operator is not EPL based, a

dummy statement is created). Chaining of the esper queries is done using the "insert into" clause

omponents are chained to the workflow

Computer Science & Information Technology (CS & IT) 195

as listeners to the parent components’ EPL statement. The Non-EPL based operators receive the

input events through this listener implementation. Then it carries out the operation on the events

received and then pushes the results to the next component.

2.3 Conversion from UI to Runnable CEP program

This is done as a 2 part process. First the UI representation is converted to an intermediate XML

format. Then the XML format is converted to a Runnable CEP Program which is a collection of

EPL queries and POJO objects chained together that are executed on top of an Esper engine.

2.3.1 Conversion from UI to XML

The workbench converts the user created workflow in to an XML representation which details the

components in the workflow as well as the connectivity among the components. The XML is of

the following format:

<glutter username=”nuwansam” title=”twitter filter” >

<graph>

<comp id="100" forward-list="200"/>

<comp id="200" forward-list="300,400"/>

...

</graph>

<components>

<comp id="100" type="connector" class-id="xxx" arglist="yyy"/>

<comp id="200" type="op" es="select * from 100"/>

...

</components>

The XML has 2 parts: <graph> and the <components> section. The <graph> section

describes the graph (the connectivity) of the workflow. It uses adjacency list format for

describing the graph. The "id" attribute holds the id of the currently described component and the

"forward-list" attribute contains a comma separated list of the components that are connected to

the current component. (Only outgoing edges are described).

The <components> section describes each component in the workflow in its own <comp>

xml item. Each implementing class for each component constructs the xml element for the

respective component. This makes it possible to extend the workbench with new components

without changing the core of the system.

2.3.2 Conversion from XML to Runnable CEP program

The runtime web service forwards the received XML from the client to an

XmlToGlutterDescConverter object. XmlToGlutterDescConverter takes the xml and creates a

Glutter Descriptor object which will contain the necessary details for running the workflow.

First the xml is parsed. Then in a loop over the components in the workflow, Event Types defined

in the components are added to the Glutter Descriptor. Connectors and Non-EPL-based Operators

define Event Types.

196 Computer Science & Information Technology (CS & IT)

After that, the components are re-ordered according to the graph. It is necessary to register the

esper statements in an order that ensures that all required statements are registered prior to

registering a given statement. Specifically, this means that, if component C uses output of

components A and B, then esper statements related to components A and B must be registered

prior to registering statement of component C. Since the graph is a Directed Acyclic Graph, a

topological sort on the component is used in constructing the ordered list of components. Once

the ordered list is constructed, the following is done in a loop over the ordered list:

If the current component is a non-EPL based component, then add a dummy statement "select

* from <outgoing stream of component>". If the forward component is a sink, add

a listener to the dummy statement. Then create an object from the java class referred to by the

class-id of the component description using reflection. Then, add the object as a listener to the

parent component esper statement.

If the current component is a multiplexer, then for all sinks in the forward list, create an instance

of the sink and add it as a listener to the multiplexer input stream. Then create the esper statement

for multiplex operation, which is of the following format:

On <mux instream> insert into <outstream1> select * insert into
<outstream2> select * output all

Then add this statement as the statement corresponding to the component in the Glutter

descriptor.

Then modify all the esper statements corresponding to the components in order to chain the

statements as per described by the graph. This is done by modifying the esper statements the

following way:
insert into <outgoing_stream_id> <esper statement>

The List of the ordered statements as well as the listener-to-statement relationships is stored in the

GlutterDescriptor.

2.4 Running the workflow

Once the GlutterDescriptor object is created, a GlutterRuntime object (which is a runnable object)

is created by passing the GlutterDescriptor object to it. The GlutterRuntime object does the actual

running on the workflow as described in the GlutterDescriptor. It first creates a separate Esper

Engine. It then puts configuration entries for event types defined in the GlutterDescriptor. Then it

registers the esper statements at the Esper Engine (The statements are ordered inside the

descriptor according to the topological sorting). Then it registers the listeners to the statements as

per the listener-to-statement relationship described in the GlutterDescriptor. Finally it constructs

and initiates the connectors (the components which push events to the workflow).

