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ABSTRACT 

 
Traditional comparative learning sentence embedding directly uses the encoder to extract 

sentence features, and then passes in the comparative loss function for learning. However, 
this method pays too much attention to the sentence body and ignores the influence of some 

words in the sentence on the sentence semantics. To this end, we propose CMLM-CSE, an 

unsupervised contrastive learning framework based on conditional MLM. On the basis of 

traditional contrastive learning, an additional auxiliary network is added to integrate 

sentence embedding to perform MLM tasks, forcing sentence embedding to learn more 

masked word information. Finally, when Bertbase was used as the pretraining language 

model, we exceeded SimCSE by 0.55 percentage points on average in textual similarity 

tasks, and when Robertabase was used as the pretraining language model, we exceeded 

SimCSE by 0.3 percentage points on average in textual similarity tasks. 
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1. INTRODUCTION 
 
Learning universal sentence embeddings is a fundamental problem in natural language processing 

and has been studied extensively in the literature [1, 2, 3, 4, 7]. Much recent work has shown that 

pre-trained language models fine-tuned by contrast learning on unlabeled datasets can learn a 

good representation of sentences [2, 3, 4, 7]. Contrastive learning takes a self-supervised 
approach to training by using multiple data enhancements of its own samples as positive sample 

pairs and other samples within the same training batch as negative samples, pulling the positive 

sample pairs closer to the semantic representation space and pushing away the negative sample 
pairs during the training process. 

 

Chen et al. found that different data enhancements (e.g., random cropping, rotation, random 
inversion, color dithering, adding Gaussian noise, etc.) play a crucial role in pre-training visual 

models for contrast learning [5], but these data enhancements are usually unsuccessful when 

applied to sentence embedding contrast learning.Gao et al. proposed in SimCSE [3] that by a 

simple dropout-based data expansion approach to construct positive samples is much more 
effective than complex data expansion approaches based on synonym replacement, word 
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deletion, etc. In hindsight, this is not surprising, since deletion or replacement of sentences 
usually changes the meaning of the sentence and also shows that pre-trained language models are 

very sensitive to data augmentation by word replacement. In response, Chuang et al [7] added an 

equal-variable contrast learning [9] agent task to SimCSE [3] for error judgment of masked 

words, which was further improved, but because there are only two results for right and wrong, 
there is a large randomness in the judgment. 

 

In this paper, we combine Bert pre-trained language model and propose a new method of contrast 
learning sentence embedding based on word features, which improves the semantic information 

contained in the sentence encoding and further improves the effect of text-semantic similarity 

matching of sentences by adding an agent task of mask word prediction. 
 

2. RELATED WORK 
 

2.1. Contrastive Learning 
 

The purpose of contrastive learning is to learn an effective semantic representation by bringing 

semantically similar pairs of samples closer together and pushing apart pairs of samples that are 

not semantically similar. Given a sentence pair {𝑥𝑖 , 𝑥𝑖
+} where 𝑥𝑖 and 𝑥𝑖

+ are a pair of 

semantically identical or similar sentences, we treat these two sentences as positive sample pairs. 

We adopt the contrastive learning framework proposed by Chen et al. in SimCLR [5], and use a 

cross-entropy loss function for a training batch [10]. Let ℎ𝑖 and ℎ𝑖
+ represent the features of 𝑥𝑖 

and 𝑥𝑖
+, respectively. A minimal training batch contains N pairs of (𝑥𝑖 , 𝑥𝑖

+) and the specific loss 

function is as follows: 

 

ℓ𝑖 = −𝑙𝑜𝑔
𝑒𝑠𝑖𝑚(ℎ𝑖,ℎ𝑖

+)/τ

∑ 𝑒𝑠𝑖𝑚(ℎ𝑖,ℎ𝑗
+)/τ𝑁

𝑗=1

                  (1)       

 

Where, N represents the number of sentences in a mini-batch, and τ is a temperature 

hyperparameter. sim(h1, h2) =
h1

Th2

||h1||⋅||h2||
 represents the cosine similarity. 

 

3. CMLM-CSE MODEL STRUCTURES 
 

The CMLM-CSE model architecture proposed in this paper, as shown in Figure 1, consists of two 
parts: the standard SimCSE [3] (left side of Figure 1) and an auxiliary network (right side of 

Figure 1. Specifically, (1) The text 𝑥 is input twice into the sentence encoder, and two different 

sentence encodings ℎ+ and ℎ are obtained through dropout for computing the contrastive loss. (2) 

The text 𝑥 is randomly masked to obtain the masked text 𝑥′, which is then passed through the 
lexical feature extractor of the auxiliary network to extract the lexical features of the sentence to 

obtain ℎ′. Then, the sentence embedding ℎ and the hidden states of the lexical features of the 

sentence except for the [CLS] position generated by SimCSE are concatenated to obtain ℎ′′. 
Finally, the semantic feature Extractor module predicts the masked token, and the conditional 

MLM loss is computed. 
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Figure 1: The structure of the CMLM-CSE model. 

 

3.1. SimCSE and Contrastive Loss  
 

we adopt the same structure as SimCSE and define a set of sentence samples X =  {xi}i=1
N . In this 

paper, we use a pre-trained BERT model as the sentence encoder. It is worth noting that the 

BERT model structure consists of multiple layers of Transformer Block, and each Transformer 
Block has two dropout layers, which are located after the attention probabilities and fully 

connected layers, respectively. This ensures that even if two completely identical samples are 

input at different times, their outputs will still be different. We define hi
m = fθ(m(xi)) where 

m(xi) is the operation of randomly dropping out xi. We input the same sample into the encoder 

twice, and obtain two different feature encodings hi
mi and hi

mi
′

 by using two different dropout 

masks m and m′ respectively. Then, we compute the contrastive loss function as follows:  
 

𝑙𝑖 = −log
e

sim(h
i

mi ,h
i

mi
′

)/τ

∑ e
sim(h

i

mi ,h
j

mi
′

)/τ
N
j=1

            (4)  

 

where N is the length of a training batch, τ is the temperature, which is a hyperparameter, and 

Lcontrast = ∑ li
N
i=1 . 

 

3.2. Auxiliary Network and Conditional MLM Task 
 
The auxiliary network consists of two parts: the lexical feature extractor and the semantic feature 

fusioner. The lexical feature extractor selects the first eight layers of BERT. Ganesh and Jawahar 

[24] have demonstrated that the intermediate layers of BERT encode rich linguistic information 

and exhibit the characteristics of lexical features in the bottom layers, syntactic features in the 
middle layers, and semantic features in the top layers. By leveraging the rich syntactic features in 

the intermediate layers of the pre-trained BERT model and the sentence vector ℎ with semantic 

information output by SimCSE, we hope to provide more sufficient information to the semantic 
feature fusioner. 
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Furthermore, it is worth emphasizing that the lexical feature extractor is frozen during the 
parameter training process to avoid the semantic information being learned by the lexical feature 

extractor. Since the lexical feature extractor is frozen, in order to reduce the conditional MLM 

loss, it is necessary for the sentence embedding h to contain more semantic information to assist 

the semantic feature fusioner in correctly predicting the masked tokens. The semantic feature 
fusioner consists of three Transformer Blocks. 

 

During training, in this part, the input sentence 𝑥𝑖 is first randomly masked to obtain 𝑥𝑖
′. Then, 𝑥𝑖

′ 

is input into the lexical feature extractor to obtain the corresponding lexical features ℎ𝑖
′. The 

sentence vector ℎ𝑖 output by SimCSE and the hidden states ℎ′ of the lexical features except for 
the [CLS] position output by the lexical feature extractor are concatenated as follows:  

 

hi′′ = [ℎ𝑖 , ℎ𝑖
′ > 0] 

 

where ℎ𝑖
′{> 0} represents the hidden states of other positions except for position 0, and ℎ𝑖′′ is the 

concatenated vector. ℎ𝑖′′ is then input into the semantic feature fusioner to obtain the probability 

distribution of the masked token 𝑧𝑖, which is used to calculate the cross-entropy loss as follows:  

 

𝐿𝑀𝐿𝑀 = − ∑ ∑ 𝑥𝑗
(𝑖)

𝑝

𝑗=1

𝑁

𝑖=1

log (𝑧𝑗
(𝑖)

)              (5)  

 

where 𝑁 is the number of samples in a training batch, 𝑝 is the fixed sentence length selected 

during training, and 𝑥𝑗
(𝑖)

 represents the j-th 𝑡𝑜𝑘𝑒𝑛 of the i-th sentence in batch 𝑥 that is not 

masked. 