3. COMMON CEP QUERY IMPLEMENTATIONS

Select clause:

By default, all esper statements for the components keep intact the field list that is received to that

statement [8]. In most of the cases new fields are added or prevailing fields are modified. (This is

true regardless of the implementation of the component being EPL based or non-EPL based).

Computer Science & Information Technology (CS & IT)

However, the Subelement operator lets users select a subset of the fields received. (Thus

implementing the EPL “select” construct).

From clause:

The “from” clause is constructed using the output stream of the parent operator of the current

operator. However, several components which support temporal qu

“from” clause to contain a window to be applied on the receiving event stream. UI support for

letting users specify the window

capability is separated out as a user input component in order to ensure reusability. This user

input can be chained to the window specification text boxes in the window requiring components

for specifying the window. This is illustrated in the followin

Figure.

Where clause:

The “Where” clause is implemented by the filter operator. The following criteria is supported: is

greater than, is equal to, is less than, is not equal to, contains,

regexp. The criteria can be logically connected using AND or OR logical operators.

Figure.

Conversion to Esper:

select * from <incoming stream> where <query

The query string is created the following way:

If the value "Any" is selected in the Any/All

OR connector. If "All" is selected, the filter criteria are combined using AND connector.

If the "Block" value is selected from the Allow/Block

surrounded with a "NOT ()" block (negating the filter expression). Else the filter expression is

kept unaltered.

Creation of EPL Statement fragment for each atomic filter

of that specific filter operation. Also, depending on whether the filter criteria contain a field value

or a constant, the atomic filter criteria is changed.

Computer Science & Information Technology (CS & IT)

Subelement operator lets users select a subset of the fields received. (Thus

implementing the EPL “select” construct).

from” clause is constructed using the output stream of the parent operator of the current

l components which support temporal querying capabilities require the

clause to contain a window to be applied on the receiving event stream. UI support for

letting users specify the window to be applied is given on those components. Window definiti

capability is separated out as a user input component in order to ensure reusability. This user

input can be chained to the window specification text boxes in the window requiring components

for specifying the window. This is illustrated in the following diagram:

Figure. 2: From Clause UI Construct

The “Where” clause is implemented by the filter operator. The following criteria is supported: is

greater than, is equal to, is less than, is not equal to, contains, not contains, in, not in, regexp, not

regexp. The criteria can be logically connected using AND or OR logical operators.

Figure. 3: Where clause UI Construct

select * from <incoming stream> where <query string>

The query string is created the following way:

If the value "Any" is selected in the Any/All Combo box, the filter criteria are combined using

OR connector. If "All" is selected, the filter criteria are combined using AND connector.

k" value is selected from the Allow/Block Combo box, the whole filter expression is

surrounded with a "NOT ()" block (negating the filter expression). Else the filter expression is

Creation of EPL Statement fragment for each atomic filter criteria depend on the filter operation

of that specific filter operation. Also, depending on whether the filter criteria contain a field value

or a constant, the atomic filter criteria is changed.

 197

Subelement operator lets users select a subset of the fields received. (Thus

from” clause is constructed using the output stream of the parent operator of the current

erying capabilities require the

clause to contain a window to be applied on the receiving event stream. UI support for

to be applied is given on those components. Window definition

capability is separated out as a user input component in order to ensure reusability. This user

input can be chained to the window specification text boxes in the window requiring components

The “Where” clause is implemented by the filter operator. The following criteria is supported: is

not contains, in, not in, regexp, not

, the filter criteria are combined using

OR connector. If "All" is selected, the filter criteria are combined using AND connector.