 
Compared to the traditional MLM task, the MLM task in this work is conditional, which means 

restoring the masked token under the premise of having the semantic information of the sentence. 

If the sentence embedding h carries sufficient semantic information, even with only three 
Transformer Blocks in the lexical feature extractor, it can still effectively restore the masked 

token. 

 

3.3. Loss Function Combination  
 

The loss function of CMLM-CSE consists of two parts: the contrastive loss of SimCSE and the 
conditional MLM loss of the auxiliary network.  

 

𝐿 = 𝐿𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 + λ𝐿𝑀𝐿𝑀              (6)  
 

where λ is a hyperparameter that determines the influence of the conditional MLM loss function 

on the contrastive loss function. Since the contrastive loss is simpler than the conditional MLM 

loss, in order to balance the two loss terms, the value of λ is set to be relatively small. Please refer 
to Section 4.1.2 for details of the ablation experiment analysis. 

 

4. EXPERIMENTAL SETTINGS AND RESULT ANALYSIS  
 

4.1. Experimental Settings  
 

In our experiments, we adopted the same settings as the unsupervised SimCSE, and used two pre-

trained models, Bert[11] and Roberta[12], to initialize our sentence encoder. The lexical feature 
extractor is the first eight layers of the Bert pre-trained model, and the semantic feature fusioner 
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consists of three Transformer Blocks. Note that the lexical feature extractor is frozen during the 
entire training process and does not undergo parameter updates, serving only as an auxiliary 

learning tool. 

 

4.2. Data  
 

For unsupervised pre-training, we selected the Wikipedia dataset provided in the source code of 
SimCSE[3], which contains one million simple English sentences. For model evaluation, we 

chose seven semantic textual similarity (STS) datasets for semantic similarity evaluation, 

including STS 2012-2016[13], STS Benchmark[14], and SICK-Relatedness[6]. All STS 

experiments are completely unsupervised, which means that no STS training dataset is used, and 
all sentence embeddings are generated using a fixed model trained in an unsupervised manner. 

 

4.3. Result Analysis  
 

4.3.1. Comparison of Text Similarity Performance based on Pre-trained Word Embeddings  

 
We compared our model results with SimCSE[3], IS-BERT[16], DeCLUTR[20], CMLM[17], 

CT-BERT[19], SG-OPT[18], some post-processing methods such as Bert-flow[21] and BERT-

whitening[22], and some simple baseline models such as GloVe[23]. The comparison results are 
shown in Table 1. When selecting Bertbase as the pre-trained model, our model outperforms 

SimCSE by 2.12, 0.51, 0.64, 0.50, and 1.33 percentage points on the STS12, STS14, STS15, 

STS16, and STS-B datasets, respectively, with an average improvement of 0.55 percentage points 
over SimCSE. Compared with our own reproduced DiffCSE model, our model outperforms it by 

2.09, 1.16, 1.02, and 0.39 percentage points on the STS12, STS14, STS15, and STS16 datasets, 

respectively, with an average improvement of 0.22 percentage points over DiffCSE. When 

selecting RoBERTabase as the pre-trained model, our model outperforms SimCSE by 0.49, 0.17, 
1.11, 0.49, and 0.2 percentage points on the STS12, STS13, STS14, STS15, and STS-B datasets, 

respectively, with an average improvement of 0.3 percentage points over SimCSE. 

 
Table 1: Performance (Spearman correlation coefficient) of different sentence embedding models on STS 

tasks. ∇ results are from [15]; ♡ results are from [3]; ♣ results are from [16]; ♠results are from [17]; ⋕ 

results are from [18]; ∗ results are from our experiments. 

 

Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-

R 

Avg. 

GloVe embeddings(avg.)∇ 55.14 70.66 59.73 68.25 63.66 58.02 53.76 61.32 

BERTbase (first-last avg.)♡ 39.70 59.38 49.67 66.03 66.19 53.87 62.06 56.70 

BERTbase-flow♡ 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55 

BERTbase-whitening♡ 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28 

IS-BERTbase♣ 56.77 69.24 61.21 75.23 70.16 69.21 64.25 66.58 

CMLM-BERTbase♠ 58.20 61.07 61.67 73.32 74.88 76.60 64.80 67.22 

CT-BERTbase♡ 61.63 76.80 68.47 77.50 76.48 74.31 69.19 72.05 

SG-OPT-BERTbase⋕ 66.84 80.13 71.23 81.56 77.17 77.23 68.16 74.62 
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4.3.2. Ablation Study  

 
(1) Removal of Contrastive Loss  

 
Table 2: Experimental results of different loss functions on the STS-B validation set 

 

loss-function w/o MLM loss w/o contrastive loss None 

STS-B 81.26 37.92 83.76 

 
In our model, there are two important loss functions, the contrastive loss and the conditional 

MLM loss. The contrastive loss can pull similar sentences closer and push dissimilar sentences 

apart, while the MLM loss can predict the masked words in a sentence based on the sentence 
embedding, thus enabling the sentence embedding to capture important word-level features. In 

other words, the contrastive loss focuses on the global information of the sentence, while the 

conditional MLM loss focuses on the local information of the sentence. The corresponding 
ablation experiment is shown in Table 2, where we use the STS-B validation set for testing. After 

removing the conditional MLM loss, the model degenerates to SimCSE, and the Spearman 

correlation coefficient drops by 2.5 percentage points. After removing the contrastive loss, the 

overall model Spearman correlation coefficient drops by 45.84 percentage points. This result 
confirms our hypothesis that only conducting sentence-level contrastive learning ignores the 

word-level features in the sentence, and adding the conditional MLM loss compensates for the 

information of word-level features in the sentence embedding, thus improving the overall 
performance of the sentence embedding. 

 

(2)  Different data augmentation methods  

 
Table 3: Experimental results on the STS-B validation set with different data augmentation  

 

Augmentation Word Repetition Drop one word None 

STS-B 75.84 79.16 83.76 

 

SimCSE-BERTbase♡ 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25 

∗DiffCSE-BERTbase 68.43 82.73 73.83 81.56 78.67 78.76 72.09 76.58 

* CMLM-CSE-BERTbase 70.52 82.20 74.89 82.58 79.06 78.18 70.20 76.80 

RoBERTabase(first-last avg.)♡ 40.88 58.74 49.07 65.63 61.48 58.55 61.63 56.57 

RoBERTabase-whitening♡ 46.99 63.24 57.23 71.36 68.99 61.36 62.91 61.73 

DeCLUTR-RoBERTabase♡ 52.41 75.19 65.52 77.12 78.63 72.41 68.62 69.99 

SimCSE-RoBERTabase♡ 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57 

*CMLM-CSE-RoBERTabase 70.65 81.94 74.35 81.85 80.54 80.42 68.32 76.87 
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We used two data augmentation methods on the contrastive loss side, namely adding duplicate 
words (first tokenizing the text and then repeating 32% of the words) and randomly deleting one 

word (first tokenizing the text and then randomly deleting one word). On the conditional MLM 

loss side, we still used random word masking of 15%. The specific results are shown in Table 3. 

On the STS-B validation set, the model without data augmentation had an accuracy of 83.76%, 
the accuracy with adding duplicate words was 75.84%, which was 7.92 percentage points lower 

than that without data augmentation, and the accuracy with randomly deleting one word was 

79.16%, which was 4.6 percentage points lower than that without data augmentation. 
 

(3) Masking rate 

 
Table 4: Experimental results on the STS-B validation set with different word masking rates 

 

Rate 15% 20% 25% 30% 40% 45% 

STS-B 83.76 81.91 79.93 82.59 84.09 82.31 

 

In the conditional MLM loss, we mask the original sentence with different ratios. The results are 

shown in Table 4. Different masking rates cause significant differences in performance. The 40% 
masking rate resulted in the highest validation set results, which were 4.16 percentage points 

higher than the lowest 25% masking rate. 