, the whole filter expression is

surrounded with a "NOT ()" block (negating the filter expression). Else the filter expression is

criteria depend on the filter operation

of that specific filter operation. Also, depending on whether the filter criteria contain a field value

198 Computer Science & Information Technology (CS & IT)

Output clause:

Output clause details the output rate st

Valve operator. The user can specify an interval (based on length or time) and specify 4 modes of

flow controlling: All, First, Last, Snapshot.

Conversion to esper:

output (all | first | last |

(length | seconds)

Order By clause:

 Order by clause which sorts the events is supported by the Sort operator.

events collected in a data window according to user specified fields. User can specify a data

window, and a sort expression.

Conversion to Esper:

select * from <incoming stream>.<data window> order by <field1> [

asc | desc] [, <field2> [asc | desc]]...

Limit clause:

Limit clause lets select the first N number of items from the receiving events in the specified

window. This clause is supported by the Truncate operator.

a limit value. (The limit value can be a variable defined using the Set Variable operator or a

constant)

Conversion to Esper:

select * from <incoming stream>.<data window definition> limit

<limit value>

Join

This operator lets users join 2 input streams in to a single

are supported: Left outer join, right outer join, full outer join, and inner join.

Computer Science & Information Technology (CS & IT)

Output clause details the output rate stabilizing of the statement. This is supported using the

The user can specify an interval (based on length or time) and specify 4 modes of

flow controlling: All, First, Last, Snapshot.

output (all | first | last | snapshot) every <output rate>

Order by clause which sorts the events is supported by the Sort operator. This operator will sort

events collected in a data window according to user specified fields. User can specify a data

select * from <incoming stream>.<data window> order by <field1> [

field2> [asc | desc]]...

Limit clause lets select the first N number of items from the receiving events in the specified

window. This clause is supported by the Truncate operator. Users can specify a data window, and

limit value can be a variable defined using the Set Variable operator or a

select * from <incoming stream>.<data window definition> limit

This operator lets users join 2 input streams in to a single event stream. The followin

outer join, right outer join, full outer join, and inner join.

Figure. 4: Join UI Construct

abilizing of the statement. This is supported using the

The user can specify an interval (based on length or time) and specify 4 modes of

snapshot) every <output rate>

This operator will sort

events collected in a data window according to user specified fields. User can specify a data

select * from <incoming stream>.<data window> order by <field1> [

Limit clause lets select the first N number of items from the receiving events in the specified

Users can specify a data window, and

limit value can be a variable defined using the Set Variable operator or a

select * from <incoming stream>.<data window definition> limit

event stream. The following join Types

Computer Science & Information Technology (CS & IT) 199

Conversion to Esper:

select * from <left-hand incoming stream>.<left window

definition> (((left | right | full) outer) | inner) join

<right-hand incoming stream>.<right window definition> on <join

condition1> [and <join condition2>] ...

Stream Duplication

This is supported through the multiplexer operator. This duplicates the incoming stream and

outputs 2 streams. (Both output streams will contain identical events and will be the same as the

incoming stream).

Conversion to Esper:

The conversion is done as per detailed in the xml to running program conversion.

Aggregation

The Aggregation component lets users calculate aggregated values based on events collected in a

data window. (See data window section for details on data windows). This component adds

temporal querying capabilities in workflows. The following aggregation value calculations are

supported: avedev, avg, count, max, median, min, stddev, and sum. User can specify whether all

values or only the distinct values of the set is considered by checking / un-checking the checkbox

"All".

Conversion to Esper:

select *, <aggregation function>([all|distinct]

<field>),[<aggregation function>([all|distinct] <field>)]... from

<incoming_stream>.<data_window_definition>

Window Definition

One of the key aspects of CEP is the ability to perform temporal queries [1]. In order to perform

such temporal queries, it is required to specify a window on which the operation is applied. Since

this is a common requirement required by many operators, a separate define window user input

component is built in the workbench which can be used to specify windows. The following

window types are supported: Length, Length_batch, Time, Externally timed. Time_batch, Time-

length, Time_accumilation. Keep all, sorted, unique, groupby, Last event, First event, First

unique, First time, First length [8]. Cascading of multiple windows to specify compound window

definitions are also supported in the visual editor through chained “define window” components

as shown below:

200 Computer Science & Information Technology (CS & IT)

Variable Set

Variables in Esper can be used in output clauses, filter criteria etc. The Set Variable operator lets

users specify a variable and its assignment expression. This variable can be later on used in other

components as required. The variable def

variable definition is passed as a separate attribute and is added to the Esper engine without

chaining to the other statements. In order to continue the workflow, a dummy esper statement

(select * from …) is added to the chain.

4. IMPLEMENTATION OF PR

4.1 Variable Assignment (Field

This supports the following variable types as field values in the events.

Long, Double, String, Array[Long], Array[Double], and Array[String].

It is possible to create new fields as well as assign prevailing

above supported data types. This is done through mainly the use of 4 operators: Field Update,

Array Update, Cast, and Array Iterator.

Field Update: This operator lets users create a new field as well as modify the content in a

prevailing field. The created field / modified field will be of string type.

Field Update makes it possible to do field assignment for the String type. The cast operation lets

users cast a prevailing field of a different data type to a different (compatible data type). Through

the combination of Field update followed by the Cast operator, users can assign values to all

primitive data types (String, Long, Double).

Array Update: This is the Array counterpart of the Field update operator. This operator allows

users to create new fields / assign new values to prevailing fields of Array[String] type. The user

can specify the field name and the expression for the field. The expression

separated list of items. An item in the list can be a constant value or a currently present field value

of type array. If specifying a currently available field, user can optionally specify the range of the

array to take.

Computer Science & Information Technology (CS & IT)

Figure. 5: Window Definition

Variables in Esper can be used in output clauses, filter criteria etc. The Set Variable operator lets

users specify a variable and its assignment expression. This variable can be later on used in other

components as required. The variable definition is not chained to the other statements. The

variable definition is passed as a separate attribute and is added to the Esper engine without

chaining to the other statements. In order to continue the workflow, a dummy esper statement

) is added to the chain.

IMPLEMENTATION OF PROGRAMMING CONSTRUCTS

(Field value)

the following variable types as field values in the events.

Long, Double, String, Array[Long], Array[Double], and Array[String].

is possible to create new fields as well as assign prevailing fields’ new values in all of the

above supported data types. This is done through mainly the use of 4 operators: Field Update,

and Array Iterator.

operator lets users create a new field as well as modify the content in a

prevailing field. The created field / modified field will be of string type.

makes it possible to do field assignment for the String type. The cast operation lets

users cast a prevailing field of a different data type to a different (compatible data type). Through

the combination of Field update followed by the Cast operator, users can assign values to all

primitive data types (String, Long, Double).

This is the Array counterpart of the Field update operator. This operator allows

users to create new fields / assign new values to prevailing fields of Array[String] type. The user

can specify the field name and the expression for the field. The expression required is a comma

separated list of items. An item in the list can be a constant value or a currently present field value

of type array. If specifying a currently available field, user can optionally specify the range of the

Variables in Esper can be used in output clauses, filter criteria etc. The Set Variable operator lets

users specify a variable and its assignment expression. This variable can be later on used in other

inition is not chained to the other statements. The

variable definition is passed as a separate attribute and is added to the Esper engine without

chaining to the other statements. In order to continue the workflow, a dummy esper statement

new values in all of the

above supported data types. This is done through mainly the use of 4 operators: Field Update,

operator lets users create a new field as well as modify the content in a

makes it possible to do field assignment for the String type. The cast operation lets

users cast a prevailing field of a different data type to a different (compatible data type). Through

the combination of Field update followed by the Cast operator, users can assign values to all

This is the Array counterpart of the Field update operator. This operator allows

users to create new fields / assign new values to prevailing fields of Array[String] type. The user

required is a comma

separated list of items. An item in the list can be a constant value or a currently present field value

of type array. If specifying a currently available field, user can optionally specify the range of the

Computer Science & Information Technology (CS & IT) 201

Array Update lets assign Array[String] type field values. This followed by the Array Iterator

operator (given a Cast operator as the array iteration operator) lets users create fields of other

array types.