 

(4) λ coefficient 

 
Table 5: Experimental results on the STS-B validation set with different values of λ 

 

λ 0 0.0001 0.0005 0.001 0.005 0.01 0.05 0.1 

STS-B 81.26 82.45 81.82 83.55 83.76 82.48 81.52 81.96 

 

We use the lambda coefficient to weight the conditional MLM loss and then add it to the 

contrastive loss. Because contrastive learning is a relatively simple task, we need a relatively 

small λ to balance the two losses. Table 5 shows the experimental results on the STS-B validation 

set with different λ. The best results were obtained when λ was 0.005. When λ is 0, the model 

degenerates into SimCSE. 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 



60         Computer Science & Information Technology (CS & IT) 

(5) Auxiliary Network 
 
Table 6: Performance results on the corresponding datasets with different numbers of layers for the lexical 

feature extractor and semantic feature fusion layer, using the STS-B test set for evaluation. (The far-right 

column represents the corresponding number of layers for the lexical feature extractor and semantic feature 

fusion layer, and the results are in terms of Spearman correlation coefficient.) 

 

Model Encoder 

Layers - Decoder 

Layers 

STS1

2 

STS1

3 

STS1

4 

STS1

5 

STS1

6 

STS-

B 

SICK

-R 
Avg 

STS-

B 

(Dev) 

5-2 67.78 82.70 73.60 82.17 78.55 76.71 70.97 76.07 82.11 

6-2 68.74 81.94 73.18 80.72 78.52 77.29 70.55 75.85 82.45 

6-3 70.22 81.44 73.11 80.27 77.97 77.05 71.59 75.95 82.59 

6-4 70.78 81.32 74.10 82.29 78.55 76.43 70.85 76.33 81.10 

7-2 69.05 81.28 73.35 81.54 76.91 77.08 70.11 75.62 83.09 

7-3 67.69 81.83 71.63 80.47 77.95 76.06 70.41 75.15 82.05 

8-2 68.41 80.02 73.42 81.35 77.42 76.00 68.39 75.00 82.58 

8-3 70.52 82.20 74.89 82.58 79.06 78.18 70.20 76.80 83.76 

8-4 67.72 79.56 72.07 79.38 77.77 76.52 71.15 74.88 81.43 

 

The proportion of the auxiliary network (number of layers in the lexical feature extractor and 

semantic feature fusion block) is also crucial for the overall encoding performance. When the 

lexical feature extractor has more layers, it can provide better syntactic features, and the masked 
words can still be well reconstructed without relying on the sentence embeddings. When the 

number of layers in the lexical feature extractor is fewer, the information provided is less, or it 

may be biased towards lexical and surface features. The semantic feature fusion block needs 
more training to integrate this information and obtain syntactic and semantic features. Therefore, 

as shown in Table 6, when the encoder has fewer layers {<=6}, increasing the number of layers 

in the semantic feature fusion block can improve the average performance of the model on 
various tasks. 

 

We conducted a series of ablation experiments under the condition of 𝜆 = 0.005 and the results 

are shown in Table 6. When the number of layers in the lexical feature extractor is 8 and the 
number of layers in the semantic feature fusion block is 3, the performance is the best, with a 

Spearman correlation coefficient of 83.76%. When the number of layers in the lexical feature 

extractor is 8 and the number of layers in the semantic feature fusion block is 2, the ability of the 
semantic feature fusion block is weak, and the model convergence is poor. The performance is 

1.18% lower than when the number of layers in the semantic feature fusion block is 3. When the 

number of layers in the lexical feature extractor is 8 and the number of layers in the semantic 

feature fusion block is 4, too much semantic information is learned by the semantic feature fusion 
block, and the lexical feature extractor contains less semantic information, resulting in a 
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performance 2.33% lower than when the number of layers in the semantic feature fusion block is 
3. 

 

5. CONCLUSION 
 

In this paper, we proposed CMLM-CSE, a contrastive learning framework based on conditional 
MLM, with an additional auxiliary network for MLM tasks. This auxiliary network fuses 

sentence embeddings to reconstruct the masked words, forcing the sentence embeddings to carry 

more information, thus called conditional masked language model. Our model achieved an 
average improvement of 0.55 percentage points over SimCSE in textual similarity tasks. We also 

conducted extensive ablation experiments to demonstrate the correctness and effectiveness of our 

approach. 
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