Thus, the user can assign values to any of the supported variable types in the above manner.

4.2 If Conditional

The “If conditional” can be implemented using the filter component. The filter component only

forwards an event to the next component if the filter criteria are met, thus acting as a typical “If”

conditional.

2
nd

 implementation: (External –If)

There is a different implementation of If conditional that can be useful when the conditional is not

based on the field values in the event stream. (The conditional is based on an external stream of

events / external trigger). The following diagram shows the implementation:

The above construct lets users control an event stream according to a conditional in a different

stream.

4.3 If-Else Construct

The If-Else Construct can be achieved in the following manner:

Mux

Filter 1 Filter 2

Mux

Filter 1 Filter 2

Field update1 field update2

(dummy2=”on”) (dummy2=”off”)

Union

Field Update

(dummy1=”on”)

 Join

202 Computer Science & Information Technology (CS & IT)

The filter 2 conditional must to be specified as the exact opposite of the filter1 conditional.

4.4 Loop

At the event level, looping is done across the workflow, thus no special component is required for

looping over events. (All operations are applied to events coming in that order).

However, for looping across an event field of type Array, the users can use the Array Iterator

operator. The Array Iterator operator is a higher order component, thus the user can specify which

operation to apply for each item in the array.

5. LIMITATIONS

Currently, the system only supports events represented as a Map. In addition to that, the field

types are limited to the following types: String, Long, Double, Array[String], Array[Long],

Array[Double]. Currently events do not support compound event fields (an event cannot contain

an event inside it). For pattern recognition we currently use the match recognize syntax (instead

of the pattern guard mechanism), thus limiting the pattern recognition capabilities.

6. CONCLUSION

CEP application development requires considerable effort from the programmer, and requires

thorough understanding of the query language [1]. In addition to that, coding in query level

makes it harder to visualize the program and the execution paths of it, thus making it difficult to

understand the program and modify it. Therefore, a visual programming environment for

Complex Event Processing is a vital step in making CEP application development much easier,

faster and intuitive.

REFERENCES

[1] “How to make the web work in real-time” [Online] Available: http://complexevents.com/ [Accessed:

November 24, 2009]

[2] Arvind And D.E. Culler. Dataflow architectures. Ann. Rev. Comput. Sci. 1, 225–253, 1986

[3] A. Davis, and R.M. Keller. Data flow program graphs. IEEE Comput. 15, 2, 26–41, 1982

[4] P.R. Kosinski. A data flow language for operating systems programming. In ‘Proceedings of ACM

SIGPLAN-SIGOPS Interface Meeting.’, SIGPLAN Not. 8, 9, 89–94. 1973.

[5] W.M. Johnston, J.R. Paul Hanna, and R.J. Millar. Advanced in Dataflow Programming Languages .

In ‘ACM Computing Surveys, Vol. 36, No. 1, March 2004, 2004.

[6] http://pipes.yahoo.com/pipes/docs [Accessed: December 21, 2009]

[7] EsperTech. (2009). Esper Reference Documentation [Online] Available:

http://esper.codehaus.org/esper-3.5.0/doc/reference/en/html/index.html [Accessed: October 20, 2009]

[8] E. Baroth, C. Hartsough, "Visual Programming in the Real World", in Visual Object-Oriented

Programming, Concepts and Environments (ed. M. Burnett, A. Goldberg, T. Lewis), Manning 1995,

pp.21-42

[9] “Event stream intelligence with Esper and NEsper” [Online] Available: http://esper.codehaus.org/

[Accessed: October 07, 2009]

